1
|
Stiel AC, Ntziachristos V. Controlling the sound of light: photoswitching optoacoustic imaging. Nat Methods 2024; 21:1996-2007. [PMID: 39322752 DOI: 10.1038/s41592-024-02396-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/29/2024] [Indexed: 09/27/2024]
Abstract
Optoacoustic (photoacoustic) imaging advances allow high-resolution optical imaging much deeper than optical microscopy. However, while label-free optoacoustics have already entered clinical application, biological imaging is in need of ubiquitous optoacoustic labels for use in ways that are similar to how fluorescent proteins propelled optical microscopy. We review photoswitching advances that shine a new light or, in analogy, 'bring a new sound' to biological optoacoustic imaging. Based on engineered labels and novel devices, switching uses light or other energy forms and enables signal modulation and synchronous detection for maximizing contrast and detection sensitivity over other optoacoustic labels. Herein, we explain contrast enhancement in the spectral versus temporal domains and review labels and key concepts of switching and their properties to modulate optoacoustic signals. We further outline systems and applications and discuss how switching can enable optoacoustic imaging of cellular or molecular contrast at depths and resolutions beyond those of other optical methods.
Collapse
Affiliation(s)
- Andre C Stiel
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany.
- Protein Engineering for Superresolution Microscopy Lab, University of Regensburg, Regensburg, Germany.
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany.
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany.
| |
Collapse
|
2
|
Hughes J, Winkler A. New Insight Into Phytochromes: Connecting Structure to Function. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:153-183. [PMID: 39038250 DOI: 10.1146/annurev-arplant-070623-110636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Red and far-red light-sensing phytochromes are widespread in nature, occurring in plants, algae, fungi, and prokaryotes. Despite at least a billion years of evolution, their photosensory modules remain structurally and functionally similar. Conversely, nature has found remarkably different ways of transmitting light signals from the photosensor to diverse physiological responses. We summarize key features of phytochrome structure and function and discuss how these are correlated, from how the bilin environment affects the chromophore to how light induces cellular signals. Recent advances in the structural characterization of bacterial and plant phytochromes have resulted in paradigm changes in phytochrome research that we discuss in the context of present-day knowledge. Finally, we highlight questions that remain to be answered and suggest some of the benefits of understanding phytochrome structure and function.
Collapse
Affiliation(s)
- Jon Hughes
- Department of Plant Physiology, Justus Liebig University, Giessen, Germany;
- Department of Physics, Free University of Berlin, Berlin, Germany
| | - Andreas Winkler
- Institute of Biochemistry, Graz University of Technology, Graz, Austria;
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
3
|
Tran QH, Eder OM, Winkler A. Dynamics-driven allosteric stimulation of diguanylate cyclase activity in a red light-regulated phytochrome. J Biol Chem 2024; 300:107217. [PMID: 38522512 PMCID: PMC11035067 DOI: 10.1016/j.jbc.2024.107217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024] Open
Abstract
Sensor-effector proteins integrate information from different stimuli and transform this into cellular responses. Some sensory domains, like red-light responsive bacteriophytochromes, show remarkable modularity regulating a variety of effectors. One effector domain is the GGDEF diguanylate cyclase catalyzing the formation of the bacterial second messenger cyclic-dimeric-guanosine monophosphate. While critical signal integration elements have been described for different phytochromes, a generalized understanding of signal processing and communication over large distances, roughly 100 Å in phytochrome diguanylate cyclases, is missing. Here we show that dynamics-driven allostery is key to understanding signal integration on a molecular level. We generated protein variants stabilized in their far-red-absorbing Pfr state and demonstrated by analysis of conformational dynamics using hydrogen-deuterium exchange coupled to mass spectrometry that single amino acid replacements are accompanied by altered dynamics of functional elements throughout the protein. We show that the conformational dynamics correlate with the enzymatic activity of these variants, explaining also the increased activity of a non-photochromic variant. In addition, we demonstrate the functional importance of mixed Pfr/intermediate state dimers using a fast-reverting variant that still enables wild-type-like fold-changes of enzymatic stimulation by red light. This supports the functional role of single protomer activation in phytochromes, a property that might correlate with the non-canonical mixed Pfr/intermediate-state spectra observed for many phytochrome systems. We anticipate our results to stimulate research in the direction of dynamics-driven allosteric regulation of different bacteriophytochrome-based sensor-effectors. This will eventually impact design strategies for the creation of novel sensor-effector systems for enriching the optogenetic toolbox.
Collapse
Affiliation(s)
- Quang Hieu Tran
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
| | | | - Andreas Winkler
- Institute of Biochemistry, Graz University of Technology, Graz, Austria; BioTechMed Graz, Graz, Austria.
| |
Collapse
|
4
|
Xu J, Zhu N, Du Y, Han T, Zheng X, Li J, Zhu S. Biomimetic NIR-II fluorescent proteins created from chemogenic protein-seeking dyes for multicolor deep-tissue bioimaging. Nat Commun 2024; 15:2845. [PMID: 38565859 PMCID: PMC10987503 DOI: 10.1038/s41467-024-47063-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Near-infrared-I/II fluorescent proteins (NIR-I/II FPs) are crucial for in vivo imaging, yet the current NIR-I/II FPs face challenges including scarcity, the requirement for chromophore maturation, and limited emission wavelengths (typically < 800 nm). Here, we utilize synthetic protein-seeking NIR-II dyes as chromophores, which covalently bind to tag proteins (e.g., human serum albumin, HSA) through a site-specific nucleophilic substitution reaction, thereby creating proof-of-concept biomimetic NIR-II FPs. This chemogenic protein-seeking strategy can be accomplished under gentle physiological conditions without catalysis. Proteomics analysis identifies specific binding site (Cys 477 on DIII). NIR-II FPs significantly enhance chromophore brightness and photostability, while improving biocompatibility, allowing for high-performance NIR-II lymphography and angiography. This strategy is universal and applicable in creating a wide range of spectrally separated NIR-I/II FPs for real-time visualization of multiple biological events. Overall, this straightforward biomimetic approach holds the potential to transform fluorescent protein-based bioimaging and enables in-situ albumin targeting to create NIR-I/II FPs for deep-tissue imaging in live organisms.
Collapse
Affiliation(s)
- Jiajun Xu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Changchun, 130021, P.R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, P.R. China
| | - Ningning Zhu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Changchun, 130021, P.R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Yijing Du
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Changchun, 130021, P.R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Tianyang Han
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Changchun, 130021, P.R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Xue Zheng
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Changchun, 130021, P.R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Jia Li
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Changchun, 130021, P.R. China
| | - Shoujun Zhu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Changchun, 130021, P.R. China.
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, P.R. China.
| |
Collapse
|
5
|
Ihalainen JA, Dogan B, Kurttila M, Zeng Y, van Elsas JD, Nissinen R. Multifaceted photoreceptor compositions in dual phototrophic systems - A genomic analysis. J Mol Biol 2024; 436:168412. [PMID: 38135178 DOI: 10.1016/j.jmb.2023.168412] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
For microbes and their hosts, sensing of external cues is essential for their survival. For example, in the case of plant associated microbes, the light absorbing pigment composition of the plant as well as the ambient light conditions determine the well-being of the microbe. In addition to light sensing, some microbes can utilize xanthorhodopsin based proton pumps and bacterial photosynthetic complexes that work in parallel for energy production. They are called dual phototrophic systems. Light sensing requirements in these type of systems are obviously demanding. In nature, the photosensing machinery follows mainly the same composition in all organisms. However, the specific role of each photosensor in specific light conditions is elusive. In this study, we provide an overall picture of photosensors present in dual phototrophic systems. We compare the genomes of the photosensor proteins from dual phototrophs to those from similar microbes with "single" phototrophicity or microbes without phototrophicity. We find that the dual phototrophic bacteria obtain a larger variety of photosensors than their light inactive counterparts. Their rich domain composition and functional repertoire remains similar across all microbial photosensors. Our study calls further investigations of this particular group of bacteria. This includes protein specific biophysical characterization in vitro, microbiological studies, as well as clarification of the ecological meaning of their host microbial interactions.
Collapse
Affiliation(s)
- Janne A Ihalainen
- University of Jyväskylä, Nanoscience Center, Department of Biological and Environmental Science, 40014 Jyväskylä, Finland.
| | - Batuhan Dogan
- University of Jyväskylä, Nanoscience Center, Department of Biological and Environmental Science, 40014 Jyväskylä, Finland
| | - Moona Kurttila
- University of Jyväskylä, Nanoscience Center, Department of Biological and Environmental Science, 40014 Jyväskylä, Finland
| | - Yonghui Zeng
- University of Copenhagen, Department of Plant and Environmental Sciences, 2100 Copenhagen, Denmark
| | - Jan Dirk van Elsas
- University of Groningen, Groningen Institute for Evolutionary Life Sciences, 9747 AG Groningen, the Netherlands
| | - Riitta Nissinen
- University of Jyväskylä, Nanoscience Center, Department of Biological and Environmental Science, 40014 Jyväskylä, Finland; University of Turku, Department of Biology, 20500 Turku, Finland
| |
Collapse
|
6
|
Pennacchietti F, Alvelid J, Morales RA, Damenti M, Ollech D, Oliinyk OS, Shcherbakova DM, Villablanca EJ, Verkhusha VV, Testa I. Blue-shift photoconversion of near-infrared fluorescent proteins for labeling and tracking in living cells and organisms. Nat Commun 2023; 14:8402. [PMID: 38114484 PMCID: PMC10730883 DOI: 10.1038/s41467-023-44054-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/24/2023] [Indexed: 12/21/2023] Open
Abstract
Photolabeling of intracellular molecules is an invaluable approach to studying various dynamic processes in living cells with high spatiotemporal precision. Among fluorescent proteins, photoconvertible mechanisms and their products are in the visible spectrum (400-650 nm), limiting their in vivo and multiplexed applications. Here we report the phenomenon of near-infrared to far-red photoconversion in the miRFP family of near infrared fluorescent proteins engineered from bacterial phytochromes. This photoconversion is induced by near-infrared light through a non-linear process, further allowing optical sectioning. Photoconverted miRFP species emit fluorescence at 650 nm enabling photolabeling entirely performed in the near-infrared range. We use miRFPs as photoconvertible fluorescent probes to track organelles in live cells and in vivo, both with conventional and super-resolution microscopy. The spectral properties of miRFPs complement those of GFP-like photoconvertible proteins, allowing strategies for photoconversion and spectral multiplexed applications.
Collapse
Affiliation(s)
- Francesca Pennacchietti
- Department of Applied Physics and SciLifeLab, KTH Royal Institute of Technology, Stockholm, 17165, Sweden.
| | - Jonatan Alvelid
- Department of Applied Physics and SciLifeLab, KTH Royal Institute of Technology, Stockholm, 17165, Sweden
| | - Rodrigo A Morales
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, 17176, Sweden
- Center for Molecular Medicine (CMM), Stockholm, 17176, Sweden
| | - Martina Damenti
- Department of Applied Physics and SciLifeLab, KTH Royal Institute of Technology, Stockholm, 17165, Sweden
| | - Dirk Ollech
- Department of Applied Physics and SciLifeLab, KTH Royal Institute of Technology, Stockholm, 17165, Sweden
| | | | - Daria M Shcherbakova
- Department of Genetics, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Eduardo J Villablanca
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, 17176, Sweden
- Center for Molecular Medicine (CMM), Stockholm, 17176, Sweden
| | - Vladislav V Verkhusha
- Medicum, University of Helsinki, Helsinki, 00290, Finland
- Department of Genetics, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ilaria Testa
- Department of Applied Physics and SciLifeLab, KTH Royal Institute of Technology, Stockholm, 17165, Sweden.
| |
Collapse
|
7
|
Ramírez Martínez C, Gómez-Pérez LS, Ordaz A, Torres-Huerta AL, Antonio-Perez A. Current Trends of Bacterial and Fungal Optoproteins for Novel Optical Applications. Int J Mol Sci 2023; 24:14741. [PMID: 37834188 PMCID: PMC10572898 DOI: 10.3390/ijms241914741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
Photoproteins, luminescent proteins or optoproteins are a kind of light-response protein responsible for the conversion of light into biochemical energy that is used by some bacteria or fungi to regulate specific biological processes. Within these specific proteins, there are groups such as the photoreceptors that respond to a given light wavelength and generate reactions susceptible to being used for the development of high-novel applications, such as the optocontrol of metabolic pathways. Photoswitchable proteins play important roles during the development of new materials due to their capacity to change their conformational structure by providing/eliminating a specific light stimulus. Additionally, there are bioluminescent proteins that produce light during a heatless chemical reaction and are useful to be employed as biomarkers in several fields such as imaging, cell biology, disease tracking and pollutant detection. The classification of these optoproteins from bacteria and fungi as photoreceptors or photoresponse elements according to the excitation-emission spectrum (UV-Vis-IR), as well as their potential use in novel applications, is addressed in this article by providing a structured scheme for this broad area of knowledge.
Collapse
Affiliation(s)
| | | | | | | | - Aurora Antonio-Perez
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Estado de México, Av. Lago de Guadalupe KM 3.5, Margarita Maza de Juárez, Ciudad López Mateos, Atizapán de Zaragoza 52926, Estado de México, Mexico; (C.R.M.); (L.S.G.-P.); (A.O.); (A.L.T.-H.)
| |
Collapse
|
8
|
Abstract
The genetically encoded fluorescent sensors convert chemical and physical signals into light. They are powerful tools for the visualisation of physiological processes in living cells and freely moving animals. The fluorescent protein is the reporter module of a genetically encoded biosensor. In this study, we first review the history of the fluorescent protein in full emission spectra on a structural basis. Then, we discuss the design of the genetically encoded biosensor. Finally, we briefly review several major types of genetically encoded biosensors that are currently widely used based on their design and molecular targets, which may be useful for the future design of fluorescent biosensors.
Collapse
Affiliation(s)
- Minji Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| | - Yifan Da
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| |
Collapse
|
9
|
Kurttila M, Etzl S, Rumfeldt J, Takala H, Galler N, Winkler A, Ihalainen JA. The structural effect between the output module and chromophore-binding domain is a two-way street via the hairpin extension. Photochem Photobiol Sci 2022; 21:1881-1894. [PMID: 35984631 PMCID: PMC9630206 DOI: 10.1007/s43630-022-00265-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/30/2022] [Indexed: 11/23/2022]
Abstract
Signal transduction typically starts with either ligand binding or cofactor activation, eventually affecting biological activities in the cell. In red light-sensing phytochromes, isomerization of the bilin chromophore results in regulation of the activity of diverse output modules. During this process, several structural elements and chemical events influence signal propagation. In our study, we have studied the full-length bacteriophytochrome from Deinococcus radiodurans as well as a previously generated optogenetic tool where the native histidine kinase output module has been replaced with an adenylate cyclase. We show that the composition of the output module influences the stability of the hairpin extension. The hairpin, often referred as the PHY tongue, is one of the central structural elements for signal transduction. It extends from a distinct domain establishing close contacts with the chromophore binding site. If the coupling between these interactions is disrupted, the dynamic range of the enzymatic regulation is reduced. Our study highlights the complex conformational properties of the hairpin extension as a bidirectional link between the chromophore-binding site and the output module, as well as functional properties of diverse output modules.
Collapse
Affiliation(s)
- Moona Kurttila
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Stefan Etzl
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010, Graz, Austria
| | - Jessica Rumfeldt
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Heikki Takala
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Nadine Galler
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010, Graz, Austria
| | - Andreas Winkler
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010, Graz, Austria.
| | - Janne A Ihalainen
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland.
| |
Collapse
|
10
|
Conserved histidine and tyrosine determine spectral responses through the water network in Deinococcus radiodurans phytochrome. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2022; 21:1975-1989. [PMID: 35906527 DOI: 10.1007/s43630-022-00272-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/12/2022] [Indexed: 10/16/2022]
Abstract
Phytochromes are red light-sensing photoreceptor proteins that bind a bilin chromophore. Here, we investigate the role of a conserved histidine (H260) and tyrosine (Y263) in the chromophore-binding domain (CBD) of Deinococcus radiodurans phytochrome (DrBphP). Using crystallography, we show that in the H260A variant, the missing imidazole side chain leads to increased water content in the binding pocket. On the other hand, Y263F mutation reduces the water occupancy around the chromophore. Together, these changes in water coordination alter the protonation and spectroscopic properties of the biliverdin. These results pinpoint the importance of this conserved histidine and tyrosine, and the related water network, for the function and applications of phytochromes.
Collapse
|
11
|
Stepanenko OV, Kuznetsova IM, Turoverov KK, Stepanenko OV. Impact of Double Covalent Binding of BV in NIR FPs on Their Spectral and Physicochemical Properties. Int J Mol Sci 2022; 23:ijms23137347. [PMID: 35806351 PMCID: PMC9267011 DOI: 10.3390/ijms23137347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 02/01/2023] Open
Abstract
Understanding the photophysical properties and stability of near-infrared fluorescent proteins (NIR FPs) based on bacterial phytochromes is of great importance for the design of efficient fluorescent probes for use in cells and in vivo. Previously, the natural ligand of NIR FPs biliverdin (BV) has been revealed to be capable of covalent binding to the inherent cysteine residue in the PAS domain (Cys15), and to the cysteine residue introduced into the GAF domain (Cys256), as well as simultaneously with these two residues. Here, based on the spectroscopic analysis of several NIR FPs with both cysteine residues in PAS and GAF domains, we show that the covalent binding of BV simultaneously with two domains is the reason for the higher quantum yield of BV fluorescence in these proteins as a result of rigid fixation of the chromophore in their chromophore-binding pocket. We demonstrate that since the attachment sites are located in different regions of the polypeptide chain forming a figure-of-eight knot, their binding to BV leads to shielding of many sites of proteolytic degradation due to additional stabilization of the entire protein structure. This makes NIR FPs with both cysteine residues in PAS and GAF domains less susceptible to cleavage by intracellular proteases.
Collapse
|
12
|
Nienhaus K, Nienhaus GU. Genetically encodable fluorescent protein markers in advanced optical imaging. Methods Appl Fluoresc 2022; 10. [PMID: 35767981 DOI: 10.1088/2050-6120/ac7d3f] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/29/2022] [Indexed: 11/12/2022]
Abstract
Optical fluorescence microscopy plays a pivotal role in the exploration of biological structure and dynamics, especially on live specimens. Progress in the field relies, on the one hand, on technical advances in imaging and data processing and, on the other hand, on progress in fluorescent marker technologies. Among these, genetically encodable fluorescent proteins (FPs) are invaluable tools, as they allow facile labeling of live cells, tissues or organisms, as these produce the FP markers all by themselves after introduction of a suitable gene. Here we cover FP markers from the GFP family of proteins as well as tetrapyrrole-binding proteins, which further complement the FP toolbox in important ways. A broad range of FP variants have been endowed, by using protein engineering, with photophysical properties that are essential for specific fluorescence microscopy techniques, notably those offering nanoscale image resolution. We briefly introduce various advanced imaging methods and show how they utilize the distinct properties of the FP markers in exciting imaging applications, with the aim to guide researchers toward the design of powerful imaging experiments that are optimally suited to address their biological questions.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology, Wolfgang Gaede Str. 1, Karlsruhe, 76131, GERMANY
| | - Gerd Ulrich Nienhaus
- Karlsruhe Institute of Technology, Wolfgang Gaede Str. 1, Karlsruhe, 76131, GERMANY
| |
Collapse
|
13
|
Nagano S, Sadeghi M, Balke J, Fleck M, Heckmann N, Psakis G, Alexiev U. Improved fluorescent phytochromes for in situ imaging. Sci Rep 2022; 12:5587. [PMID: 35379835 PMCID: PMC8980088 DOI: 10.1038/s41598-022-09169-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/14/2022] [Indexed: 12/18/2022] Open
Abstract
AbstractModern biology investigations on phytochromes as near-infrared fluorescent pigments pave the way for the development of new biosensors, as well as for optogenetics and in vivo imaging tools. Recently, near-infrared fluorescent proteins (NIR-FPs) engineered from biliverdin-binding bacteriophytochromes and cyanobacteriochromes, and from phycocyanobilin-binding cyanobacterial phytochromes have become promising probes for fluorescence microscopy and in vivo imaging. However, current NIR-FPs typically suffer from low fluorescence quantum yields and short fluorescence lifetimes. Here, we applied the rational approach of combining mutations known to enhance fluorescence in the cyanobacterial phytochrome Cph1 to derive a series of highly fluorescent variants with fluorescence quantum yield exceeding 15%. These variants were characterised by biochemical and spectroscopic methods, including time-resolved fluorescence spectroscopy. We show that these new NIR-FPs exhibit high fluorescence quantum yields and long fluorescence lifetimes, contributing to their bright fluorescence, and provide fluorescence lifetime imaging measurements in E.coli cells.
Collapse
|
14
|
Zhao H, Zastrow ML. Transition Metals Induce Quenching of Monomeric Near-Infrared Fluorescent Proteins. Biochemistry 2022; 61:494-504. [PMID: 35289592 DOI: 10.1021/acs.biochem.1c00705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transition metals such as zinc and copper are essential in numerous life processes, and both deficiency and toxic overload of these metals are associated with various diseases. Fluorescent metal sensors are powerful tools for studying the roles of metal ions in the physiology and pathology of biological systems. Green fluorescent protein (GFP) and its derivatives are highly utilized for protein-based sensor design, but application to anaerobic systems is limited because these proteins require oxygen to become fluorescent. Bacteriophytochrome-based monomeric near-infrared fluorescent proteins (miRFPs) covalently bind a bilin cofactor, which can be added exogenously for anaerobic cells. miRFPs can also have emission wavelengths extending to >700 nm, which is valuable for imaging applications. Here, we evaluated the suitability of miRFP670 and miRFP709 as platforms for single fluorescent protein metal ion sensors. We found that divalent metal ions like Zn2+, Co2+, Ni2+, and Cu2+ can quench from ∼6-20% (Zn2+, Co2+, and Ni2+) and up to nearly 90% (Cu2+) of the fluorescence intensity of pure miRFPs and have similar impacts in live Escherichia coli cells expressing miRFPs. The presence of a 6× histidine tag for purification influences metal quenching, but significant Cu2+-induced quenching and a picomolar binding affinity are retained in the absence of the His6 tag in both cuvettes and live bacterial cells. By comparing the Cu2+ and Cu+-induced quenching results for miRFP670 and miRFP709 and through examining absorption spectra and previously reported crystal structures, we propose a surface metal binding site near the biliverdin IXα chromophore.
Collapse
Affiliation(s)
- Haowen Zhao
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Melissa L Zastrow
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
15
|
Yadav K, Ghosh S, Barak A, Schaefer W, Subramanian R. Phenylalanine stacking enhances the red fluorescence of biliverdin IXα on UV excitation in sandercyanin fluorescent protein. FEBS Lett 2022; 596:796-805. [PMID: 35020202 DOI: 10.1002/1873-3468.14281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/18/2021] [Accepted: 12/28/2021] [Indexed: 01/20/2023]
Abstract
Biliverdin IXα (BV) binds to several prokaryotic and eukaryotic proteins. How nature exploits the versatility of BV's properties is not fully understood. Unlike free BV, the Sandercyanin fluorescent protein bound to BV (SFP-BV) shows enhanced red fluorescence (675 nm) on excitation in the UV region (380 nm). Site-directed mutagenesis showed that the BV complex of two SFP variants, F55A and E79A, resulted in the loss of red fluorescence. Crystal structures of the complexes of these proteins with BV show the absence of stacking interactions of the F55 phenyl ring with BV. BV changes from ZZZssa conformation in the wild-type to ZZZsss conformation in the variants. In the nonfluorescent mutants, the lowest excited state is destabilized, resulting in nonradiative decay.
Collapse
Affiliation(s)
- Keerti Yadav
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India.,Manipal Academy of Higher Education, Manipal University, Madhav Nagar, India
| | - Swagatha Ghosh
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India.,Department of Chemistry and Molecular Biology, University of Gothenburg, Sweden
| | - Arvind Barak
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India
| | - Wayne Schaefer
- Department of Biological Sciences, The University of Wisconsin-Milwaukee at Washington County, West Bend, WI, USA
| | - Ramaswamy Subramanian
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India.,Department of Biological Sciences and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
16
|
Ghosh S, Mondal S, Yadav K, Aggarwal S, Schaefer WF, Narayana C, Subramanian R. Modulation of biliverdin dynamics and spectral properties by Sandercyanin. RSC Adv 2022; 12:20296-20304. [PMID: 35919616 PMCID: PMC9277520 DOI: 10.1039/d2ra02880h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/05/2022] [Indexed: 12/02/2022] Open
Abstract
Biliverdin IX-alpha (BV), a tetrapyrrole, is found ubiquitously in most living organisms. It functions as a metabolite, pigment, and signaling compound. While BV is known to bind to diverse protein families such as heme-metabolizing enzymes and phytochromes, not many BV-bound lipocalins (ubiquitous, small lipid-binding proteins) have been studied. The molecular basis of binding and conformational selectivity of BV in lipocalins remains unexplained. Sandercyanin (SFP)–BV complex is a blue lipocalin protein present in the mucus of the Canadian walleye (Stizostedion vitreum). In this study, we present the structures and binding modes of BV to SFP. Using a combination of designed site-directed mutations, X-ray crystallography, UV/VIS, and resonance Raman spectroscopy, we have identified multiple conformations of BV that are stabilized in the binding pocket of SFP. In complex with the protein, these conformers generate varied spectroscopic signatures both in their absorption and fluorescence spectra. We show that despite no covalent anchor, structural heterogeneity of the chromophore is primarily driven by the D-ring pyrrole of BV. Our work shows how conformational promiscuity of BV is correlated to the rearrangement of amino acids in the protein matrix leading to modulation of spectral properties. Biliverdin IX-alpha undergoes rotation around the D-ring pyrrole and displays a broad far-red absorbance on binding to monomeric Sandercyanin variant (orange) compared to the wild-type tetrameric protein (cyan).![]()
Collapse
Affiliation(s)
- Swagatha Ghosh
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 40530 Gothenburg, Sweden
| | - Sayan Mondal
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, Karnataka, India
| | - Keerti Yadav
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India
- Manipal Academy of Higher Education, Manipal University, Madhav Nagar, 576104, India
| | - Shantanu Aggarwal
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, Karnataka, India
| | - Wayne F. Schaefer
- Department of Biological Sciences, University of Wisconsin at Milwaukee, Washington County, West Bend, WI 53095, USA
| | - Chandrabhas Narayana
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, Karnataka, India
| | - Ramaswamy Subramanian
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India
- Department of Biological Sciences, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
17
|
Kurttila M, Stucki-Buchli B, Rumfeldt J, Schroeder L, Häkkänen H, Liukkonen A, Takala H, Kottke T, Ihalainen JA. Site-by-site tracking of signal transduction in an azidophenylalanine-labeled bacteriophytochrome with step-scan FTIR spectroscopy. Phys Chem Chem Phys 2021; 23:5615-5628. [PMID: 33656023 DOI: 10.1039/d0cp06553f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Signal propagation in photosensory proteins is a complex and multidimensional event. Unraveling such mechanisms site-specifically in real time is an eligible but a challenging goal. Here, we elucidate the site-specific events in a red-light sensing phytochrome using the unnatural amino acid azidophenylalanine, vibrationally distinguishable from all other protein signals. In canonical phytochromes, signal transduction starts with isomerization of an excited bilin chromophore, initiating a multitude of processes in the photosensory unit of the protein, which eventually control the biochemical activity of the output domain, nanometers away from the chromophore. By implementing the label in prime protein locations and running two-color step-scan FTIR spectroscopy on the Deinococcus radiodurans bacteriophytochrome, we track the signal propagation at three specific sites in the photosensory unit. We show that a structurally switchable hairpin extension, a so-called tongue region, responds to the photoconversion already in microseconds and finalizes its structural changes concomitant with the chromophore, in milliseconds. In contrast, kinetics from the other two label positions indicate that the site-specific changes deviate from the chromophore actions, even though the labels locate in the chromophore vicinity. Several other sites for labeling resulted in impaired photoswitching, low structural stability, or no changes in the difference spectrum, which provides additional information on the inner dynamics of the photosensory unit. Our work enlightens the multidimensionality of the structural changes of proteins under action. The study also shows that the signaling mechanism of phytochromes is accessible in a time-resolved and site-specific approach by azido probes and demonstrates challenges in using these labels.
Collapse
Affiliation(s)
- Moona Kurttila
- University of Jyväskylä, Nanoscience Center, Department of Biological and Environmental Science, 40014 Jyväskylä, Finland.
| | - Brigitte Stucki-Buchli
- University of Jyväskylä, Nanoscience Center, Department of Biological and Environmental Science, 40014 Jyväskylä, Finland.
| | - Jessica Rumfeldt
- University of Jyväskylä, Nanoscience Center, Department of Biological and Environmental Science, 40014 Jyväskylä, Finland.
| | - Lea Schroeder
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| | - Heikki Häkkänen
- University of Jyväskylä, Nanoscience Center, Department of Biological and Environmental Science, 40014 Jyväskylä, Finland.
| | - Alli Liukkonen
- University of Jyväskylä, Nanoscience Center, Department of Biological and Environmental Science, 40014 Jyväskylä, Finland.
| | - Heikki Takala
- University of Jyväskylä, Nanoscience Center, Department of Biological and Environmental Science, 40014 Jyväskylä, Finland.
| | - Tilman Kottke
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| | - Janne A Ihalainen
- University of Jyväskylä, Nanoscience Center, Department of Biological and Environmental Science, 40014 Jyväskylä, Finland.
| |
Collapse
|
18
|
Takala H, Edlund P, Ihalainen JA, Westenhoff S. Tips and turns of bacteriophytochrome photoactivation. Photochem Photobiol Sci 2021; 19:1488-1510. [PMID: 33107538 DOI: 10.1039/d0pp00117a] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Phytochromes are ubiquitous photosensor proteins, which control the growth, reproduction and movement in plants, fungi and bacteria. Phytochromes switch between two photophysical states depending on the light conditions. In analogy to molecular machines, light absorption induces a series of structural changes that are transduced from the bilin chromophore, through the protein, and to the output domains. Recent progress towards understanding this structural mechanism of signal transduction has been manifold. We describe this progress with a focus on bacteriophytochromes. We describe the mechanism along three structural tiers, which are the chromophore-binding pocket, the photosensory module, and the output domains. We discuss possible interconnections between the tiers and conclude by presenting future directions and open questions. We hope that this review may serve as a compendium to guide future structural and spectroscopic studies designed to understand structural signaling in phytochromes.
Collapse
Affiliation(s)
- Heikki Takala
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Box 35, 40014 Jyvaskyla, Finland. and Department of Anatomy, Faculty of Medicine, University of Helsinki, Box 63, 00014 Helsinki, Finland
| | - Petra Edlund
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden.
| | - Janne A Ihalainen
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Box 35, 40014 Jyvaskyla, Finland.
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden.
| |
Collapse
|
19
|
Abstract
Near-infrared (NIR) luminescent materials have emerged as a growing field of interest, particularly for imaging and optics applications in biology, chemistry, and physics. However, the development of materials for this and other use cases has been hindered by a range of issues that prevents their widespread use beyond benchtop research. This review explores emerging trends in some of the most promising NIR materials and their applications. In particular, we focus on how a more comprehensive understanding of intrinsic NIR material properties might allow researchers to better leverage these traits for innovative and robust applications in biological and physical sciences.
Collapse
Affiliation(s)
- Christopher T. Jackson
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Sanghwa Jeong
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | | | - Markita P. Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
- Innovative Genomics Institute (IGI), Berkeley, CA, USA
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
20
|
Grigorenko BL, Polyakov IV, Nemukhin AV. Modeling photophysical properties of the bacteriophytochrome-based fluorescent protein IFP1.4. J Chem Phys 2021; 154:065101. [PMID: 33588533 DOI: 10.1063/5.0026475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An enhanced interest in the phytochrome-based fluorescent proteins is explained by their ability to absorb and emit light in the far-red and infra-red regions particularly suitable for bioimaging. The fluorescent protein IFP1.4 was engineered from the chromophore-binding domain of a bacteriophytochrome in attempts to increase the fluorescence quantum yield. We report the results of simulations of structures in the ground S0 and excited S1 electronic states of IFP1.4 using the methods of quantum chemistry and quantum mechanics/molecular mechanics. We construct different protonation states of the biliverdin (BV) chromophore in the red-absorbing form of the protein by moving protons from the BV pyrrole rings to a suitable acceptor within the system and show that these structures are close in energy but differ by absorption bands. For the first time, we report structures of the minimum energy conical intersection points S1/S0 on the energy surfaces of BV in the protein environment and describe their connection to the local minima in the excited S1 state. These simulations allow us to characterize the deactivation routes in IFP1.4.
Collapse
Affiliation(s)
- Bella L Grigorenko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russian Federation
| | - Igor V Polyakov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russian Federation
| | - Alexander V Nemukhin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russian Federation
| |
Collapse
|
21
|
Hontani Y, Baloban M, Escobar FV, Jansen SA, Shcherbakova DM, Weißenborn J, Kloz M, Mroginski MA, Verkhusha VV, Kennis JTM. Real-time observation of tetrapyrrole binding to an engineered bacterial phytochrome. Commun Chem 2021; 4:3. [PMID: 34746444 PMCID: PMC8570541 DOI: 10.1038/s42004-020-00437-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/09/2020] [Indexed: 01/27/2023] Open
Abstract
Near-infrared fluorescent proteins (NIR FPs) engineered from bacterial phytochromes are widely used for structural and functional deep-tissue imaging in vivo. To fluoresce, NIR FPs covalently bind a chromophore, such as biliverdin IXa tetrapyrrole. The efficiency of biliverdin binding directly affects the fluorescence properties, rendering understanding of its molecular mechanism of major importance. miRFP proteins constitute a family of bright monomeric NIR FPs that comprise a Per-ARNT-Sim (PAS) and cGMP-specific phosphodiesterases - Adenylyl cyclases - FhlA (GAF) domain. Here, we structurally analyze biliverdin binding to miRFPs in real time using time-resolved stimulated Raman spectroscopy and quantum mechanics/molecular mechanics (QM/MM) calculations. Biliverdin undergoes isomerization, localization to its binding pocket, and pyrrolenine nitrogen protonation in <1 min, followed by hydrogen bond rearrangement in ~2 min. The covalent attachment to a cysteine in the GAF domain was detected in 4.3 min and 19 min in miRFP670 and its C20A mutant, respectively. In miRFP670, a second C-S covalent bond formation to a cysteine in the PAS domain occurred in 14 min, providing a rigid tetrapyrrole structure with high brightness. Our findings provide insights for the rational design of NIR FPs and a novel method to assess cofactor binding to light-sensitive proteins.
Collapse
Affiliation(s)
- Yusaku Hontani
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, 1081 HV The Netherlands
- Present Address: School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853 USA
| | - Mikhail Baloban
- Departments of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Francisco Velazquez Escobar
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Straße des 17. Juni 135, Berlin, D-10623 Germany
| | - Swetta A. Jansen
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, 1081 HV The Netherlands
| | - Daria M. Shcherbakova
- Departments of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Jörn Weißenborn
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, 1081 HV The Netherlands
| | - Miroslav Kloz
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, 1081 HV The Netherlands
- ELI-Beamlines, Institute of Physics, Na Slovance 2, 182 21 Praha 8, Czech Republic
| | - Maria Andrea Mroginski
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Straße des 17. Juni 135, Berlin, D-10623 Germany
| | - Vladislav V. Verkhusha
- Departments of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, 00290 Finland
| | - John T. M. Kennis
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, 1081 HV The Netherlands
| |
Collapse
|
22
|
Cambré A, Aertsen A. Bacterial Vivisection: How Fluorescence-Based Imaging Techniques Shed a Light on the Inner Workings of Bacteria. Microbiol Mol Biol Rev 2020; 84:e00008-20. [PMID: 33115939 PMCID: PMC7599038 DOI: 10.1128/mmbr.00008-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The rise in fluorescence-based imaging techniques over the past 3 decades has improved the ability of researchers to scrutinize live cell biology at increased spatial and temporal resolution. In microbiology, these real-time vivisections structurally changed the view on the bacterial cell away from the "watery bag of enzymes" paradigm toward the perspective that these organisms are as complex as their eukaryotic counterparts. Capitalizing on the enormous potential of (time-lapse) fluorescence microscopy and the ever-extending pallet of corresponding probes, initial breakthroughs were made in unraveling the localization of proteins and monitoring real-time gene expression. However, later it became clear that the potential of this technique extends much further, paving the way for a focus-shift from observing single events within bacterial cells or populations to obtaining a more global picture at the intra- and intercellular level. In this review, we outline the current state of the art in fluorescence-based vivisection of bacteria and provide an overview of important case studies to exemplify how to use or combine different strategies to gain detailed information on the cell's physiology. The manuscript therefore consists of two separate (but interconnected) parts that can be read and consulted individually. The first part focuses on the fluorescent probe pallet and provides a perspective on modern methodologies for microscopy using these tools. The second section of the review takes the reader on a tour through the bacterial cell from cytoplasm to outer shell, describing strategies and methods to highlight architectural features and overall dynamics within cells.
Collapse
Affiliation(s)
- Alexander Cambré
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| | - Abram Aertsen
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| |
Collapse
|
23
|
Stepanenko OV, Stepanenko OV, Turoverov KK, Kuznetsova IM. Probing the allostery in dimeric near-infrared biomarkers derived from the bacterial phytochromes: The impact of the T204A substitution on the inter-monomer interaction. Int J Biol Macromol 2020; 162:894-902. [PMID: 32569685 DOI: 10.1016/j.ijbiomac.2020.06.162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 11/24/2022]
Abstract
In dimeric near-infrared (NIR) biomarkers engineered from bacterial phytochromes the covalent binding of BV to the cysteine residue in one monomer of a protein allosterically prevents the chromophore embedded into the pocket of the other monomer from the covalent binding to the cysteine residue. In this work, we analyzed the impact on inter-monomeric allosteric effects in dimeric NIR biomarkers of substitutions at position 204, one of the target residues of mutagenesis at the evolution of these proteins. The T204A substitution in iRFP713, developed on the basis of RpBphP2, and in its mutant variant iRFP713/C15S/V256C, in which the ligand covalent attachment site was changed, resulted in the rearrangement of the hydrogen bond network joining the chromophore with the adjacent amino acids and bound water molecules in its local environment. The change in the intramolecular contacts between the chromophore and its protein environment in iRFP713/C15S/V256C caused by the T204A substitution reduced the negative cooperativity of cofactor binding. We discuss the possible influence of cross-talk between monomers the functioning of full-length phytochromes.
Collapse
Affiliation(s)
- Olesya V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4, Tikhoretsky ave., St. Petersburg 194064, Russia
| | - Olga V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4, Tikhoretsky ave., St. Petersburg 194064, Russia
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4, Tikhoretsky ave., St. Petersburg 194064, Russia.
| | - Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4, Tikhoretsky ave., St. Petersburg 194064, Russia
| |
Collapse
|
24
|
Isaksson L, Gustavsson E, Persson C, Brath U, Vrhovac L, Karlsson G, Orekhov V, Westenhoff S. Signaling Mechanism of Phytochromes in Solution. Structure 2020; 29:151-160.e3. [PMID: 32916102 DOI: 10.1016/j.str.2020.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/19/2020] [Accepted: 08/21/2020] [Indexed: 12/31/2022]
Abstract
Phytochrome proteins guide the red/far-red photoresponse of plants, fungi, and bacteria. Crystal structures suggest that the mechanism of signal transduction from the chromophore to the output domains involves refolding of the so-called PHY tongue. It is currently not clear how the two other notable structural features of the phytochrome superfamily, the so-called helical spine and a knot in the peptide chain, are involved in photoconversion. Here, we present solution NMR data of the complete photosensory core module from Deinococcus radiodurans. Photoswitching between the resting and the active states induces changes in amide chemical shifts, residual dipolar couplings, and relaxation dynamics. All observables indicate a photoinduced structural change in the knot region and lower part of the helical spine. This implies that a conformational signal is transduced from the chromophore to the helical spine through the PAS and GAF domains. The discovered pathway underpins functional studies of plant phytochromes and may explain photosensing by phytochromes under biological conditions.
Collapse
Affiliation(s)
- Linnéa Isaksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Emil Gustavsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden; Swedish NMR Center, Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Cecilia Persson
- Swedish NMR Center, Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Ulrika Brath
- Swedish NMR Center, Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Lidija Vrhovac
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Göran Karlsson
- Swedish NMR Center, Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Vladislav Orekhov
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden; Swedish NMR Center, Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden.
| |
Collapse
|
25
|
Khan FI, Hassan F, Anwer R, Juan F, Lai D. Comparative Analysis of Bacteriophytochrome Agp2 and Its Engineered Photoactivatable NIR Fluorescent Proteins PAiRFP1 and PAiRFP2. Biomolecules 2020; 10:biom10091286. [PMID: 32906690 PMCID: PMC7564321 DOI: 10.3390/biom10091286] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022] Open
Abstract
Two photoactivatable near infrared fluorescent proteins (NIR FPs) named “PAiRFP1” and “PAiRFP2” are formed by directed molecular evolution from Agp2, a bathy bacteriophytochrome of Agrobacterium tumefaciens C58. There are 15 and 24 amino acid substitutions in the structure of PAiRFP1 and PAiRFP2, respectively. A comprehensive molecular exploration of these bacteriophytochrome photoreceptors (BphPs) are required to understand the structure dynamics. In this study, the NIR fluorescence emission spectra for PAiRFP1 were recorded upon repeated excitation and the fluorescence intensity of PAiRFP1 tends to increase as the irradiation time was prolonged. We also predicted that mutations Q168L, V244F, and A480V in Agp2 will enhance the molecular stability and flexibility. During molecular dynamics (MD) simulations, the average root mean square deviations of Agp2, PAiRFP1, and PAiRFP2 were found to be 0.40, 0.49, and 0.48 nm, respectively. The structure of PAiRFP1 and PAiRFP2 were more deviated than Agp2 from its native conformation and the hydrophobic regions that were buried in PAiRFP1 and PAiRFP2 core exposed to solvent molecules. The eigenvalues and the trace of covariance matrix were found to be high for PAiRFP1 (597.90 nm2) and PAiRFP2 (726.74 nm2) when compared with Agp2 (535.79 nm2). It was also found that PAiRFP1 has more sharp Gibbs free energy global minima than Agp2 and PAiRFP2. This comparative analysis will help to gain deeper understanding on the structural changes during the evolution of photoactivatable NIR FPs. Further work can be carried out by combining PCR-based directed mutagenesis and spectroscopic methods to provide strategies for the rational designing of these PAiRFPs.
Collapse
Affiliation(s)
- Faez Iqbal Khan
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China;
| | - Fakhrul Hassan
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; (F.H.); (F.J.)
| | - Razique Anwer
- Department of Pathology, College of Medicine, Imam Mohammad ibn Saud Islamic University (IMSIU), Riyadh 13317, Saudi Arabia;
| | - Feng Juan
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; (F.H.); (F.J.)
| | - Dakun Lai
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China;
- Correspondence: ; Tel.: +86-182-0052-9516
| |
Collapse
|
26
|
Antelo GT, Sánchez-Lamas M, Goldbaum FA, Otero LH, Bonomi HR, Rinaldi J. A Spectroscopy-based Methodology for Rapid Screening and Characterization of Phytochrome Photochemistry in Search of Pfr-favored Variants. Photochem Photobiol 2020; 96:1221-1232. [PMID: 32683707 DOI: 10.1111/php.13313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/11/2020] [Indexed: 11/30/2022]
Abstract
Phytochromes are photosensitive proteins with a covalently bound open-chain chromophore that can switch between two principal states: red light absorbing Pr and far-red light absorbing Pfr. Our group has previously shown that the bacteriophytochrome from Xanthomonas campestris pv. campestris (XccBphP) is a bathy-like phytochrome that uses biliverdin IXα as a co-factor and is involved in bacterial virulence. To date, the XccBphP crystal structure could only be solved in the Pr state, while the structure of its Pfr state remains elusive. The aims of this work were to develop an efficient screening methodology for the rapid characterization and to identify XccBphP variants that favor the Pfr form. The screening approach developed here consists in analyzing the UV-Vis absorption behavior of clarified crude extracts containing recombinant phytochromes. This strategy has allowed us to quickly explore over a hundred XccBphP variants, characterize multiple variants and identify Pfr-favored candidates. The high-quality data obtained enabled not only a qualitative, but also a quantitative characterization of their photochemistry. This method could be easily adapted to other phytochromes or other photoreceptor families.
Collapse
Affiliation(s)
| | | | | | - Lisandro Horacio Otero
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina.,Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Buenos Aires, Argentina
| | | | - Jimena Rinaldi
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| |
Collapse
|
27
|
Das S, Zhao L, Crooke SN, Tran L, Bhattacharya S, Gaucher EA, Finn MG. Stabilization of Near-Infrared Fluorescent Proteins by Packaging in Virus-like Particles. Biomacromolecules 2020; 21:2432-2439. [DOI: 10.1021/acs.biomac.0c00362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Soumen Das
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30306, United States
| | - Liangjun Zhao
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30306, United States
| | - Stephen N. Crooke
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30306, United States
| | - Lily Tran
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Sonia Bhattacharya
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30306, United States
| | - Eric A. Gaucher
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - M. G. Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30306, United States
- School of Biological Sciences, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30306, United States
| |
Collapse
|
28
|
Nagano S, Guan K, Shenkutie SM, Feiler C, Weiss M, Kraskov A, Buhrke D, Hildebrandt P, Hughes J. Structural insights into photoactivation and signalling in plant phytochromes. NATURE PLANTS 2020; 6:581-588. [PMID: 32366982 DOI: 10.1038/s41477-020-0638-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/16/2020] [Indexed: 05/11/2023]
Abstract
Plant phytochromes are red/far-red photochromic photoreceptors that act as master regulators of development, controlling the expression of thousands of genes. Here, we describe the crystal structures of four plant phytochrome sensory modules, three at about 2 Å resolution or better, including the first of an A-type phytochrome. Together with extensive spectral data, these structures provide detailed insight into the structure and function of plant phytochromes. In the Pr state, the substitution of phycocyanobilin and phytochromobilin cofactors has no structural effect, nor does the amino-terminal extension play a significant functional role. Our data suggest that the chromophore propionates and especially the phytochrome-specific domain tongue act differently in plant and prokaryotic phytochromes. We find that the photoproduct in period-ARNT-single-minded (PAS)-cGMP-specific phosphodiesterase-adenylyl cyclase-FhlA (GAF) bidomains might represent a novel intermediate between MetaRc and Pfr. We also discuss the possible role of a likely nuclear localization signal specific to and conserved in the phytochrome A lineage.
Collapse
Affiliation(s)
- Soshichiro Nagano
- Institut für Pflanzenphysiologie, Justus-Liebig-Universität, Gießen, Germany
| | - Kaoling Guan
- Institut für Pflanzenphysiologie, Justus-Liebig-Universität, Gießen, Germany
| | | | - Christian Feiler
- BESSY II, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany
| | - Manfred Weiss
- BESSY II, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany
| | - Anastasia Kraskov
- Institut für Chemie, Sekr. PC14, Technische Universität, Berlin, Germany
| | - David Buhrke
- Institut für Chemie, Sekr. PC14, Technische Universität, Berlin, Germany
| | - Peter Hildebrandt
- Institut für Chemie, Sekr. PC14, Technische Universität, Berlin, Germany
| | - Jon Hughes
- Institut für Pflanzenphysiologie, Justus-Liebig-Universität, Gießen, Germany.
| |
Collapse
|
29
|
Wahadoszamen M, Krüger TPJ, Ara AM, van Grondelle R, Gwizdala M. Charge transfer states in phycobilisomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148187. [PMID: 32173383 DOI: 10.1016/j.bbabio.2020.148187] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/17/2020] [Accepted: 03/09/2020] [Indexed: 10/24/2022]
Abstract
Phycobilisomes (PBs) absorb light and supply downstream photosynthetic processes with excitation energy in many cyanobacteria and algae. In response to a sudden increase in light intensity, excess excitation energy is photoprotectively dissipated in PBs by means of the orange carotenoid protein (OCP)-related mechanism or via a light-activated intrinsic decay channel. Recently, we have identified that both mechanisms are associated with far-red emission states. Here, we investigate the far-red states involved with the light-induced intrinsic mechanism by exploring the energy landscape and electro-optical properties of the pigments in PBs. While Stark spectroscopy showed that the far-red states in PBs exhibit a strong charge-transfer (CT) character at cryogenic temperatures, single molecule spectroscopy revealed that CT states should also be present at room temperature. Owing to the strong environmental sensitivity of CT states, the knowledge gained from this study may contribute to the design of a new generation of fluorescence markers.
Collapse
Affiliation(s)
- Md Wahadoszamen
- Department of Physics, University of Dhaka, Dhaka 1000, Bangladesh
| | - Tjaart P J Krüger
- Department of Physics, University of Pretoria, Pretoria 0023, South Africa
| | - Anjue Mane Ara
- Department of Physics, Jagannath University, Dhaka 1100, Bangladesh
| | - Rienk van Grondelle
- Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands
| | - Michal Gwizdala
- Department of Physics, University of Pretoria, Pretoria 0023, South Africa; Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands.
| |
Collapse
|
30
|
Hassan F, Khan FI, Song H, Lai D, Juan F. Effects of reverse genetic mutations on the spectral and photochemical behavior of a photoactivatable fluorescent protein PAiRFP1. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117807. [PMID: 31806482 DOI: 10.1016/j.saa.2019.117807] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/29/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
Bacteriophytochrome photoreceptors (BphPs) containing biliverdin (BV) have great potential for the development of genetically engineered near-infrared fluorescent proteins (NIR FPs). We investigated a photoactivatable fluorescent protein PAiRFP1, was engineered through directed molecular evolution. The coexistence of both red light absorbing (Pr) and far-red light absorbing (Pfr) states in dark is essential for the photoactivation of PAiRFP1. The PCR based site-directed reverse mutagenesis, spectroscopic measurements and molecular dynamics (MD) simulations were performed on three targeted sites V386A, V480A and Y498H in PHY domain to explore their potential effects during molecular evolution of PAiRFP1. We found that these substitutions did not affect the coexistence of Pr and Pfr states but led to slight changes in the photophysical parameters. The covalent docking of biliverdin (cis and trans form) with PAiRFP1 was followed by several 100 ns MD simulations to provide some theoretical explanations for the coexistence of Pr and pfr states. The results suggested that experimentally observed coexistence of Pr and Pfr states in both PAiRFP1 and mutants were resulted from the improved stability of Pr state. The use of experimental and computational work provided useful understanding of Pr and Pfr states and the effects of these mutations on the photophysical properties of PAiRFP1.
Collapse
Affiliation(s)
- Fakhrul Hassan
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Faez Iqbal Khan
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China.
| | - Honghong Song
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Dakun Lai
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China.
| | - Feng Juan
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
31
|
Kraskov A, Nguyen AD, Goerling J, Buhrke D, Velazquez Escobar F, Fernandez Lopez M, Michael N, Sauthof L, Schmidt A, Piwowarski P, Yang Y, Stensitzki T, Adam S, Bartl F, Schapiro I, Heyne K, Siebert F, Scheerer P, Mroginski MA, Hildebrandt P. Intramolecular Proton Transfer Controls Protein Structural Changes in Phytochrome. Biochemistry 2020; 59:1023-1037. [DOI: 10.1021/acs.biochem.0c00053] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Anastasia Kraskov
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Anh Duc Nguyen
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Jan Goerling
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - David Buhrke
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Francisco Velazquez Escobar
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Maria Fernandez Lopez
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Norbert Michael
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Luisa Sauthof
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany
| | - Andrea Schmidt
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany
| | - Patrick Piwowarski
- Humboldt Universität zu Berlin, Institut für Biologie, Experimentelle Biophysik, Invalidenstraße 42, D-10115 Berlin, Germany
| | - Yang Yang
- Freie Universität Berlin, Experimentelle Physik, Arnimallee 14, D-14195 Berlin, Germany
| | - Till Stensitzki
- Freie Universität Berlin, Experimentelle Physik, Arnimallee 14, D-14195 Berlin, Germany
| | - Suliman Adam
- Institute of Chemistry, Fritz Haber Center for Molecular Dynamics, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Franz Bartl
- Humboldt Universität zu Berlin, Institut für Biologie, Experimentelle Biophysik, Invalidenstraße 42, D-10115 Berlin, Germany
| | - Igor Schapiro
- Institute of Chemistry, Fritz Haber Center for Molecular Dynamics, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Karsten Heyne
- Freie Universität Berlin, Experimentelle Physik, Arnimallee 14, D-14195 Berlin, Germany
| | - Friedrich Siebert
- Albert-Ludwigs-Universität Freiburg, Institut für Molekulare Medizin und Zellforschung, Sektion Biophysik, Hermann-Herderstraße 9, D-79104 Freiburg, Germany
| | - Patrick Scheerer
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany
| | - Maria Andrea Mroginski
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
32
|
Matlashov ME, Shcherbakova DM, Alvelid J, Baloban M, Pennacchietti F, Shemetov AA, Testa I, Verkhusha VV. A set of monomeric near-infrared fluorescent proteins for multicolor imaging across scales. Nat Commun 2020; 11:239. [PMID: 31932632 PMCID: PMC6957686 DOI: 10.1038/s41467-019-13897-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 12/03/2019] [Indexed: 11/09/2022] Open
Abstract
Bright monomeric near-infrared (NIR) fluorescent proteins (FPs) are in high demand as protein tags for multicolor microscopy and in vivo imaging. Here we apply rational design to engineer a complete set of monomeric NIR FPs, which are the brightest genetically encoded NIR probes. We demonstrate that the enhanced miRFP series of NIR FPs, which combine high effective brightness in mammalian cells and monomeric state, perform well in both nanometer-scale imaging with diffraction unlimited stimulated emission depletion (STED) microscopy and centimeter-scale imaging in mice. In STED we achieve ~40 nm resolution in live cells. In living mice we detect ~105 fluorescent cells in deep tissues. Using spectrally distinct monomeric NIR FP variants, we perform two-color live-cell STED microscopy and two-color imaging in vivo. Having emission peaks from 670 nm to 720 nm, the next generation of miRFPs should become versatile NIR probes for multiplexed imaging across spatial scales in different modalities.
Collapse
Affiliation(s)
- Mikhail E Matlashov
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Daria M Shcherbakova
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Jonatan Alvelid
- Department of Applied Physics and Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Mikhail Baloban
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Francesca Pennacchietti
- Department of Applied Physics and Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Anton A Shemetov
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Ilaria Testa
- Department of Applied Physics and Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Vladislav V Verkhusha
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, 10461, USA. .,Medicum, Faculty of Medicine, University of Helsinki, 00029, Helsinki, Finland.
| |
Collapse
|
33
|
Competing excited-state deactivation processes in bacteriophytochromes. ADVANCES IN QUANTUM CHEMISTRY 2020. [DOI: 10.1016/bs.aiq.2020.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Stepanenko OV, Stepanenko OV, Shpironok OG, Fonin AV, Kuznetsova IM, Turoverov KK. Near-Infrared Markers based on Bacterial Phytochromes with Phycocyanobilin as a Chromophore. Int J Mol Sci 2019; 20:ijms20236067. [PMID: 31810174 PMCID: PMC6928796 DOI: 10.3390/ijms20236067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 12/03/2022] Open
Abstract
Biomarkers engineered on the basis of bacterial phytochromes with biliverdin IXα (BV) cofactor as a chromophore are increasingly used in cell biology and biomedicine, since their absorption and fluorescence spectra lie within the so-called optical “transparency window” of biological tissues. However, the quantum yield of BV fluorescence in these biomarkers does not exceed 0.145. The task of generating biomarkers with a higher fluorescence quantum yield remains relevant. To address the problem, we proposed the use of phycocyanobilin (PCB) as a chromophore of biomarkers derived from bacterial phytochromes. In this work, we characterized the complexes of iRFP713 evolved from RpBphP2 and its mutant variants with different location of cysteine residues capable of covalent tetrapyrrole attachment with the PCB cofactor. All analyzed proteins assembled with PCB were shown to have a higher fluorescence quantum yield than the proteins assembled with BV. The iRFP713/V256C and iRFP713/C15S/V256C assembled with PCB have a particularly high quantum yield of 0.5 and 0.45, which exceeds the quantum yield of all currently available near-infrared biomarkers. Moreover, PCB has 4 times greater affinity for iRFP713/V256C and iRFP713/C15S/V256C proteins compared to BV. These data establish iRFP713/V256C and iRFP713/C15S/V256C assembled with the PCB chromophore as promising biomarkers for application in vivo. The analysis of the spectral properties of the tested biomarkers allowed for suggesting that the high-fluorescence quantum yield of the PCB chromophore can be attributed to the lower mobility of the D-ring of PCB compared to BV.
Collapse
Affiliation(s)
- Olesya V. Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., St. Petersburg 194064, Russia; (O.V.S.); (O.V.S.); (O.G.S.); (A.V.F.); (I.M.K.)
| | - Olga V. Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., St. Petersburg 194064, Russia; (O.V.S.); (O.V.S.); (O.G.S.); (A.V.F.); (I.M.K.)
| | - Olesya G. Shpironok
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., St. Petersburg 194064, Russia; (O.V.S.); (O.V.S.); (O.G.S.); (A.V.F.); (I.M.K.)
| | - Alexander V. Fonin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., St. Petersburg 194064, Russia; (O.V.S.); (O.V.S.); (O.G.S.); (A.V.F.); (I.M.K.)
| | - Irina M. Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., St. Petersburg 194064, Russia; (O.V.S.); (O.V.S.); (O.G.S.); (A.V.F.); (I.M.K.)
| | - Konstantin K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., St. Petersburg 194064, Russia; (O.V.S.); (O.V.S.); (O.G.S.); (A.V.F.); (I.M.K.)
- Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya str., 29, St. Petersburg 194064, Russia
- Correspondence: ; Tel.: +7-812-297-19-57
| |
Collapse
|
35
|
Gustavsson E, Isaksson L, Persson C, Mayzel M, Brath U, Vrhovac L, Ihalainen JA, Karlsson BG, Orekhov V, Westenhoff S. Modulation of Structural Heterogeneity Controls Phytochrome Photoswitching. Biophys J 2019; 118:415-421. [PMID: 31839260 DOI: 10.1016/j.bpj.2019.11.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 11/16/2022] Open
Abstract
Phytochromes sense red/far-red light and control many biological processes in plants, fungi, and bacteria. Although the crystal structures of dark- and light-adapted states have been determined, the molecular mechanisms underlying photoactivation remain elusive. Here, we demonstrate that the conserved tongue region of the PHY domain of a 57-kDa photosensory module of Deinococcus radiodurans phytochrome changes from a structurally heterogeneous dark state to an ordered, light-activated state. The results were obtained in solution by utilizing a laser-triggered activation approach detected on the atomic level with high-resolution protein NMR spectroscopy. The data suggest that photosignaling of phytochromes relies on careful modulation of structural heterogeneity of the PHY tongue.
Collapse
Affiliation(s)
- Emil Gustavsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Linnéa Isaksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Persson
- Swedish NMR center, University of Gothenburg, Gothenburg, Sweden
| | - Maxim Mayzel
- Swedish NMR center, University of Gothenburg, Gothenburg, Sweden
| | - Ulrika Brath
- Swedish NMR center, University of Gothenburg, Gothenburg, Sweden
| | - Lidija Vrhovac
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Janne A Ihalainen
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - B Göran Karlsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden; Swedish NMR center, University of Gothenburg, Gothenburg, Sweden
| | - Vladislav Orekhov
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden; Swedish NMR center, University of Gothenburg, Gothenburg, Sweden
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
36
|
Wan Y, McDole K, Keller PJ. Light-Sheet Microscopy and Its Potential for Understanding Developmental Processes. Annu Rev Cell Dev Biol 2019; 35:655-681. [PMID: 31299171 DOI: 10.1146/annurev-cellbio-100818-125311] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ability to visualize and quantitatively measure dynamic biological processes in vivo and at high spatiotemporal resolution is of fundamental importance to experimental investigations in developmental biology. Light-sheet microscopy is particularly well suited to providing such data, since it offers exceptionally high imaging speed and good spatial resolution while minimizing light-induced damage to the specimen. We review core principles and recent advances in light-sheet microscopy, with a focus on concepts and implementations relevant for applications in developmental biology. We discuss how light-sheet microcopy has helped advance our understanding of developmental processes from single-molecule to whole-organism studies, assess the potential for synergies with other state-of-the-art technologies, and introduce methods for computational image and data analysis. Finally, we explore the future trajectory of light-sheet microscopy, discuss key efforts to disseminate new light-sheet technology, and identify exciting opportunities for further advances.
Collapse
Affiliation(s)
- Yinan Wan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA;
| | - Katie McDole
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA;
| | - Philipp J Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA;
| |
Collapse
|
37
|
Gourinchas G, Etzl S, Winkler A. Bacteriophytochromes - from informative model systems of phytochrome function to powerful tools in cell biology. Curr Opin Struct Biol 2019; 57:72-83. [PMID: 30878713 PMCID: PMC6625962 DOI: 10.1016/j.sbi.2019.02.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/31/2019] [Accepted: 02/06/2019] [Indexed: 11/17/2022]
Abstract
Bacteriophytochromes are a subfamily of the diverse light responsive phytochrome photoreceptors. Considering their preferential interaction with biliverdin IXα as endogenous cofactor, they have recently been used for creating optogenetic tools and engineering fluorescent probes. Ideal absorption characteristics for the activation of bacteriophytochrome-based systems in the therapeutic near-infrared window as well the availability of biliverdin in mammalian tissues have resulted in tremendous progress in re-engineering bacteriophytochromes for diverse applications. At the same time, both the structural analysis and the functional characterization of diverse naturally occurring bacteriophytochrome systems have unraveled remarkable differences in signaling mechanisms and have so far only touched the surface of the evolutionary diversity within the family of bacteriophytochromes. This review highlights recent findings and future challenges.
Collapse
Affiliation(s)
- Geoffrey Gourinchas
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010 Graz, Austria
| | - Stefan Etzl
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010 Graz, Austria
| | - Andreas Winkler
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria.
| |
Collapse
|
38
|
Karasev MM, Stepanenko OV, Rumyantsev KA, Turoverov KK, Verkhusha VV. Near-Infrared Fluorescent Proteins and Their Applications. BIOCHEMISTRY (MOSCOW) 2019; 84:S32-S50. [PMID: 31213194 DOI: 10.1134/s0006297919140037] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
High transparency, low light-scattering, and low autofluorescence of mammalian tissues in the near-infrared (NIR) spectral range (~650-900 nm) open a possibility for in vivo imaging of biological processes at the micro- and macroscales to address basic and applied problems in biology and biomedicine. Recently, probes that absorb and fluoresce in the NIR optical range have been engineered using bacterial phytochromes - natural NIR light-absorbing photoreceptors that regulate metabolism in bacteria. Since the chromophore in all these proteins is biliverdin, a natural product of heme catabolism in mammalian cells, they can be used as genetically encoded fluorescent probes, similarly to GFP-like fluorescent proteins. In this review, we discuss photophysical and biochemical properties of NIR fluorescent proteins, reporters, and biosensors and analyze their characteristics required for expression of these molecules in mammalian cells. Structural features and molecular engineering of NIR fluorescent probes are discussed. Applications of NIR fluorescent proteins and biosensors for studies of molecular processes in cells, as well as for tissue and organ visualization in whole-body imaging in vivo, are described. We specifically focus on the use of NIR fluorescent probes in advanced imaging technologies that combine fluorescence and bioluminescence methods with photoacoustic tomography.
Collapse
Affiliation(s)
- M M Karasev
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia. .,Medicum, University of Helsinki, Helsinki, 00290, Finland
| | - O V Stepanenko
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia.
| | - K A Rumyantsev
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia. .,Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Loginov Moscow Clinical Scientific Center, Moscow, 111123, Russia
| | - K K Turoverov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia. .,Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia
| | - V V Verkhusha
- Medicum, University of Helsinki, Helsinki, 00290, Finland. .,Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
39
|
Buhrke D, Tavraz NN, Shcherbakova DM, Sauthof L, Moldenhauer M, Vélazquez Escobar F, Verkhusha VV, Hildebrandt P, Friedrich T. Chromophore binding to two cysteines increases quantum yield of near-infrared fluorescent proteins. Sci Rep 2019; 9:1866. [PMID: 30755663 PMCID: PMC6372600 DOI: 10.1038/s41598-018-38433-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 12/27/2018] [Indexed: 12/16/2022] Open
Abstract
Phytochromes are red/far-red light sensing photoreceptors employing linear tetrapyrroles as chromophores, which are covalently bound to a cysteine (Cys) residue in the chromophore-binding domain (CBD, composed of a PAS and a GAF domain). Recently, near-infrared (NIR) fluorescent proteins (FPs) engineered from bacterial phytochromes binding biliverdin IXα (BV), such as the iRFP series, have become invaluable probes for multicolor fluorescence microscopy and in vivo imaging. However, all current NIR FPs suffer from relatively low brightness. Here, by combining biochemical, spectroscopic and resonance Raman (RR) assays, we purified and characterized an iRFP variant that contains a BV chromophore simultaneously bound to two cysteines. This protein with the unusual double-Cys attached BV showed the highest fluorescence quantum yield (FQY) of 16.6% reported for NIR FPs, whereas the initial iRFP appeared to be a mixture of species with a mean FQY of 11.1%. The purified protein was also characterized with 1.3-fold higher extinction coefficient that together with FQY resulted in almost two-fold brighter fluorescence than the original iRFP as isolated. This work shows that the high FQY of iRFPs with two cysteines is a direct consequence of the double attachment. The PAS-Cys, GAF-Cys and double-Cys attachment each entails distinct configurational constraints of the BV adduct, which can be identified by distinct RR spectroscopic features, i.e. the marker band including the C=C stretching coordinate of the ring A-B methine bridge, which was previously identified as being characteristic for rigid chromophore embedment and high FQY. Our findings can be used to rationally engineer iRFP variants with enhanced FQYs.
Collapse
Affiliation(s)
- David Buhrke
- Institut für Chemie, Sekr. PC14, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Neslihan N Tavraz
- Institut für Chemie, Sekr. PC14, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Daria M Shcherbakova
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Luisa Sauthof
- Charité - Universitätsmedizin Berlin, Institute of Medical Physics and Biophysics (CC2), Group Protein X-ray Crystallography and Signal Transduction, Charitéplatz 1, 10117, Berlin, Germany
| | - Marcus Moldenhauer
- Institut für Chemie, Sekr. PC14, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Francisco Vélazquez Escobar
- Institut für Chemie, Sekr. PC14, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Vladislav V Verkhusha
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Peter Hildebrandt
- Institut für Chemie, Sekr. PC14, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Thomas Friedrich
- Institut für Chemie, Sekr. PC14, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany.
| |
Collapse
|
40
|
Lee E, Shim SH, Cho M. Fluorescence enhancement of a ligand-activated fluorescent protein induced by collective noncovalent interactions. Chem Sci 2018; 9:8325-8336. [PMID: 30542580 PMCID: PMC6249632 DOI: 10.1039/c8sc03558j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/05/2018] [Indexed: 11/21/2022] Open
Abstract
Fluorescent proteins contain an internal chromophore constituted of amino acids or an external chromophore covalently bonded to the protein. To increase their fluorescence intensities, many research groups have attempted to mutate amino acids within or near the chromophore. Recently, a new type of fluorescent protein, called UnaG, in which the ligand binds to the protein through many noncovalent interactions was discovered. Later, a series of mutants of the UnaG protein were introduced, which include eUnaG with valine 2 mutated to leucine emitting significantly stronger fluorescence than the wild type and V2T mutant, in which valine 2 is mutated to threonine, emitting weaker fluorescence than the wild type. Interestingly, the single mutation sites of both eUnaG and V2T mutants are distant from the fluorophore, bilirubin, which renders the mechanism of such fluorescence enhancement or reduction unclear. To elucidate the origin of fluorescence intensity changes induced by the single mutations, we carried out extensive analyses on MD simulations for the original UnaG, eUnaG and V2T, and found that the bilirubin ligand bound to eUnaG is conformationally more rigid than the wild-type, particularly in the skeletal dihedral angles, possibly resulting in the increase of quantum yield through a reduction of non-radiative decay. On the other hand, the bilirubin bound to the V2T appears to be flexible than that in the UnaG. Furthermore, examining the structural correlations between the ligand and proteins, we found evidence that the bilirubin ligand is encapsulated in different environments composed of protein residues and water molecules that increase or decrease the stability of the ligand. The changed protein stability affects the mobility and confinement of water molecules captured between bilirubin and the protein. Since the flexible ligand contains multiple hydrogen bond (H-bond) donors and acceptors, the H-bonding structure and dynamics of bound water molecules are highly correlated with the rigidity of the bound ligand. Our results suggest that, to understand the fluorescence properties of protein mutants, especially the ones with noncovalently bound fluorophores with internal rotations, the interaction network among protein residues, ligand, and water molecules within the binding cavity should be investigated rather than focusing on the local structure near the fluorescing moiety. Our in-depth simulation study may offer a foundation for the design principles for engineering this new class of fluorescent proteins.
Collapse
Affiliation(s)
- Euihyun Lee
- Center for Molecular Spectroscopy and Dynamics , Institute for Basic Science (IBS) , Korea University , Seoul 02841 , Republic of Korea . ;
- Department of Chemistry , Korea University , Seoul 02841 , Republic of Korea
| | - Sang-Hee Shim
- Center for Molecular Spectroscopy and Dynamics , Institute for Basic Science (IBS) , Korea University , Seoul 02841 , Republic of Korea . ;
- Department of Chemistry , Korea University , Seoul 02841 , Republic of Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics , Institute for Basic Science (IBS) , Korea University , Seoul 02841 , Republic of Korea . ;
- Department of Chemistry , Korea University , Seoul 02841 , Republic of Korea
| |
Collapse
|
41
|
Kamper M, Ta H, Jensen NA, Hell SW, Jakobs S. Near-infrared STED nanoscopy with an engineered bacterial phytochrome. Nat Commun 2018; 9:4762. [PMID: 30420676 PMCID: PMC6232180 DOI: 10.1038/s41467-018-07246-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 10/17/2018] [Indexed: 01/18/2023] Open
Abstract
The near infrared (NIR) optical window between the cutoff for hemoglobin absorption at 650 nm and the onset of increased water absorption at 900 nm is an attractive, yet largely unexplored, spectral regime for diffraction-unlimited super-resolution fluorescence microscopy (nanoscopy). We developed the NIR fluorescent protein SNIFP, a bright and photostable bacteriophytochrome, and demonstrate its use as a fusion tag in live-cell microscopy and STED nanoscopy. We further demonstrate dual color red-confocal/NIR-STED imaging by co-expressing SNIFP with a conventional red fluorescent protein.
Collapse
Affiliation(s)
- Maria Kamper
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Haisen Ta
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Nickels A Jensen
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Stefan W Hell
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Stefan Jakobs
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany. .,Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
42
|
Shcherbakova DM, Stepanenko OV, Turoverov KK, Verkhusha VV. Near-Infrared Fluorescent Proteins: Multiplexing and Optogenetics across Scales. Trends Biotechnol 2018; 36:1230-1243. [PMID: 30041828 DOI: 10.1016/j.tibtech.2018.06.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 10/28/2022]
Abstract
Since mammalian tissue is relatively transparent to near-infrared (NIR) light, NIR fluorescent proteins (FPs) engineered from bacterial phytochromes have become widely used probes for non-invasive in vivo imaging. Recently, these genetically encoded NIR probes have been substantially improved, enabling imaging experiments that were not possible previously. Here, we discuss the use of monomeric NIR FPs and NIR biosensors for multiplexed imaging with common visible GFP-based probes and blue light-activatable optogenetic tools. These NIR probes are suitable for visualization of functional activities from molecular to organismal levels. In combination with advanced imaging techniques, such as two-photon microscopy with adaptive optics, photoacoustic tomography and its recent modification reversibly switchable photoacoustic computed tomography, NIR probes allow subcellular resolution at millimeter depths.
Collapse
Affiliation(s)
- Daria M Shcherbakova
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Olesya V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russian Federation
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russian Federation; Department of Biophysics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russian Federation
| | - Vladislav V Verkhusha
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland.
| |
Collapse
|
43
|
Gourinchas G, Heintz U, Winkler A. Asymmetric activation mechanism of a homodimeric red light-regulated photoreceptor. eLife 2018; 7:e34815. [PMID: 29869984 PMCID: PMC6005682 DOI: 10.7554/elife.34815] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/03/2018] [Indexed: 12/18/2022] Open
Abstract
Organisms adapt to environmental cues using diverse signaling networks. In order to sense and integrate light for regulating various biological functions, photoreceptor proteins have evolved in a modular way. This modularity is targeted in the development of optogenetic tools enabling the control of cellular events with high spatiotemporal precision. However, the limited understanding of signaling mechanisms impedes the rational design of innovative photoreceptor-effector couples. Here, we reveal molecular details of signal transduction in phytochrome-regulated diguanylyl cyclases. Asymmetric structural changes of the full-length homodimer result in a functional heterodimer featuring two different photoactivation states. Structural changes around the cofactors result in a quasi-translational rearrangement of the distant coiled-coil sensor-effector linker. Eventually, this regulates enzymatic activity by modulating the dimer interface of the output domains. Considering the importance of phytochrome heterodimerization in plant signaling, our mechanistic details of asymmetric photoactivation in a bacterial system reveal novel aspects of the evolutionary adaptation of phytochromes.
Collapse
Affiliation(s)
| | - Udo Heintz
- Max Planck Institute for Medical ResearchHeidelbergGermany
| | - Andreas Winkler
- Institute of Biochemistry, Graz University of TechnologyGrazAustria
| |
Collapse
|
44
|
Takala H, Lehtivuori HK, Berntsson O, Hughes A, Nanekar R, Niebling S, Panman M, Henry L, Menzel A, Westenhoff S, Ihalainen JA. On the (un)coupling of the chromophore, tongue interactions, and overall conformation in a bacterial phytochrome. J Biol Chem 2018; 293:8161-8172. [PMID: 29622676 DOI: 10.1074/jbc.ra118.001794] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/04/2018] [Indexed: 02/01/2023] Open
Abstract
Phytochromes are photoreceptors in plants, fungi, and various microorganisms and cycle between metastable red light-absorbing (Pr) and far-red light-absorbing (Pfr) states. Their light responses are thought to follow a conserved structural mechanism that is triggered by isomerization of the chromophore. Downstream structural changes involve refolding of the so-called tongue extension of the phytochrome-specific GAF-related (PHY) domain of the photoreceptor. The tongue is connected to the chromophore by conserved DIP and PRXSF motifs and a conserved tyrosine, but the role of these residues in signal transduction is not clear. Here, we examine the tongue interactions and their interplay with the chromophore by substituting the conserved tyrosine (Tyr263) in the phytochrome from the extremophile bacterium Deinococcus radiodurans with phenylalanine. Using optical and FTIR spectroscopy, X-ray solution scattering, and crystallography of chromophore-binding domain (CBD) and CBD-PHY fragments, we show that the absence of the Tyr263 hydroxyl destabilizes the β-sheet conformation of the tongue. This allowed the phytochrome to adopt an α-helical tongue conformation regardless of the chromophore state, hence distorting the activity state of the protein. Our crystal structures further revealed that water interactions are missing in the Y263F mutant, correlating with a decrease of the photoconversion yield and underpinning the functional role of Tyr263 in phytochrome conformational changes. We propose a model in which isomerization of the chromophore, refolding of the tongue, and globular conformational changes are represented as weakly coupled equilibria. The results also suggest that the phytochromes have several redundant signaling routes.
Collapse
Affiliation(s)
- Heikki Takala
- Anatomy Department, Faculty of Medicine, University of Helsinki, Helsinki FI-00014, Finland; Departments of Biological and Environmental Sciences, University of Jyvaskyla, Jyvaskyla FI-40014, Finland.
| | - Heli K Lehtivuori
- Department of Physics, Nanoscience Center, University of Jyvaskyla, Jyvaskyla FI-40014, Finland
| | - Oskar Berntsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Ashley Hughes
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Rahul Nanekar
- Departments of Biological and Environmental Sciences, University of Jyvaskyla, Jyvaskyla FI-40014, Finland
| | - Stephan Niebling
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Matthijs Panman
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Léocadie Henry
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Andreas Menzel
- Paul Scherrer Institut, 5232 Villigen PSI, 15 Switzerland
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Janne A Ihalainen
- Departments of Biological and Environmental Sciences, University of Jyvaskyla, Jyvaskyla FI-40014, Finland
| |
Collapse
|
45
|
Mancini JA, Sheehan M, Kodali G, Chow BY, Bryant DA, Dutton PL, Moser CC. De novo synthetic biliprotein design, assembly and excitation energy transfer. J R Soc Interface 2018; 15:20180021. [PMID: 29618529 PMCID: PMC5938588 DOI: 10.1098/rsif.2018.0021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/13/2018] [Indexed: 12/26/2022] Open
Abstract
Bilins are linear tetrapyrrole chromophores with a wide range of visible and near-visible light absorption and emission properties. These properties are tuned upon binding to natural proteins and exploited in photosynthetic light-harvesting and non-photosynthetic light-sensitive signalling. These pigmented proteins are now being manipulated to develop fluorescent experimental tools. To engineer the optical properties of bound bilins for specific applications more flexibly, we have used first principles of protein folding to design novel, stable and highly adaptable bilin-binding four-α-helix bundle protein frames, called maquettes, and explored the minimal requirements underlying covalent bilin ligation and conformational restriction responsible for the strong and variable absorption, fluorescence and excitation energy transfer of these proteins. Biliverdin, phycocyanobilin and phycoerythrobilin bind covalently to maquette Cys in vitro A blue-shifted tripyrrole formed from maquette-bound phycocyanobilin displays a quantum yield of 26%. Although unrelated in fold and sequence to natural phycobiliproteins, bilin lyases nevertheless interact with maquettes during co-expression in Escherichia coli to improve the efficiency of bilin binding and influence bilin structure. Bilins bind in vitro and in vivo to Cys residues placed in loops, towards the amino end or in the middle of helices but bind poorly at the carboxyl end of helices. Bilin-binding efficiency and fluorescence yield are improved by Arg and Asp residues adjacent to the ligating Cys on the same helix and by His residues on adjacent helices.
Collapse
Affiliation(s)
- Joshua A Mancini
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Molly Sheehan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Goutham Kodali
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian Y Chow
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - P Leslie Dutton
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher C Moser
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
46
|
Falklöf O, Durbeej B. Computational Identification of Pyrrole Ring C as the Preferred Donor for Excited-State Proton Transfer in Bacteriophytochromes. CHEMPHOTOCHEM 2018. [DOI: 10.1002/cptc.201800014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Olle Falklöf
- Division of Theoretical Chemistry, IFM; Linköping University; SE-581 83 Linköping Sweden
| | - Bo Durbeej
- Division of Theoretical Chemistry, IFM; Linköping University; SE-581 83 Linköping Sweden
| |
Collapse
|
47
|
Scarbath-Evers LK, Jähnigen S, Elgabarty H, Song C, Narikawa R, Matysik J, Sebastiani D. Structural heterogeneity in a parent ground-state structure of AnPixJg2 revealed by theory and spectroscopy. Phys Chem Chem Phys 2018; 19:13882-13894. [PMID: 28513754 DOI: 10.1039/c7cp01218g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We investigated the red absorbing, dark stable state (Pr state) of the second GAF domain of the cyanobacteriochrome AnPixJ (AnPixJg2) by a molecular dynamics simulation of 1 μs duration. Our results reveal two distinct conformational isoforms of the chromophore, from which only one was known from crystallographic experiments. The interconversion between both isoforms is accompanied by alterations in the hydrogen bond pattern between the chromophore and the protein and the solvation structure of the chromophore binding pocket. The existence of sub-states in the Pr form of AnPixJg2 is supported by the results from experimental 13C MAS NMR spectroscopy. Our finding is consistent with the observation of structural heterogeneity in other cyanobacteriochromes and phytochromes.
Collapse
Affiliation(s)
- Laura Katharina Scarbath-Evers
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany.
| | | | | | | | | | | | | |
Collapse
|
48
|
Oliinyk OS, Chernov KG, Verkhusha VV. Bacterial Phytochromes, Cyanobacteriochromes and Allophycocyanins as a Source of Near-Infrared Fluorescent Probes. Int J Mol Sci 2017; 18:E1691. [PMID: 28771184 PMCID: PMC5578081 DOI: 10.3390/ijms18081691] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 07/28/2017] [Accepted: 07/28/2017] [Indexed: 12/21/2022] Open
Abstract
Bacterial photoreceptors absorb light energy and transform it into intracellular signals that regulate metabolism. Bacterial phytochrome photoreceptors (BphPs), some cyanobacteriochromes (CBCRs) and allophycocyanins (APCs) possess the near-infrared (NIR) absorbance spectra that make them promising molecular templates to design NIR fluorescent proteins (FPs) and biosensors for studies in mammalian cells and whole animals. Here, we review structures, photochemical properties and molecular functions of several families of bacterial photoreceptors. We next analyze molecular evolution approaches to develop NIR FPs and biosensors. We then discuss phenotypes of current BphP-based NIR FPs and compare them with FPs derived from CBCRs and APCs. Lastly, we overview imaging applications of NIR FPs in live cells and in vivo. Our review provides guidelines for selection of existing NIR FPs, as well as engineering approaches to develop NIR FPs from the novel natural templates such as CBCRs.
Collapse
Affiliation(s)
- Olena S Oliinyk
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland.
| | - Konstantin G Chernov
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland.
| | - Vladislav V Verkhusha
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland.
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
49
|
Stepanenko OV, Stepanenko OV, Bublikov G, Kuznetsova I, Verkhusha V, Turoverov K. Stabilization of structure in near-infrared fluorescent proteins by binding of biliverdin chromophore. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.10.095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Baloban M, Shcherbakova DM, Pletnev S, Pletnev VZ, Lagarias JC, Verkhusha VV. Designing brighter near-infrared fluorescent proteins: insights from structural and biochemical studies. Chem Sci 2017; 8:4546-4557. [PMID: 28936332 PMCID: PMC5590093 DOI: 10.1039/c7sc00855d] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/11/2017] [Indexed: 11/22/2022] Open
Abstract
Brighter near-infrared (NIR) fluorescent proteins (FPs) are required for multicolor microscopy and deep-tissue imaging. Here, we present structural and biochemical analyses of three monomeric, spectrally distinct phytochrome-based NIR FPs, termed miRFPs. The miRFPs are closely related and differ by only a few amino acids, which define their molecular brightness, brightness in mammalian cells, and spectral properties. We have identified the residues responsible for the spectral red-shift, revealed a new chromophore bound simultaneously to two cysteine residues in the PAS and GAF domains in blue-shifted NIR FPs, and uncovered the importance of amino acid residues in the N-terminus of NIR FPs for their molecular and cellular brightness. The novel chromophore covalently links the N-terminus of NIR FPs with their C-terminal GAF domain, forming a topologically closed knot in the structure, and also contributes to the increased brightness. Based on our studies, we suggest a strategy to develop spectrally distinct NIR FPs with enhanced brightness.
Collapse
Affiliation(s)
- Mikhail Baloban
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center , Albert Einstein College of Medicine , Bronx , New York 10461 , USA .
| | - Daria M Shcherbakova
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center , Albert Einstein College of Medicine , Bronx , New York 10461 , USA .
| | - Sergei Pletnev
- Macromolecular Crystallography Laboratory , National Cancer Institute , Leidos Biomedical Research Inc. , Basic Research Program , Argonne , Illinois 60439 , USA
| | - Vladimir Z Pletnev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Russian Academy of Sciences , Moscow 117997 , Russian Federation
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology , University of California in Davis , California 95616 , USA
| | - Vladislav V Verkhusha
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center , Albert Einstein College of Medicine , Bronx , New York 10461 , USA .
- Department of Biochemistry and Developmental Biology , Faculty of Medicine , University of Helsinki , Helsinki 00029 , Finland
| |
Collapse
|