1
|
Pan Q, Zhang XL. Roles of core fucosylation modification in immune system and diseases. CELL INSIGHT 2025; 4:100211. [PMID: 39624801 PMCID: PMC11609374 DOI: 10.1016/j.cellin.2024.100211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 01/04/2025]
Abstract
Core fucosylation, catalyzed by α1,6-fucosyltransferase (FUT8), is an important N-glycosylation modification process that attaches a fucose residue via an α1,6-linkage to the core N-acetylglucosamine of N-glycans in mammals. Research over the past three decades has revealed the critical role of FUT8-mediated core fucosylation modification in various physiological and pathological processes, including cell growth, adhesion, receptor activation, antibody-dependent cellular cytotoxicity (ADCC), tumor metastasis and infections. This review discusses the immune system function involving FUT8 and the mechanisms by which core fucosylation regulates immunity and contributes to disease. A deeper understanding of these mechanisms can provide insights into cellular biology and suggest new therapeutic approaches and targets for related diseases.
Collapse
Affiliation(s)
- Qiu Pan
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Allergy Zhongnan Hospital of Wuhan University, Department of Immunology Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Wuhan University School of Medicine, Wuhan, 430071, China
| | - Xiao-Lian Zhang
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Allergy Zhongnan Hospital of Wuhan University, Department of Immunology Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Wuhan University School of Medicine, Wuhan, 430071, China
| |
Collapse
|
2
|
Wang T, Zhang Z, Qu C, Song W, Li M, Shao X, Fukuda T, Gu J, Taniguchi N, Li W. Core fucosylation regulates the ovarian response via FSH receptor during follicular development. J Adv Res 2025; 67:105-120. [PMID: 38280716 PMCID: PMC11725149 DOI: 10.1016/j.jare.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/03/2024] [Accepted: 01/21/2024] [Indexed: 01/29/2024] Open
Abstract
INTRODUCTION Ovarian low response to follicle-stimulating hormone (FSH) causes infertility featuring hypergonadotropic hypogonadism, ovarian failure, and/or defective ovarian response. OBJECTIVES N-glycosylation is essential for FSH receptor (FSHR). Core fucosylation catalyzed by fucosyltransferase 8 (FUT8) is the most common N-glycosylation. Core fucosylation level changes between individuals and plays important roles in multiple physiological and pathological conditions. This study aims to elucidate the significance of FUT8 to modulate FSHR function in female fertility. METHODS Samples from patients classified as poor ovary responders (PORs) were detected with lectin blot and real-time PCR. Fut8 gene knockout (Fut8-/-) mice and FUT8-knockdown human granulosa cell line (KGN-KD) were established and in vitro fertilization (IVF) assay, western blot, molecular interaction, immunofluorescence and immunoprecipitation were applied. RESULTS Core fucosylation is indispensable for oocyte and follicular development. FSHR is a highly core-fucosylated glycoprotein. Loss of core fucosylation suppressed binding of FSHR to FSH, and attenuated FSHR downstream signaling in granulosa cells. Transcriptomic analysis revealed the downregulation of several transcripts crucial for oocyte meiotic progression and preimplantation development in Fut8-/- mice and in POR patients. Furthermore, loss of FUT8 inhibited the interaction between granulosa cells and oocytes, reduced transzonal projection (TZP) formation and caused poor developmental competence of oocytes after fertilization in vitro. While L-fucose administration increased the core fucosylation of FSHR, and its sensitivity to FSH. CONCLUSION This study first reveals a significant presence of core fucosylation in female fertility control. Decreased fucosylation on FSHR reduces the interaction of FSH-FSHR and subsequent signaling, which is a feature of the POR patients. Our results suggest that core fucosylation controls oocyte and follicular development via the FSH/FSHR pathway and is essential for female fertility in mammals.
Collapse
Affiliation(s)
- Tiantong Wang
- Department of Thoracic Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China; College of Basic Medical Sciences, Dalian Medical University, 9 West Section Lvshun South Road, Dalian, Liaoning 116044, China
| | - Zhiwei Zhang
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Changduo Qu
- College of Basic Medical Sciences, Dalian Medical University, 9 West Section Lvshun South Road, Dalian, Liaoning 116044, China
| | - Wanli Song
- Department of Thoracic Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Ming Li
- College of Basic Medical Sciences, Dalian Medical University, 9 West Section Lvshun South Road, Dalian, Liaoning 116044, China
| | - Xiaoguang Shao
- Medical Center for Reproductive and Genetic Research, Dalian Municipal Women and Children's Medical Center, 878 Xibei Road, Gezhenbao Street, Dalian, Liaoning 116037, China
| | - Tomohiko Fukuda
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Jianguo Gu
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Naoyuki Taniguchi
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, 3-1-69 Otemae, Chuoku, Osaka 541-8567, Japan
| | - Wenzhe Li
- Department of Thoracic Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China; Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, China.
| |
Collapse
|
3
|
Skurska E, Olczak M. Interplay between de novo and salvage pathways of GDP-fucose synthesis. PLoS One 2024; 19:e0309450. [PMID: 39446915 PMCID: PMC11501016 DOI: 10.1371/journal.pone.0309450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/12/2024] [Indexed: 10/26/2024] Open
Abstract
GDP-fucose is synthesised via two pathways: de novo and salvage. The first uses GDP-mannose as a substrate, and the second uses free fucose. To date, these pathways have been considered to work separately and not to have an influence on each other. We report the mutual response of the de novo and salvage pathways to the lack of enzymes from a particular route of GDP-fucose synthesis. We detected different efficiencies of GDP-fucose and fucosylated structure synthesis after a single inactivation of enzymes of the de novo pathway. Our study demonstrated the unequal influence of the salvage enzymes on the production of GDP-fucose by enzymes of the de novo biosynthesis pathway. Simultaneously, we detected an elevated level of one of the enzymes of the de novo pathway in the cell line lacking the enzyme of the salvage biosynthesis pathway. Additionally, we identified dissimilarities in fucose uptake between cells lacking TSTA3 and GMDS proteins.
Collapse
Affiliation(s)
- Edyta Skurska
- Department of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Mariusz Olczak
- Department of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
4
|
Pascoal C, Francisco R, Mexia P, Pereira BL, Granjo P, Coelho H, Barbosa M, dos Reis Ferreira V, Videira PA. Revisiting the immunopathology of congenital disorders of glycosylation: an updated review. Front Immunol 2024; 15:1350101. [PMID: 38550576 PMCID: PMC10972870 DOI: 10.3389/fimmu.2024.1350101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/26/2024] [Indexed: 04/02/2024] Open
Abstract
Glycosylation is a critical post-translational modification that plays a pivotal role in several biological processes, such as the immune response. Alterations in glycosylation can modulate the course of various pathologies, such as the case of congenital disorders of glycosylation (CDG), a group of more than 160 rare and complex genetic diseases. Although the link between glycosylation and immune dysfunction has already been recognized, the immune involvement in most CDG remains largely unexplored and poorly understood. In this study, we provide an update on the immune dysfunction and clinical manifestations of the 12 CDG with major immune involvement, organized into 6 categories of inborn errors of immunity according to the International Union of Immunological Societies (IUIS). The immune involvement in phosphomannomutase 2 (PMM2)-CDG - the most frequent CDG - was comprehensively reviewed, highlighting a higher prevalence of immune issues during infancy and childhood and in R141H-bearing genotypes. Finally, using PMM2-CDG as a model, we point to links between abnormal glycosylation patterns in host cells and possibly favored interactions with microorganisms that may explain the higher susceptibility to infection. Further characterizing immunopathology and unusual host-pathogen adhesion in CDG can not only improve immunological standards of care but also pave the way for innovative preventive measures and targeted glycan-based therapies that may improve quality of life for people living with CDG.
Collapse
Affiliation(s)
- Carlota Pascoal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
| | - Rita Francisco
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
| | - Patrícia Mexia
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
| | - Beatriz Luís Pereira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
| | - Pedro Granjo
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
| | - Helena Coelho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Mariana Barbosa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
| | - Vanessa dos Reis Ferreira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
| | - Paula Alexandra Videira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
| |
Collapse
|
5
|
Shi M, Nan XR, Liu BQ. The Multifaceted Role of FUT8 in Tumorigenesis: From Pathways to Potential Clinical Applications. Int J Mol Sci 2024; 25:1068. [PMID: 38256141 PMCID: PMC10815953 DOI: 10.3390/ijms25021068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/07/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
FUT8, the sole glycosyltransferase responsible for N-glycan core fucosylation, plays a crucial role in tumorigenesis and development. Aberrant FUT8 expression disrupts the function of critical cellular components and triggers the abnormality of tumor signaling pathways, leading to malignant transformations such as proliferation, invasion, metastasis, and immunosuppression. The association between FUT8 and unfavorable outcomes in various tumors underscores its potential as a valuable diagnostic marker. Given the remarkable variation in biological functions and regulatory mechanisms of FUT8 across different tumor types, gaining a comprehensive understanding of its complexity is imperative. Here, we review how FUT8 plays roles in tumorigenesis and development, and how this outcome could be utilized to develop potential clinical therapies for tumors.
Collapse
Affiliation(s)
| | | | - Bao-Qin Liu
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, Shenyang 110122, China; (M.S.); (X.-R.N.)
| |
Collapse
|
6
|
Zhong J, Li J, Burton GJ, Koistinen H, Cheung KW, Ng EHY, Yao Y, Yeung WSB, Lee CL, Chiu PCN. The functional roles of protein glycosylation in human maternal-fetal crosstalk. Hum Reprod Update 2024; 30:81-108. [PMID: 37699855 DOI: 10.1093/humupd/dmad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/20/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND The establishment of maternal-fetal crosstalk is vital to a successful pregnancy. Glycosylation is a post-translational modification in which glycans (monosaccharide chains) are attached to an organic molecule. Glycans are involved in many physiological and pathological processes. Human endometrial epithelium, endometrial gland secretions, decidual immune cells, and trophoblasts are highly enriched with glycoconjugates and glycan-binding molecules important for a healthy pregnancy. Aberrant glycosylation in the placenta and uterus has been linked to repeated implantation failure and various pregnancy complications, but there is no recent review summarizing the functional roles of glycosylation at the maternal-fetal interface and their associations with pathological processes. OBJECTIVE AND RATIONALE This review aims to summarize recent findings on glycosylation, glycosyltransferases, and glycan-binding receptors at the maternal-fetal interface, and their involvement in regulating the biology and pathological conditions associated with endometrial receptivity, placentation and maternal-fetal immunotolerance. Current knowledge limitations and future insights into the study of glycobiology in reproduction are discussed. SEARCH METHODS A comprehensive PubMed search was conducted using the following keywords: glycosylation, glycosyltransferases, glycan-binding proteins, endometrium, trophoblasts, maternal-fetal immunotolerance, siglec, selectin, galectin, repeated implantation failure, early pregnancy loss, recurrent pregnancy loss, preeclampsia, and fetal growth restriction. Relevant reports published between 1980 and 2023 and studies related to these reports were retrieved and reviewed. Only publications written in English were included. OUTCOMES The application of ultrasensitive mass spectrometry tools and lectin-based glycan profiling has enabled characterization of glycans present at the maternal-fetal interface and in maternal serum. The endometrial luminal epithelium is covered with highly glycosylated mucin that regulates blastocyst adhesion during implantation. In the placenta, fucose and sialic acid residues are abundantly presented on the villous membrane and are essential for proper placentation and establishment of maternal-fetal immunotolerance. Glycan-binding receptors, including selectins, sialic-acid-binding immunoglobulin-like lectins (siglecs) and galectins, also modulate implantation, trophoblast functions and maternal-fetal immunotolerance. Aberrant glycosylation is associated with repeated implantation failure, early pregnancy loss and various pregnancy complications. The current limitation in the field is that most glycobiological research relies on association studies, with few studies revealing the specific functions of glycans. Technological advancements in analytic, synthetic and functional glycobiology have laid the groundwork for further exploration of glycans in reproductive biology under both physiological and pathological conditions. WIDER IMPLICATIONS A deep understanding of the functions of glycan structures would provide insights into the molecular mechanisms underlying their involvement in the physiological and pathological regulation of early pregnancy. Glycans may also potentially serve as novel early predictive markers and therapeutic targets for repeated implantation failure, pregnancy loss, and other pregnancy complications.
Collapse
Affiliation(s)
- Jiangming Zhong
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jianlin Li
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Graham J Burton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Hannu Koistinen
- Department of Clinical Chemistry and Haematology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ka Wang Cheung
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Ernest H Y Ng
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yuanqing Yao
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - William S B Yeung
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Philip C N Chiu
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
7
|
Trzos S, Link-Lenczowski P, Pocheć E. The role of N-glycosylation in B-cell biology and IgG activity. The aspects of autoimmunity and anti-inflammatory therapy. Front Immunol 2023; 14:1188838. [PMID: 37575234 PMCID: PMC10415207 DOI: 10.3389/fimmu.2023.1188838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/28/2023] [Indexed: 08/15/2023] Open
Abstract
The immune system is strictly regulated by glycosylation through the addition of highly diverse and dynamically changing sugar structures (glycans) to the majority of immune cell receptors. Although knowledge in the field of glycoimmunology is still limited, numerous studies point to the key role of glycosylation in maintaining homeostasis, but also in reflecting its disruption. Changes in oligosaccharide patterns can lead to impairment of both innate and acquired immune responses, with important implications in the pathogenesis of diseases, including autoimmunity. B cells appear to be unique within the immune system, since they exhibit both innate and adaptive immune activity. B cell surface is rich in glycosylated proteins and lectins which recognise glycosylated ligands on other cells. Glycans are important in the development, selection, and maturation of B cells. Changes in sialylation and fucosylation of cell surface proteins affect B cell signal transduction through BCRs, CD22 inhibitory coreceptor and Siglec-G. Plasmocytes, as the final stage of B cell differentiation, produce and secrete immunoglobulins (Igs), of which IgGs are the most abundant N-glycosylated proteins in human serum with the conserved N-glycosylation site at Asn297. N-oligosaccharide composition of the IgG Fc region affects its secretion, structure, half-life and effector functions (ADCC, CDC). IgG N-glycosylation undergoes little change during homeostasis, and may gradually be modified with age and during ongoing inflammatory processes. Hyperactivated B lymphocytes secrete autoreactive antibodies responsible for the development of autoimmunity. The altered profile of IgG N-glycans contributes to disease progression and remission and is sensitive to the application of therapeutic substances and immunosuppressive agents. In this review, we focus on the role of N-glycans in B-cell biology and IgG activity, the rearrangement of IgG oligosaccharides in aging, autoimmunity and immunosuppressive therapy.
Collapse
Affiliation(s)
- Sara Trzos
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Paweł Link-Lenczowski
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Ewa Pocheć
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
8
|
Vicente MM, Leite-Gomes E, Pinho SS. Glycome dynamics in T and B cell development: basic immunological mechanisms and clinical applications. Trends Immunol 2023:S1471-4906(23)00112-6. [PMID: 37407365 PMCID: PMC10394430 DOI: 10.1016/j.it.2023.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023]
Abstract
Glycans cover the surfaces of all mammalian cells through a process called glycosylation. Nearly all proteins and receptors that integrate the intricate series of co-stimulatory/inhibitory pathways of the immune system are glycosylated. Growing evidence indicates that the development of the immune system at the origins of T and B cell development is tightly regulated by glycosylation. In this opinion, we hypothesize that the glycome composition of developing T and B cells is developmentally regulated. We discuss how glycans play fundamental roles in lymphocyte development and how glycans early define T and B cell functionality in multiple aspects of adaptive immunity. These advances can provide opportunities for the discovery of novel disease factors and more effective candidate treatments for various conditions.
Collapse
Affiliation(s)
- Manuel M Vicente
- i3S - Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; Graduate Program in Areas of Applied and Basic Biology (GABBA), School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal; School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Eduarda Leite-Gomes
- i3S - Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Salomé S Pinho
- i3S - Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal; Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal.
| |
Collapse
|
9
|
Antonarelli G, Pieri V, Porta FM, Fusco N, Finocchiaro G, Curigliano G, Criscitiello C. Targeting Post-Translational Modifications to Improve Combinatorial Therapies in Breast Cancer: The Role of Fucosylation. Cells 2023; 12:cells12060840. [PMID: 36980181 PMCID: PMC10047715 DOI: 10.3390/cells12060840] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/30/2023] Open
Abstract
Various tumors rely on post-translational modifications (PTMs) to promote invasiveness and angiogenesis and to reprogram cellular energetics to abate anti-cancer immunity. Among PTMs, fucosylation is a particular type of glycosylation that has been linked to different aspects of immune and hormonal physiological functions as well as hijacked by many types of tumors. Multiple tumors, including breast cancer, have been linked to dismal prognoses and increased metastatic potential due to fucosylation of the glycan core, namely core-fucosylation. Pre-clinical studies have examined the molecular mechanisms regulating core-fucosylation in breast cancer models, its negative prognostic value across multiple disease stages, and the activity of in vivo pharmacological inhibition, instructing combinatorial therapies and translation into clinical practice. Throughout this review, we describe the role of fucosylation in solid tumors, with a particular focus on breast cancer, as well as physiologic conditions on the immune system and hormones, providing a view into its potential as a biomarker for predicating or predicting cancer outcomes, as well as a potential clinical actionability as a biomarker.
Collapse
Affiliation(s)
- Gabriele Antonarelli
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, 20139 Milan, Italy
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, 20122 Milan, Italy
| | - Valentina Pieri
- Neural Stem Cell Biology Unit, Division of Neuroscience, IRCCS San Raffaele Hospital, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Francesca Maria Porta
- Division of Pathology, European Institute of Oncology (IEO), IRCCS, 20141 Milan, Italy
- School of Pathology, University of Milan, 20122 Milan, Italy
| | - Nicola Fusco
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, 20122 Milan, Italy
- Division of Pathology, European Institute of Oncology (IEO), IRCCS, 20141 Milan, Italy
| | | | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, 20139 Milan, Italy
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, 20122 Milan, Italy
| | - Carmen Criscitiello
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, 20139 Milan, Italy
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, 20122 Milan, Italy
| |
Collapse
|
10
|
Kao KS, Gupta A, Zong G, Li C, Kerschbaumer I, Borghi S, Achkar JM, Bournazos S, Wang LX, Ravetch JV. Synthetic nanobodies as tools to distinguish IgG Fc glycoforms. Proc Natl Acad Sci U S A 2022; 119:e2212658119. [PMID: 36409896 PMCID: PMC9860306 DOI: 10.1073/pnas.2212658119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022] Open
Abstract
Protein glycosylation is a crucial mediator of biological functions and is tightly regulated in health and disease. However, interrogating complex protein glycoforms is challenging, as current lectin tools are limited by cross-reactivity while mass spectrometry typically requires biochemical purification and isolation of the target protein. Here, we describe a method to identify and characterize a class of nanobodies that can distinguish glycoforms without reactivity to off-target glycoproteins or glycans. We apply this technology to immunoglobulin G (IgG) Fc glycoforms and define nanobodies that specifically recognize either IgG lacking its core-fucose or IgG bearing terminal sialic acid residues. By adapting these tools to standard biochemical methods, we can clinically stratify dengue virus and SARS-CoV-2 infected individuals based on their IgG glycan profile, selectively disrupt IgG-Fcγ receptor binding both in vitro and in vivo, and interrogate the B cell receptor (BCR) glycan structure on living cells. Ultimately, we provide a strategy for the development of reagents to identify and manipulate IgG Fc glycoforms.
Collapse
Affiliation(s)
- Kevin S. Kao
- Laboratory of Molecular Genetics & Immunology, The Rockefeller University, New York, NY10065
| | - Aaron Gupta
- Laboratory of Molecular Genetics & Immunology, The Rockefeller University, New York, NY10065
| | - Guanghui Zong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD20742
| | - Chao Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD20742
| | - Isabell Kerschbaumer
- Department of Medicine (Division of Infectious Diseases), Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY10461
| | - Sara Borghi
- Laboratory of Molecular Genetics & Immunology, The Rockefeller University, New York, NY10065
| | - Jacqueline M. Achkar
- Department of Medicine (Division of Infectious Diseases), Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY10461
- Department of Microbiology and Immunology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY10461
| | - Stylianos Bournazos
- Laboratory of Molecular Genetics & Immunology, The Rockefeller University, New York, NY10065
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD20742
| | - Jeffrey V. Ravetch
- Laboratory of Molecular Genetics & Immunology, The Rockefeller University, New York, NY10065
| |
Collapse
|
11
|
Sun Y, Li X, Wang T, Li W. Core Fucosylation Regulates the Function of Pre-BCR, BCR and IgG in Humoral Immunity. Front Immunol 2022; 13:844427. [PMID: 35401499 PMCID: PMC8990897 DOI: 10.3389/fimmu.2022.844427] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/25/2022] [Indexed: 11/20/2022] Open
Abstract
Most of the membrane molecules involved in immune response are glycosylated. N-glycans linked to asparagine (Asn) of immune molecules contribute to the protein conformation, surface expression, stability, and antigenicity. Core fucosylation catalyzed by core fucosyltransferase (FUT8) is the most common post-translational modification. Core fucosylation is essential for evoking a proper immune response, which this review aims to communicate. First, FUT8 deficiency suppressed the interaction between μHC and λ5 during pre-BCR assembly is given. Second, we described the effects of core fucosylation in B cell signal transduction via BCR. Third, we investigated the role of core fucosylation in the interaction between helper T (TH) cells and B cells. Finally, we showed the role of FUT8 on the biological function of IgG. In this review, we discussed recent insights into the sites where core fucosylation is critical for humoral immune responses.
Collapse
Affiliation(s)
- Yuhan Sun
- College of Basic Medical Science, Dalian Medical University, Dalian, China
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Japan
| | - Xueying Li
- Research Institute for Microbial Diseases and World Premier International Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Tiantong Wang
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Wenzhe Li
- College of Basic Medical Science, Dalian Medical University, Dalian, China
- *Correspondence: Wenzhe Li,
| |
Collapse
|
12
|
Ohkawa Y, Harada Y, Taniguchi N. Keratan sulfate-based glycomimetics using Langerin as a target for COPD: lessons from studies on Fut8 and core fucose. Biochem Soc Trans 2021; 49:441-453. [PMID: 33616615 PMCID: PMC7924997 DOI: 10.1042/bst20200780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/14/2021] [Accepted: 01/29/2021] [Indexed: 12/19/2022]
Abstract
Glycosylation represents one of the most abundant posttranslational modification of proteins. Glycosylation products are diverse and are regulated by the cooperative action of various glycosyltransferases, glycosidases, substrates thereof: nucleoside sugars and their transporters, and chaperons. In this article, we focus on a glycosyltransferase, α1,6-fucosyltransferase (Fut8) and its product, the core fucose structure on N-glycans, and summarize the potential protective functions of this structure against emphysema and chronic obstructive pulmonary disease (COPD). Studies of FUT8 and its enzymatic product, core fucose, are becoming an emerging area of interest in various fields of research including inflammation, cancer and therapeutics. This article discusses what we can learn from studies of Fut8 and core fucose by using knockout mice or in vitro studies that were conducted by our group as well as other groups. We also include a discussion of the potential protective functions of the keratan sulfate (KS) disaccharide, namely L4, against emphysema and COPD as a glycomimetic. Glycomimetics using glycan analogs is one of the more promising therapeutics that compensate for the usual therapeutic strategy that involves targeting the genome and the proteome. These typical glycans using KS derivatives as glycomimetics, will likely become a clue to the development of novel and effective therapeutic strategies.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Surface/genetics
- Antigens, Surface/metabolism
- Antigens, Surface/physiology
- Biomimetic Materials/chemistry
- Biomimetic Materials/therapeutic use
- Fucose/metabolism
- Fucosyltransferases/physiology
- Glycosylation
- Humans
- Keratan Sulfate/chemistry
- Lectins, C-Type/antagonists & inhibitors
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Lectins, C-Type/physiology
- Mannose-Binding Lectins/antagonists & inhibitors
- Mannose-Binding Lectins/genetics
- Mannose-Binding Lectins/metabolism
- Mannose-Binding Lectins/physiology
- Mice
- Mice, Knockout
- Molecular Targeted Therapy/methods
- Polysaccharides/chemistry
- Polysaccharides/metabolism
- Pulmonary Disease, Chronic Obstructive/drug therapy
- Pulmonary Disease, Chronic Obstructive/genetics
- Pulmonary Disease, Chronic Obstructive/metabolism
Collapse
Affiliation(s)
- Yuki Ohkawa
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| | - Yoichiro Harada
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| | - Naoyuki Taniguchi
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| |
Collapse
|
13
|
The Role of Glycosylation in Inflammatory Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:265-283. [PMID: 34495540 DOI: 10.1007/978-3-030-70115-4_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The diversity of glycan presentation in a cell, tissue and organism is enormous, which reflects the huge amount of important biological information encoded by the glycome which has not been fully understood. A compelling body of evidence has been highlighting the fundamental role of glycans in immunity, such as in development, and in major inflammatory processes such as inflammatory bowel disease, systemic lupus erythematosus and other autoimmune disorders. Glycans play an instrumental role in the immune response, integrating the canonical circuits that regulate innate and adaptive immune responses. The relevance of glycosylation in immunity is demonstrated by the role of glycans as important danger-associated molecular patterns and pathogen-associated molecular patterns associated with the discrimination between self and non-self; also as important regulators of the threshold of T cell activation, modulating receptors signalling and the activity of both T and other immune cells. In addition, glycans are important determinants that regulate the dynamic crosstalk between the microbiome and immune response. In this chapter, the essential role of glycans in the immunopathogenesis of inflammatory disorders will be presented and its potential clinical applications (diagnosis, prognosis and therapeutics) will be highlighted.
Collapse
|
14
|
Zhang N, Li M, Xu X, Zhang Y, Liu Y, Zhao M, Li P, Chen J, Fukuda T, Gu J, Jin X, Li W. Loss of core fucosylation enhances the anticancer activity of cytotoxic T lymphocytes by increasing PD-1 degradation. Eur J Immunol 2020; 50:1820-1833. [PMID: 32460355 DOI: 10.1002/eji.202048543] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/24/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022]
Abstract
As an immune checkpoint, programmed cell death 1 (PD-1) and its ligand (PD-L1) pathway plays a crucial role in CD8+ cytotoxic T lymphocytes (CTL) activation and provides antitumor responses. The N-glycans of PD-1 and PD-L1 are highly core fucosylated, which are solely catalyzed by the core fucosyltransferase (Fut8). However, the precise biological mechanisms underlying effects of core fucosylation of PD-1 and PD-L1 on CTL activation have not been fully understood. In this study, we found that core fucosylation was significantly upregulated in lung adenocarcinoma. Compared to those of Fut8+/+ OT-I mice, the lung adenocarcinoma formation induced by urethane was markedly reduced in Fut8-/- OT-I mice. De-core fucosylation of PD-1 compromised its expression on Fut8-/- CTL, resulted in enhanced Fut8-/- CTL activation and cytotoxicity, leading to more efficient tumor eradication. Indeed, loss of core fucosylation significantly enhanced the PD-1 ubiquitination and in turn led to the degradation of PD-1 in the proteasome. Our current work indicates that inhibition of core fucosylation is a unique strategy to reduce PD-1 expression for the antilung adenocarcinoma immune therapy in the future.
Collapse
Affiliation(s)
- Nianzhu Zhang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Ming Li
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Xing Xu
- Tianjin Medical University Cancer Institute and Hospital. National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin. Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yingshu Zhang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Yancheng Liu
- Tianjin Medical University Cancer Institute and Hospital. National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin. Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Meng Zhao
- Tianjin Medical University Cancer Institute and Hospital. National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin. Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Peng Li
- Tianjin Medical University Cancer Institute and Hospital. National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin. Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jun Chen
- Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Tomohiko Fukuda
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Jianguo Gu
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Xun Jin
- Tianjin Medical University Cancer Institute and Hospital. National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin. Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wenzhe Li
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
15
|
Sun Y, Li Z, Liang W, Zhang Y, Song W, Song J, Xue K, Wang M, Sun W, Gu J, Li M, Li W. A novel immunochromatographic strips assay for rapid and simple detection of systemic lupus erythematosus. Sci Rep 2020; 10:14178. [PMID: 32843681 PMCID: PMC7447788 DOI: 10.1038/s41598-020-71137-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex multi-system autoimmune disease. Detection of anti-nuclear antibodies (ANA) is fundamental for the diagnosis of SLE. In the present study, we found that the level of core fucosylation catalyzed by α1,6-fucosyltransferase (Fut8) is markedly up-regulated on immunoglobulin G (IgG) in the sera of SLE patients detected by Aspergillus oryzae lectin (AOL) blot. In sandwich Dot enzyme-linked immunosorbent assay (Dot-ELISA), the core fucosylation level was also found significantly increased in the sera from SLE patients with a higher ANA titer. To establish a rapid and sensitive laboratory test for the diagnosis of SLE, we prokaryotically expressed AOL and C3-D1-C3-D2-C3 of protein G (SpG3), and generate AOL-conjugated colloid gold immunochromatographic strips (ICS). The detection limit of core fucosylated IgG was 10 μg/mL for AOL-conjugated colloid gold ICS. As well as indirect immunofluorescence, the AOL-conjugated colloid gold ICS showed reliable results in the serum of 39 SLE patients. Our results indicated that the AOL-conjugated colloid gold ICS could serve as a rapid test for the detection of ANA and suspected cases of SLE.
Collapse
Affiliation(s)
- Yuhan Sun
- College of Basic Medical Science, Dalian Medical University, 9-Western Section, Lvshun South Road, Dalian, 116044, Liaoning, China
| | - Zhi Li
- Clinical Laboratory, Dalian Municipal Central Hospital, 826-Xinan Road, Shahekou District, Dalian, 116033, Liaoning, China
| | - Wei Liang
- College of Basic Medical Science, Dalian Medical University, 9-Western Section, Lvshun South Road, Dalian, 116044, Liaoning, China
| | - Yanlong Zhang
- Department of Wildlife Medicine, College of Wildlife Resources, Northeast Forestry University, 26-Hexing Road, Harbin, 150040, Heilongjiang, China
| | - Wanli Song
- College of Basic Medical Science, Dalian Medical University, 9-Western Section, Lvshun South Road, Dalian, 116044, Liaoning, China
| | - Jiazhe Song
- College of Basic Medical Science, Dalian Medical University, 9-Western Section, Lvshun South Road, Dalian, 116044, Liaoning, China
| | - Kai Xue
- College of Basic Medical Science, Dalian Medical University, 9-Western Section, Lvshun South Road, Dalian, 116044, Liaoning, China
| | - Meiling Wang
- Clinical Laboratory, Dalian Municipal Central Hospital, 826-Xinan Road, Shahekou District, Dalian, 116033, Liaoning, China
| | - Wenying Sun
- Clinical Laboratory, Dalian Municipal Central Hospital, 826-Xinan Road, Shahekou District, Dalian, 116033, Liaoning, China
| | - Jianguo Gu
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, 981-8558, Japan
| | - Ming Li
- College of Basic Medical Science, Dalian Medical University, 9-Western Section, Lvshun South Road, Dalian, 116044, Liaoning, China
| | - Wenzhe Li
- College of Basic Medical Science, Dalian Medical University, 9-Western Section, Lvshun South Road, Dalian, 116044, Liaoning, China.
| |
Collapse
|
16
|
Mortales CL, Lee SU, Demetriou M. N-Glycan Branching Is Required for Development of Mature B Cells. THE JOURNAL OF IMMUNOLOGY 2020; 205:630-636. [PMID: 32591389 DOI: 10.4049/jimmunol.2000101] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/29/2020] [Indexed: 12/14/2022]
Abstract
Galectins have been implicated in inhibiting BCR signaling in mature B cells but promoting pre-BCR signaling during early development. Galectins bind to branched N-glycans attached to cell surface glycoproteins to control the distribution, clustering, endocytosis, and signaling of surface glycoproteins. During T cell development, N-glycan branching is required for positive selection of thymocytes, inhibiting both death by neglect and negative selection via enhanced surface retention of the CD4/CD8 coreceptors and limiting TCR clustering/signaling, respectively. The role of N-glycan branching in B cell development is unknown. In this study, we report that N-glycan branching is absolutely required for development of mature B cells in mice. Elimination of branched N-glycans in developing B cells via targeted deletion of N-acetylglucosaminyl transferase I (Mgat1) markedly reduced cellularity in the bone marrow and/or spleen and inhibited maturation of pre-, immature, and transitional stage 2 B cells. Branching deficiency markedly reduced surface expression of the pre-BCR/BCR coreceptor CD19 and promoted spontaneous death of pre-B cells and immature B cells in vitro. Death was rescued by low-dose pre-BCR/BCR stimulation but exacerbated by high-dose pre-BCR/BCR stimulation as well as antiapoptotic BclxL overexpression in pre-B cells. Branching deficiency also enhanced Nur77 induction, a marker of negative selection. Together, these data suggest that, as in T cells, N-glycan branching promotes positive selection of B cells by augmenting pre-BCR/BCR signaling via CD19 surface retention, whereas limiting negative selection from excessive BCR engagement.
Collapse
Affiliation(s)
- Christie-Lynn Mortales
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697; and
| | - Sung-Uk Lee
- Department of Neurology, University of California, Irvine, Irvine, CA 92697
| | - Michael Demetriou
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697; and .,Department of Neurology, University of California, Irvine, Irvine, CA 92697
| |
Collapse
|
17
|
Zahid D, Zhang N, Fang H, Gu J, Li M, Li W. Loss of core fucosylation suppressed the humoral immune response in Salmonella typhimurium infected mice. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2020; 54:606-615. [PMID: 32146162 DOI: 10.1016/j.jmii.2020.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/12/2019] [Accepted: 02/10/2020] [Indexed: 10/25/2022]
Abstract
BACKGROUND The humoral immune response is pivotal to protect the host from Salmonella typhimurium (S. typhimurium) infection. Previously, we found that core fucosylation catalyzed by core fucosyltransferase (Fut8) could regulate the immune responses. However, the role of core fucosylation during S. typhimurium infection remains unclear. METHODS To demonstrate the role of Fut8 in S. typhimurium infection, we infected Fut8+/+ and Fut8-/- mice using S. typhimurium. The production of antiserum against the S. typhimurium was detected. The expression of T and B cell activation-related genes during S. typhimurium infection was analyzed. The role of core fucosylation on CD4+ T-B cell interaction and B cell generation was investigated during S. typhimurium infection. The production of sIgA was compared between Fut8+/+ and Fut8-/- mice. RESULTS Compared to Fut8+/+ mice, the number of S. typhimurium colonized in the cecum was markedly increased in Fut8-/- mice. The production of the IgG and sIgA specific for S. typhimurium was significantly decreased in Fut8-/- mice. Moreover, loss of Fut8 decreased the induction of Th2-type cytokines from splenic cells of Fut8-/- mice during S. typhimurium infection. In addition, we found that the core fucosylation regulated the interaction between B and T cells in the lipid raft formation. CONCLUSION Core fucosylation plays important roles in host defence against S. typhimurium infection.
Collapse
Affiliation(s)
- Danish Zahid
- College of Basic Medical Science, Dalian Medical University, 9-Western Section, Lvshun South Road, Dalian, Liaoning, 116044, China
| | - Nianzhu Zhang
- College of Basic Medical Science, Dalian Medical University, 9-Western Section, Lvshun South Road, Dalian, Liaoning, 116044, China
| | - Hui Fang
- College of Basic Medical Science, Dalian Medical University, 9-Western Section, Lvshun South Road, Dalian, Liaoning, 116044, China
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| | - Ming Li
- College of Basic Medical Science, Dalian Medical University, 9-Western Section, Lvshun South Road, Dalian, Liaoning, 116044, China.
| | - Wenzhe Li
- College of Basic Medical Science, Dalian Medical University, 9-Western Section, Lvshun South Road, Dalian, Liaoning, 116044, China.
| |
Collapse
|
18
|
Pascoal C, Francisco R, Ferro T, Dos Reis Ferreira V, Jaeken J, Videira PA. CDG and immune response: From bedside to bench and back. J Inherit Metab Dis 2020; 43:90-124. [PMID: 31095764 DOI: 10.1002/jimd.12126] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 12/20/2022]
Abstract
Glycosylation is an essential biological process that adds structural and functional diversity to cells and molecules, participating in physiological processes such as immunity. The immune response is driven and modulated by protein-attached glycans that mediate cell-cell interactions, pathogen recognition and cell activation. Therefore, abnormal glycosylation can be associated with deranged immune responses. Within human diseases presenting immunological defects are congenital disorders of glycosylation (CDG), a family of around 130 rare and complex genetic diseases. In this review, we have identified 23 CDG with immunological involvement, characterized by an increased propensity to-often life-threatening-infection. Inflammatory and autoimmune complications were found in 7 CDG types. CDG natural history(ies) and the mechanisms behind the immunological anomalies are still poorly understood. However, in some cases, alterations in pathogen recognition and intracellular signaling (eg, TGF-β1, NFAT, and NF-κB) have been suggested. Targeted therapies to restore immune defects are only available for PGM3-CDG and SLC35C1-CDG. Fostering research on glycoimmunology may elucidate the involved pathophysiological mechanisms and open new therapeutic avenues, thus improving CDG patients' quality of life.
Collapse
Affiliation(s)
- Carlota Pascoal
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Rita Francisco
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Tiago Ferro
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Vanessa Dos Reis Ferreira
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
| | - Jaak Jaeken
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- Center for Metabolic Diseases, Department of Development and Regeneration, UZ and KU Leuven, Leuven, Belgium
| | - Paula A Videira
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
19
|
Wilhelm I, Levit-Zerdoun E, Jakob J, Villringer S, Frensch M, Übelhart R, Landi A, Müller P, Imberty A, Thuenauer R, Claudinon J, Jumaa H, Reth M, Eibel H, Hobeika E, Römer W. Carbohydrate-dependent B cell activation by fucose-binding bacterial lectins. Sci Signal 2019; 12:12/571/eaao7194. [PMID: 30837305 DOI: 10.1126/scisignal.aao7194] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bacterial lectins are typically multivalent and bind noncovalently to specific carbohydrates on host tissues to facilitate bacterial adhesion. Here, we analyzed the effects of two fucose-binding lectins, BambL from Burkholderia ambifaria and LecB from Pseudomonas aeruginosa, on specific signaling pathways in B cells. We found that these bacterial lectins induced B cell activation, which, in vitro, was dependent on the cell surface expression of the B cell antigen receptor (BCR) and its co-receptor CD19, as well as on spleen tyrosine kinase (Syk) activity. The resulting release of intracellular Ca2+ was followed by an increase in the cell surface abundance of the activation marker CD86, augmented cytokine secretion, and subsequent cell death, replicating all of the events that are observed in vitro upon canonical and antigen-mediated B cell activation. Moreover, injection of BambL in mice resulted in a substantial, BCR-independent loss of B cells in the bone marrow with simultaneous, transient enlargement of the spleen (splenomegaly), as well as an increase in the numbers of splenic B cells and myeloid cells. Together, these data suggest that bacterial lectins can initiate polyclonal activation of B cells through their sole capacity to bind to fucose.
Collapse
Affiliation(s)
- Isabel Wilhelm
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Ella Levit-Zerdoun
- Max Planck Institute of Immunology and Epigenetics Freiburg, 79108 Freiburg, Germany.,International Max Planck Research School (IMPRS), Max Planck Institute of Immunobiology and Epigenetics Freiburg, 79108 Freiburg, Germany.,German Cancer Consortium (DKTK) partner site Freiburg, German Cancer Center (DKFZ), Heidelberg, Institute of Molecular Medicine and Cell Research, 79104 Freiburg, Germany
| | - Johanna Jakob
- Institute for Immunology, University Medical Centre Ulm, 89081 Ulm, Germany
| | - Sarah Villringer
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Marco Frensch
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany.,International Max Planck Research School (IMPRS), Max Planck Institute of Immunobiology and Epigenetics Freiburg, 79108 Freiburg, Germany
| | - Rudolf Übelhart
- Institute for Immunology, University Medical Centre Ulm, 89081 Ulm, Germany
| | - Alessia Landi
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Peter Müller
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Anne Imberty
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Roland Thuenauer
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Julie Claudinon
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Hassan Jumaa
- Institute for Immunology, University Medical Centre Ulm, 89081 Ulm, Germany
| | - Michael Reth
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany.,Max Planck Institute of Immunology and Epigenetics Freiburg, 79108 Freiburg, Germany
| | - Hermann Eibel
- CCI-Center for Chronic Immunodeficiency (CCI), University Medical Centre, 79106 Freiburg, Germany.,Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Elias Hobeika
- Institute for Immunology, University Medical Centre Ulm, 89081 Ulm, Germany.
| | - Winfried Römer
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany. .,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
20
|
Lv X, Song J, Xue K, Li Z, Li M, Zahid D, Cao H, Wang L, Song W, Ma T, Gu J, Li W. Core fucosylation of copper transporter 1 plays a crucial role in cisplatin-resistance of epithelial ovarian cancer by regulating drug uptake. Mol Carcinog 2019; 58:794-807. [PMID: 30614075 DOI: 10.1002/mc.22971] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/13/2018] [Accepted: 12/27/2018] [Indexed: 12/13/2022]
Abstract
Core fucosylation catalyzed by core fucosyltransferase (Fut8) contributes to the progressions of epithelial ovarian cancer (EOC). Copper transporter 1 (CTR1), which contains one N-glycan on Asn15 , mediates cellular transport of cisplatin (cDDP), and plays an important role in the process of cDDP-resistance in EOC. In the present study, we found that the core fucosylation level elevated significantly in the sera of cDDP-treated EOC patients. The in vitro assays also indicate that core fucosylation of CTR1 was significantly upregulated in cDDP-resistant A2780CP cells compared to the cDDP-sensitive A2780S cells. Intriguingly, the hyper core fucosylation suppressed the CTR1-cDDP interactions and cDDP-uptake into A2780CP cells. Conversely, contrast to the Fut8+/+ mouse ovarian epithelial cells, the Fut8-deleted (Fut8-/- ) cells obviously showed higher cDDP-uptake. Furthermore, the recovered core fucosylation induced the suppression of cDDP-uptake in Fut8-restored ovarian epithelial cells. In addition, the core fucosylation could regulate the phosphorylation of cDDP-resistance-associated molecules, such as AKT, ERK, JNK, and mTOR. Our findings suggest that the core fucosylation of CTR1 plays an important role in the cellular cDDP-uptake and thus provide new strategies for improving the outcome of cDDP based chemotherapy of EOC.
Collapse
Affiliation(s)
- Xiaoxue Lv
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| | - Jiazhe Song
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| | - Kai Xue
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| | - Zhi Li
- Clinical Laboratory, Dalian Municipal Central Hospital, Dalian, Liaoning, China
| | - Ming Li
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| | - Danishi Zahid
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| | - Hongyu Cao
- College of Life Science and Technology, Dalian University, Liaoning, China
| | - Lu Wang
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| | - Wanli Song
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| | - Tonghui Ma
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| | - Jianguo Gu
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| | - Wenzhe Li
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| |
Collapse
|
21
|
Li J, Hsu HC, Mountz JD, Allen JG. Unmasking Fucosylation: from Cell Adhesion to Immune System Regulation and Diseases. Cell Chem Biol 2018. [DOI: 10.1016/j.chembiol.2018.02.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Demmert M, Schaper A, Pagel J, Gebauer C, Emeis M, Heitmann F, Kribs A, Siegel J, Müller D, Keller-Wackerbauer A, Gerleve H, Wieg C, Herting E, Göpel W, Härtel C. FUT 2 polymorphism and outcome in very-low-birth-weight infants. Pediatr Res 2015; 77:586-90. [PMID: 25642664 DOI: 10.1038/pr.2015.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 09/02/2014] [Indexed: 11/09/2022]
Abstract
BACKGROUND To determine whether the secretor gene fucosyltransferase (FUT)2 polymorphism G428A is predictive for adverse outcomes in a large cohort of very-low-birth weight (VLBW) infants. METHODS We prospectively enrolled 2,406 VLBW infants from the population-based multicenter cohort of the German Neonatal network cohort (2009-2011). The secretor genotype (rs601338) was assessed from DNA samples extracted from buccal swabs. Primary study outcomes were clinical sepsis, blood-culture confirmed sepsis, intracerebral hemorrhage (ICH), necrotizing enterocolitis (NEC) or focal intestinal perforation requiring surgery, and death. RESULTS Based on the assumption of a recessive genetic model, AA individuals had a higher incidence of ICH (AA: 19.0% vs. GG/AG 14.9%, P = 0.04) which was not significant in the additive genetic model (multivariable logistic regression analysis; allele carriers: 365 cases, 1,685 controls; OR: 1.2; 95% CI: 0.99-1.4; P = 0.06). Other outcomes were not influenced by FUT2 genotype in either genetic model. CONCLUSION This large-scale multicenter study did not confirm previously reported associations between FUT2 genotype and adverse outcomes in preterm infants.
Collapse
Affiliation(s)
- Martin Demmert
- Department of Pediatrics, University at Lübeck, Lübeck, Germany
| | - Anne Schaper
- Department of Pediatrics, University at Lübeck, Lübeck, Germany
| | - Julia Pagel
- Department of Pediatrics, University at Lübeck, Lübeck, Germany
| | - Corinna Gebauer
- Department of Pediatrics, University of Leipzig, Leipzig, Germany
| | - Michael Emeis
- Department of Neonatology, Vivantes-Klinikum Berlin-Neukölln, Berlin, Germany
| | | | - Angela Kribs
- Department of Pediatrics, University of Cologne, Köln, Germany
| | - Jens Siegel
- Department of Neonatology, Children´s Hospital Auf der Bult, Hanover, Germany
| | - Dirk Müller
- Department of Neonatology, Klinikum Kassel, Kassel, Germany
| | | | - Hubert Gerleve
- Department of Neonatology, Klinikum Coesfeld, Coesfeld, Germany
| | - Christian Wieg
- Department of Neonatology, Klinikum Aschaffenburg, Aschaffenburg, Germany
| | - Egbert Herting
- Department of Pediatrics, University at Lübeck, Lübeck, Germany
| | - Wolfgang Göpel
- Department of Pediatrics, University at Lübeck, Lübeck, Germany
| | | |
Collapse
|
23
|
Li W, Yu R, Ma B, Yang Y, Jiao X, Liu Y, Cao H, Dong W, Liu L, Ma K, Fukuda T, Liu Q, Ma T, Wang Z, Gu J, Zhang J, Taniguchi N. Core fucosylation of IgG B cell receptor is required for antigen recognition and antibody production. THE JOURNAL OF IMMUNOLOGY 2015; 194:2596-606. [PMID: 25694612 DOI: 10.4049/jimmunol.1402678] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ag recognition and Ab production in B cells are major components of the humoral immune response. In the current study, we found that the core fucosylation catalyzed by α1,6-fucosyltransferase (Fut8) was required for the Ag recognition of BCR and the subsequent signal transduction. Moreover, compared with the 3-83 B cells, the coalescing of lipid rafts and Ag-BCR endocytosis were substantially reduced in Fut8-knockdown (3-83-KD) cells with p31 stimulation and then completely restored by reintroduction of the Fut8 gene to the 3-83-KD cells. Indeed, Fut8-null (Fut8(-/-)) mice evoked a low immune response following OVA immunization. Also, the frequency of IgG-producing cells was significantly reduced in the Fut8(-/-) spleen following OVA immunization. Our results clearly suggest an unexpected mode of BCR function, in which the core fucosylation of IgG-BCR mediates Ag recognition and, concomitantly, cell signal transduction via BCR and Ab production.
Collapse
Affiliation(s)
- Wenzhe Li
- College of Basic Medical Sciences, Dalian Medical University, Liaoning 116044, China;
| | - Rui Yu
- College of Basic Medical Sciences, Dalian Medical University, Liaoning 116044, China
| | - Biao Ma
- College of Basic Medical Sciences, Dalian Medical University, Liaoning 116044, China
| | - Yan Yang
- College of Basic Medical Sciences, Dalian Medical University, Liaoning 116044, China
| | - Xinyan Jiao
- College of Basic Medical Sciences, Dalian Medical University, Liaoning 116044, China
| | - Yang Liu
- Educational Ministry Key Laboratory of Resource Biology and Biotechnology in Western China, Life Science College, Northwest University, Xi'an 710127, China
| | - Hongyu Cao
- College of Life Science and Technology, Dalian University, Liaoning 116622, China
| | - Weijie Dong
- College of Basic Medical Sciences, Dalian Medical University, Liaoning 116044, China
| | - Linhua Liu
- College of Basic Medical Sciences, Dalian Medical University, Liaoning 116044, China
| | - Keli Ma
- College of Basic Medical Sciences, Dalian Medical University, Liaoning 116044, China
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Miyagi 981-8558, Japan
| | - Qingping Liu
- College of Life Science and Technology, Dalian University, Liaoning 116622, China
| | - Tonghui Ma
- College of Basic Medical Sciences, Dalian Medical University, Liaoning 116044, China
| | - Zhongfu Wang
- Educational Ministry Key Laboratory of Resource Biology and Biotechnology in Western China, Life Science College, Northwest University, Xi'an 710127, China
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Miyagi 981-8558, Japan
| | - Jianing Zhang
- School of Life Science and Medicine, Dalian University of Technology, Panjin 124221, China; and
| | - Naoyuki Taniguchi
- Systems Glycobiology Research Group, Advanced Science Institute, RIKEN, Saitama 351-0198, Japan
| |
Collapse
|
24
|
Wang X, Chen J, Li QK, Peskoe SB, Zhang B, Choi C, Platz EA, Zhang H. Overexpression of α (1,6) fucosyltransferase associated with aggressive prostate cancer. Glycobiology 2014; 24:935-44. [PMID: 24906821 DOI: 10.1093/glycob/cwu051] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aberrant protein glycosylation is known to be associated with the development of cancers. The aberrant glycans are produced by the combined actions of changed glycosylation enzymes, substrates and transporters in glycosylation synthesis pathways in cancer cells. To identify glycosylation enzymes associated with aggressive prostate cancer (PCa), we analyzed the difference in the expression of glycosyltransferase genes between aggressive and non-aggressive PCa. Three candidate genes encoding glycosyltransferases that were elevated in aggressive PCa were subsequently selected. The expression of the three candidates was then further evaluated in androgen-dependent (LNCaP) and androgen-independent (PC3) PCa cell lines. We found that the protein expression of one of the glycosyltransferases, α (1,6) fucosyltransferase (FUT8), was only detected in PC3 cells, but not in LNCaP cells. We further showed that FUT8 protein expression was elevated in metastatic PCa tissues compared to normal prostate tissues. In addition, using tissue microarrays, we found that FUT8 overexpression was statistically associated with PCa with a high Gleason score. Using PC3 and LNCaP cells as models, we found that FUT8 overexpression in LNCaP cells increased PCa cell migration, while loss of FUT8 in PC3 cells decreased cell motility. Our results suggest that FUT8 may be associated with aggressive PCa and thus is potentially useful for its prognosis.
Collapse
Affiliation(s)
- Xiangchun Wang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - Jing Chen
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - Qing Kay Li
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - Sarah B Peskoe
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Bai Zhang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - Caitlin Choi
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA The James Buchanan Brady Urological Institute and the Sidney Comprehensive Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| |
Collapse
|
25
|
Ihara H, Tsukamoto H, Gu J, Miyoshi E, Taniguchi N, Ikeda Y. Fucosyltransferase 8. GDP-Fucose N-Glycan Core α6-Fucosyltransferase (FUT8). HANDBOOK OF GLYCOSYLTRANSFERASES AND RELATED GENES 2014:581-596. [DOI: 10.1007/978-4-431-54240-7_59] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
26
|
|
27
|
Gu W, Fukuda T, Isaji T, Hashimoto H, Wang Y, Gu J. α1,6-Fucosylation regulates neurite formation via the activin/phospho-Smad2 pathway in PC12 cells: the implicated dual effects of Fut8 for TGF-β/activin-mediated signaling. FASEB J 2013; 27:3947-58. [PMID: 23796784 DOI: 10.1096/fj.12-225805] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
It is well known that α1,6-fucosyltransferase (Fut8) and its products, α1,6-fucosylated N-glycans, are highly expressed in brain tissue. Recently, we reported that Fut8-knockout mice exhibited multiple behavioral abnormalities with a schizophrenia-like phenotype, suggesting that α1,6-fucosylation plays important roles in the brain and neuron system. In the present study, we screened several neural cell lines and found that PC12 cells express the highest levels of α1,6-fucosylation. The knockdown (KD) of Fut8 promoted a significant enhancement of neurite formation and induction of neurofilament expression. Surprisingly, the levels of phospho-Smad2 were greatly increased in the KD cells. Finally, we found that the activin-mediated signal pathway was essential for these changes in KD cells. Exogenous activin, not TGF-β1, induced neurite outgrowth and phospho-Smad2. In addition, the α1,6-fucosylation level on the activin receptors was greatly decreased in KD cells, while the total expression level was unchanged, suggesting that α1,6-fucosylation negatively regulated activin-mediated signaling. Furthermore, inhibition of activin receptor-mediated signaling or restoration of Fut8 expression rescued cell morphology and phospho-Smad2 levels, which were enhanced in KD cells. Considering the fact that α1,6-fucosylation is important for TGF-β-mediated signaling, the results of this study strongly suggest that Fut8 plays a dual role in TGF-β/activin-mediated signaling.
Collapse
Affiliation(s)
- Wei Gu
- 1Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai Miyagi, 981-8558, Japan.
| | | | | | | | | | | |
Collapse
|