1
|
Côco LZ, Aires R, Carvalho GR, Belisário EDS, Yap MKK, Amorim FG, Conde-Aranda J, Nogueira BV, Vasquez EC, Pereira TDMC, Campagnaro BP. Unravelling the Gastroprotective Potential of Kefir: Exploring Antioxidant Effects in Preventing Gastric Ulcers. Cells 2023; 12:2799. [PMID: 38132119 PMCID: PMC10742242 DOI: 10.3390/cells12242799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
The present study was conducted to evaluate the protective effect of milk kefir against NSAID-induced gastric ulcers. Male Swiss mice were divided into three groups: control (Vehicle; UHT milk at a dose of 0.3 mL/100 g), proton pump inhibitor (PPI; lansoprazole 30 mg/kg), and 4% milk kefir (Kefir; 0.3 mL/100 g). After 14 days of treatment, gastric ulcer was induced by oral administration of indomethacin (40 mg/kg). Reactive oxygen species (ROS), nitric oxide (NO), DNA content, cellular apoptosis, IL-10 and TNF-α levels, and myeloperoxidase (MPO) enzyme activity were determined. The interaction networks between NADPH oxidase 2 and kefir peptides 1-35 were determined using the Residue Interaction Network Generator (RING) webserver. Pretreatment with kefir for 14 days prevented gastric lesions. In addition, kefir administration reduced ROS production, DNA fragmentation, apoptosis, and TNF-α systemic levels. Simultaneously, kefir increased NO bioavailability in gastric cells and IL-10 systemic levels. A total of 35 kefir peptides showed affinity with NADPH oxidase 2. These findings suggest that the gastroprotective effect of kefir is due to its antioxidant and anti-inflammatory properties. Kefir could be a promising natural therapy for gastric ulcers, opening new perspectives for future research.
Collapse
Affiliation(s)
- Larissa Zambom Côco
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, ES, Brazil; (L.Z.C.); (R.A.); (G.R.C.); (E.d.S.B.); (E.C.V.); (T.d.M.C.P.)
| | - Rafaela Aires
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, ES, Brazil; (L.Z.C.); (R.A.); (G.R.C.); (E.d.S.B.); (E.C.V.); (T.d.M.C.P.)
| | - Glaucimeire Rocha Carvalho
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, ES, Brazil; (L.Z.C.); (R.A.); (G.R.C.); (E.d.S.B.); (E.C.V.); (T.d.M.C.P.)
| | - Eduarda de Souza Belisário
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, ES, Brazil; (L.Z.C.); (R.A.); (G.R.C.); (E.d.S.B.); (E.C.V.); (T.d.M.C.P.)
| | | | - Fernanda Gobbi Amorim
- Laboratory of Mass Spectrometry, Department of Chemistry, University of Liège, 4000 Liège, Belgium;
| | - Javier Conde-Aranda
- Molecular and Cellular Gastroenterology, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
| | - Breno Valentim Nogueira
- Department of Morphology, Health Sciences Center, Federal University of Espírito Santo (UFES), Vitoria 29047-105, ES, Brazil;
| | - Elisardo Corral Vasquez
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, ES, Brazil; (L.Z.C.); (R.A.); (G.R.C.); (E.d.S.B.); (E.C.V.); (T.d.M.C.P.)
| | - Thiago de Melo Costa Pereira
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, ES, Brazil; (L.Z.C.); (R.A.); (G.R.C.); (E.d.S.B.); (E.C.V.); (T.d.M.C.P.)
| | - Bianca Prandi Campagnaro
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, ES, Brazil; (L.Z.C.); (R.A.); (G.R.C.); (E.d.S.B.); (E.C.V.); (T.d.M.C.P.)
| |
Collapse
|
2
|
Kahkeshani N, Farzaei F, Fotouhi M, Alavi SS, Bahramsoltani R, Naseri R, Momtaz S, Abbasabadi Z, Rahimi R, Farzaei MH, Bishayee A. Pharmacological effects of gallic acid in health and diseases: A mechanistic review. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:225-237. [PMID: 31156781 PMCID: PMC6528712 DOI: 10.22038/ijbms.2019.32806.7897] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 11/01/2018] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Gallic acid is a natural phenolic compound found in several fruits and medicinal plants. It is reported to have several health-promoting effects. This review aims to summarize the pharmacological and biological activities of gallic acid in vitro and animal models to depict the pharmacological status of this compound for future studies. MATERIALS AND METHODS All relevant papers in the English language were collected up to June 2018. The keywords of gallic acid, antioxidant, anticancer, antimicrobial, gastrointestinal-, cardiovascular-, metabolic-, neuropsychological-, and miscellaneous- diseases were searched in Google Scholar, PubMed, and Scopus. RESULTS Several beneficial effects are reported for gallic acid, including antioxidant, anti-inflammatory, and antineoplastic properties. This compound has been reported to have therapeutic activities in gastrointestinal, neuropsychological, metabolic, and cardiovascular disorders. CONCLUSION Current evidence confirms the pharmacological and therapeutic interventions of gallic acid in multiple health complications; however, available data are limited to just cellular and animal studies. Future investigations are essential to further define the safety and therapeutic efficacy of gallic acid in humans.
Collapse
Affiliation(s)
- Niloofar Kahkeshani
- Department of Pharmacognosy, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- PhytoPharmacology Interest Group, Universal Scientific Education and Research Network, Tehran, Iran
| | - Fatemeh Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Fotouhi
- Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Shaghayegh Alavi
- Department of Food Science, Engineering and Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran
| | - Roodabeh Bahramsoltani
- Department of Pharmacy in Persian Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Rozita Naseri
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Abbasabadi
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roja Rahimi
- Department of Pharmacy in Persian Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
3
|
Saha SJ, Siddiqui AA, Pramanik S, Saha D, De R, Mazumder S, Debsharma S, Nag S, Banerjee C, Bandyopadhyay U. Hydrazonophenol, a Food Vacuole-Targeted and Ferriprotoporphyrin IX-Interacting Chemotype Prevents Drug-Resistant Malaria. ACS Infect Dis 2019; 5:63-73. [PMID: 30472841 DOI: 10.1021/acsinfecdis.8b00178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The rapid emergence of resistance against frontline antimalarial drugs essentially warrants the identification of new-generation antimalarials. Here, we describe the synthesis of ( E)-2-isopropyl-5-methyl-4-((2-(pyridin-4-yl)hydrazono)methyl)phenol (18), which binds ferriprotoporphyrin-IX (FeIII-PPIX) ( Kd = 33 nM) and offers antimalarial activity against chloroquine-resistant and sensitive strains of Plasmodium falciparum in vitro. Structure-function analysis reveals that compound 18 binds FeIII-PPIX through the -C═N-NH- moiety and 2-pyridyl substitution at the hydrazine counterpart plays a critical role in antimalarial efficacy. Live cell confocal imaging using a fluorophore-tagged compound confirms its accumulation inside the acidic food vacuole (FV) of P. falciparum. Furthermore, this compound concentration-dependently elevates the pH in FV, implicating a plausible interference with FeIII-PPIX crystallization (hemozoin formation) by a dual function: increasing the pH and binding free FeIII-PPIX. Different off-target bioassays reduce the possibility of the promiscuous nature of compound 18. Compound 18 also exhibits potent in vivo antimalarial activity against chloroquine-resistant P. yoelii and P. berghei ANKA (causing cerebral malaria) in mice with negligible toxicity.
Collapse
Affiliation(s)
- Shubhra Jyoti Saha
- Division of Infectious Diseases and Immunology, CSIR - Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Asim Azhar Siddiqui
- Division of Infectious Diseases and Immunology, CSIR - Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Saikat Pramanik
- Division of Infectious Diseases and Immunology, CSIR - Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Debanjan Saha
- Division of Infectious Diseases and Immunology, CSIR - Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Rudranil De
- Division of Infectious Diseases and Immunology, CSIR - Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Somnath Mazumder
- Division of Infectious Diseases and Immunology, CSIR - Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Subhashis Debsharma
- Division of Infectious Diseases and Immunology, CSIR - Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Shiladitya Nag
- Division of Infectious Diseases and Immunology, CSIR - Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Chinmoy Banerjee
- Division of Infectious Diseases and Immunology, CSIR - Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Uday Bandyopadhyay
- Division of Infectious Diseases and Immunology, CSIR - Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| |
Collapse
|
4
|
Taechowisan T, Puckdee W, Waratchareeyakul W, Phutdhawong WS. Anti-Inflammatory Activity of Geldanamycin and Its Derivatives in LPS-Induced RAW 264.7 Cells. ACTA ACUST UNITED AC 2019. [DOI: 10.4236/aim.2019.94024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Kosuru RY, Roy A, Das SK, Bera S. Gallic Acid and Gallates in Human Health and Disease: Do Mitochondria Hold the Key to Success? Mol Nutr Food Res 2017; 62. [PMID: 29178387 DOI: 10.1002/mnfr.201700699] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/15/2017] [Indexed: 12/17/2022]
Abstract
Gallic acid and gallate esters are widely used as dietary supplements or additives with clinical significances. Over the last few decades, a large number of publications have been reported stating the antioxidative, antiapoptotic, cardioprotective, neuroprotective, and anticancer properties of gallic acid and gallates, and mostly demonstrated their antioxidative or prooxidative properties influencing the reactive oxygen species (ROS) signaling networks. However, very little focus has been paid to clinical trials, and this restricted their use as a prescribed preventative supplement. Since mitochondria are the principal organelles responsible for ROS generation, we reviewed the existing literature of mitochondria-specific effects of gallates including ROS production, respiration, mitochondrial biogenesis, apoptosis, and the physico-chemical parameters affecting the outcome of gallate supplementation to various health scenarios such as cardiovascular diseases, neurodegeneration, hepatic ailments, or cancers. The major signaling pathways and the molecules targeted by gallic acid and its derivatives have also been discussed with emphasis on mitochondria as the target site. This review provides a better understanding of the effect of gallic acid and gallate esters on mitochondrial functions and in designing effective preventative measures against the onset of various diseases.
Collapse
Affiliation(s)
- Rekha Yamini Kosuru
- School of Life Sciences, B. S. Abdur Rahman University, Vandalur, Chennai, 600048, India
| | - Amrita Roy
- School of Life Sciences, B. S. Abdur Rahman University, Vandalur, Chennai, 600048, India
| | - Sujoy K Das
- Bioproducts Laboratory, Council of Scientific and Industrial Research (CSIR), Central Leather Research Institute (CLRI), Chennai, 600020, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110001, India
| | - Soumen Bera
- School of Life Sciences, B. S. Abdur Rahman University, Vandalur, Chennai, 600048, India
| |
Collapse
|
6
|
Ryu B, Kim CY, Oh H, Kim U, Kim J, Jung CR, Lee BH, Lee S, Chang SN, Lee JM, Chung HM, Park JH. Development of an alternative zebrafish model for drug-induced intestinal toxicity. J Appl Toxicol 2017; 38:259-273. [PMID: 29027214 DOI: 10.1002/jat.3520] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/08/2017] [Accepted: 08/11/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Bokyeong Ryu
- Department of Laboratory Animal Medicine, College of Veterinary Medicine; Seoul National University; Seoul 08826 Republic of Korea
| | - C-Yoon Kim
- Department of Medicine, School of Medicine; Konkuk University; Seoul 05029 Republic of Korea
| | - Hanseul Oh
- Department of Laboratory Animal Medicine, College of Veterinary Medicine; Seoul National University; Seoul 08826 Republic of Korea
| | - Ukjin Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine; Seoul National University; Seoul 08826 Republic of Korea
| | - Jin Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine; Seoul National University; Seoul 08826 Republic of Korea
| | - Cho-Rok Jung
- Gene Therapy Research Unit; Korea Research Institute of Bioscience and Biotechnology; Daejeon 34141 Republic of Korea
| | - Byoung-Hee Lee
- National Institute of Biological Resources; Incheon 22689 Republic of Korea
| | - Seungki Lee
- National Institute of Biological Resources; Incheon 22689 Republic of Korea
| | - Seo-Na Chang
- Department of Laboratory Animal Medicine, College of Veterinary Medicine; Seoul National University; Seoul 08826 Republic of Korea
| | - Ji Min Lee
- Department of Laboratory Animal Medicine, College of Veterinary Medicine; Seoul National University; Seoul 08826 Republic of Korea
| | - Hyung-Min Chung
- Department of Medicine, School of Medicine; Konkuk University; Seoul 05029 Republic of Korea
| | - Jae-Hak Park
- Department of Laboratory Animal Medicine, College of Veterinary Medicine; Seoul National University; Seoul 08826 Republic of Korea
| |
Collapse
|
7
|
Microbe-mitochondrion crosstalk and health: An emerging paradigm. Mitochondrion 2017; 39:20-25. [PMID: 28838618 DOI: 10.1016/j.mito.2017.08.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 07/07/2017] [Accepted: 08/15/2017] [Indexed: 02/07/2023]
Abstract
Human mitochondria are descendants of microbes and altered mitochondrial function has been implicated in processes ranging from ageing to diabetes. Recent work has highlighted the importance of gut microbial communities in human health and disease. While the spotlight has been on the influence of such communities on the human immune system and the extraction of calories from otherwise indigestible food, an important but less investigated link between the microbes and mitochondria remains unexplored. Microbial metabolites including short chain fatty acids as well as other molecules such as pyrroloquinoline quinone, fermentation gases, and modified fatty acids influence mitochondrial function. This review focuses on the known direct and indirect effects of microbes upon mitochondria and speculates regarding additional links for which there is circumstantial evidence. Overall, while there is compelling evidence that a microbiota-mitochondria link exists, explicit and holistic mechanistic studies are warranted to advance this nascent field.
Collapse
|
8
|
Abstract
Single-target inhibition is an unsatisfactory therapeutic option to treat multifactorial pathologies, brought into limelight 'paradox of inflammation' beside dearth of innovation, rationalizes a shift toward 'multiple-target' design concept in anti-inflammatory research field. To improvise, two platform strategies, drugs mixture or multitarget drugs, are plausible. Dual cyclooxygenase/lipoxygenase inhibitor 'licofelone' developed after the backfire of rofecoxib due to safety concerns has fetched first light of triumph of the latter strategy. As hitting multiple targets in restraint is perhaps more viable strategy rather than single target, this review, outlines the most germane multiple target agents of synthetic and natural origin placing clear advantage in favors of multitarget strategy as real therapeutic solution for inflammation.
Collapse
|
9
|
Sheng Z, Wang B, Zhao J, Yu W. Optimization of Ultrasonic-Assisted Extraction for Pinocembrin from Flos populi Using Response Surface Methodology. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2017. [DOI: 10.1515/ijfe-2016-0428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
In this study, the ultrasound-assisted extraction (UAE) was used for extraction of pinocembrin from Flos populi. Based on the results of the single-factor experiment, four independent parameters, including ethanol concentration (40–80 %), extraction temperature (50–70 °C), extraction time (25–45 min) and electrical acoustic intensity (40.8–81.5 W/m2) were further investigated using response surface methodology (RSM) coupled with Box-Behnken design. The experimental data were fitted to the quadratic response surface model using multiple regression analysis with high adjusted determination coefficient value (R
2) of 0.9697. The highest yield (134.2 ± 1.53 mg/g) of pinocembrin was obtained under the optimal conditions (ethanol concentration of 68 %, extraction temperature of 69 °C, extraction time of 42 min and electrical acoustic intensity of 66.81 W/cm2), which agreed to the predicted value of 132.9 mg/g. Moreover, the comparison between the UAE and reflux extraction also showed the suitability of UAE for pinocembrin from Flos populi.
Collapse
|
10
|
Lima RN, Porto AL. Facile synthesis of new quinoxalines from ethyl gallate by green chemistry protocol. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2016.12.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Bhattacharyya S, Banerjee S, Guha C, Ghosh S, Sil PC. A 35 kDa Phyllanthus niruri protein suppresses indomethacin mediated hepatic impairments: Its role in Hsp70, HO-1, JNKs and Ca 2+ dependent inflammatory pathways. Food Chem Toxicol 2017; 102:76-92. [PMID: 28159595 DOI: 10.1016/j.fct.2017.01.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/27/2017] [Accepted: 01/29/2017] [Indexed: 12/11/2022]
Abstract
The present study has been conducted to explore a novel strategy to modulate the unfavourable effects of indomethacin by Phyllanthus niruri protein (PNP) and the underlying mechanism PNP exploits for the amelioration of that pathophysiology. In hepatocytes, indomethacin enhanced reactive oxygen species (ROS), reduced intracellular antioxidant capacity, up regulated mitogen activated protein kinase (MAPKs), disrupted mitochondrial membrane potential, activated apoptotic pathways and there by reduced the viability of the hepatocytes. Simultaneous treatment with PNP modulated these detrimental actions of the drug and retained cell viability. Similarly, in mice, indomethacin elevated serum marker enzymes (e.g. Alanine Transaminase), decreased antioxidant enzyme activities, elevated oxidations of lipids and proteins, increased intracellular calcium overload mediated endoplasmic reticular stress (ER stress) pathways, up regulated the pro-inflammatory cytokines and there by leading to the mitochondrial dependent caspase-3 activation and poly-ADP ribose polymerase (PARP) cleavage. Moreover investigation of these inherent molecular pathways exhibited that these alterations are associated with up regulation of MAPKs, inducible nitric oxide synthase (iNOS), heme oxygenase-1 and down regulation of survival proteins. However, PNP suppressed those apoptotic indices as evidenced from histopathological studies and DNA fragmentation analysis. Combining, results suggest that PNP could possibly provide a protection against indomethacin-induced hepatic pathophysiology.
Collapse
Affiliation(s)
- Sudip Bhattacharyya
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Sharmistha Banerjee
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Chirajyoti Guha
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Shatadal Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India.
| |
Collapse
|
12
|
Mazumder S, De R, Sarkar S, Siddiqui AA, Saha SJ, Banerjee C, Iqbal MS, Nag S, Debsharma S, Bandyopadhyay U. Selective scavenging of intra-mitochondrial superoxide corrects diclofenac-induced mitochondrial dysfunction and gastric injury: A novel gastroprotective mechanism independent of gastric acid suppression. Biochem Pharmacol 2016; 121:33-51. [PMID: 27693316 DOI: 10.1016/j.bcp.2016.09.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 09/27/2016] [Indexed: 12/22/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used to treat multiple inflammatory diseases and pain but severe gastric mucosal damage is the worst outcome of NSAID-therapy. Here we report that mitoTEMPO, a mitochondrially targeted superoxide (O2-) scavenger protected as well as healed gastric injury induced by diclofenac (DCF), the most commonly used NSAID. Common existing therapy against gastric injury involves suppression of gastric acid secretion by proton pump inhibitors and histamine H2 receptor antagonists; however, dyspepsia, vitamin B12 deficiency and gastric microfloral dysbalance are the major drawbacks of acid suppression. Interestingly, mitoTEMPO did not inhibit gastric acid secretion but offered gastroprotection by preventing DCF-induced generation of O2- due to mitochondrial respiratory chain failure and by preventing mitochondrial oxidative stress (MOS)-mediated mitopathology. MitoTEMPO even restored DCF-stimulated reduced fatty acid oxidation, mitochondrial depolarization and bioenergetic crisis in gastric mucosa. MitoTEMPO also prevented the activation of mitochondrial pathway of apoptosis and MOS-mediated proinflammatory signaling through NF-κB by DCF. Furthermore, mitoTEMPO when administered in rats with preformed gastric lesions expedited the healing of gastric injury and the healed stomach exhibited its normal physiology as evident from gastric acid and pepsin secretions under basal or stimulated conditions. Thus, in contrast to the existing antiulcer drugs, mitochondrially targeted O2- scavengers like mitoTEMPO may represent a novel class of gastroprotective molecules that does not affect gastric acid secretion and may be used in combination with DCF, keeping its anti-inflammatory action intact, while reducing its gastrodamaging effects.
Collapse
Affiliation(s)
- Somnath Mazumder
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, West Bengal, India
| | - Rudranil De
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, West Bengal, India
| | - Souvik Sarkar
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, West Bengal, India
| | - Asim Azhar Siddiqui
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, West Bengal, India
| | - Shubhra Jyoti Saha
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, West Bengal, India
| | - Chinmoy Banerjee
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, West Bengal, India
| | - Mohd Shameel Iqbal
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, West Bengal, India
| | - Shiladitya Nag
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, West Bengal, India
| | - Subhashis Debsharma
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, West Bengal, India
| | - Uday Bandyopadhyay
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, West Bengal, India.
| |
Collapse
|
13
|
Sarkar S, Siddiqui AA, Mazumder S, De R, Saha SJ, Banerjee C, Iqbal MS, Adhikari S, Alam A, Roy S, Bandyopadhyay U. Ellagic Acid, a Dietary Polyphenol, Inhibits Tautomerase Activity of Human Macrophage Migration Inhibitory Factor and Its Pro-inflammatory Responses in Human Peripheral Blood Mononuclear Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:4988-4998. [PMID: 25929447 DOI: 10.1021/acs.jafc.5b00921] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Ellagic acid (EA), a phenolic lactone, inhibited tautomerase activity of human macrophage migration inhibitory factor (MIF) noncompetitively (Ki = 1.97 ± 0.7 μM). The binding of EA to MIF was determined by following the quenching of tryptophan fluorescence. We synthesized several EA derivatives, and their structure-activity relationship studies indicated that the planar conjugated lactone moiety of EA was essential for MIF inhibition. MIF induces nuclear translocation of NF-κB and chemotaxis of peripheral blood mononuclear cells (PBMCs) to promote inflammation. We were interested in evaluating the effect of EA on nuclear translocation of NF-κB and chemotactic activity in human PBMCs in the presence of MIF. The results showed that EA inhibited MIF-induced NF-κB nuclear translocation in PBMCs, as evident from confocal immunofluorescence microscopic data. EA also inhibited MIF-mediated chemotaxis of PBMCs. Thus, we report MIF-inhibitory activity of EA and inhibition of MIF-mediated proinflammatory responses in PBMCs by EA.
Collapse
Affiliation(s)
- Souvik Sarkar
- †Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Asim A Siddiqui
- †Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Somnath Mazumder
- †Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Rudranil De
- †Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Shubhra J Saha
- †Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Chinmoy Banerjee
- †Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Mohd S Iqbal
- †Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Susanta Adhikari
- ‡Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700 009, West Bengal, India
| | - Athar Alam
- †Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Siddhartha Roy
- §Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Uday Bandyopadhyay
- †Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| |
Collapse
|
14
|
Morin protects gastric mucosa from nonsteroidal anti-inflammatory drug, indomethacin induced inflammatory damage and apoptosis by modulating NF-κB pathway. Biochim Biophys Acta Gen Subj 2015; 1850:769-83. [PMID: 25603542 DOI: 10.1016/j.bbagen.2015.01.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 12/24/2014] [Accepted: 01/12/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND Deregulation in prostaglandin (PG) biosynthesis, severe oxidative stress, inflammation and apoptosis contribute to the pathogenesis of nonsteroidal anti-inflammatory drug (NSAID)-induced gastropathy. Unfortunately, most of the prescribed anti-ulcer drugs generate various side effects. In this scenario, we could consider morin as a safe herbal potential agent against IND-gastropathy and rationalize its action systematically. METHODS Rats were pretreated with morin for 30 min followed by IND (48 mgkg(-1)) administration for 4 h. The anti-ulcerogenic nature of morin was assessed by morphological and histological analysis. Its effects on the inflammatory (MPO, cytokines, adhesion molecules), ulcer-healing (COXs, PGE(2)), and signaling parameters (NF-κB and apoptotic signaling) were assessed by biochemical, RP-HPLC, immunoblots, IHC, RT-PCR, and ELISA at the time points of their maximal changes due to IND administration. RESULTS IND induced NF-κB and apoptotic signaling in rat's gastric mucosa. These increased proinflammatory responses, but reduced the antioxidant enzymes and other protective factors. Morin reversed all the adverse effects to prevent IND-induced gastric ulceration in a PGE2 independent manner. Also, it did not affect the absorption and/or primary pharmacological activity of IND. CONCLUSIONS The gastroprotective action of morin is primarily attributed to its potent antioxidant nature that also helps in controlling several IND-induced inflammatory responses. GENERAL SIGNIFICANCE For the first time, the study reveals a mechanistic basis of morin mediated protective action against IND-induced gastropathy. As morin is a naturally abundant safe antioxidant, future detailed pharmacokinetic and pharmacodynamic studies are expected to establish it as a gastroprotective agent.
Collapse
|
15
|
Association of heme oxygenase 1 with the restoration of liver function after damage in murine malaria by Plasmodium yoelii. Infect Immun 2014; 82:3113-26. [PMID: 24818663 DOI: 10.1128/iai.01598-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The liver efficiently restores function after damage induced during malarial infection once the parasites are cleared from the blood. However, the molecular events leading to the restoration of liver function after malaria are still obscure. To study this, we developed a suitable model wherein mice infected with Plasmodium yoelii (45% parasitemia) were treated with the antimalarial α/β-arteether to clear parasites from the blood and, subsequently, restoration of liver function was monitored. Liver function tests clearly indicated that complete recovery of liver function occurred after 25 days of parasite clearance. Analyses of proinflammatory gene expression and neutrophil infiltration further indicated that hepatic inflammation, which was induced immediately after parasite clearance from the blood, was gradually reduced. Moreover, the inflammation in the liver after parasite clearance was found to be correlated positively with oxidative stress and hepatocyte apoptosis. We investigated the role of heme oxygenase 1 (HO-1) in the restoration of liver function after malaria because HO-1 normally renders protection against inflammation, oxidative stress, and apoptosis under various pathological conditions. The expression and activity of HO-1 were found to be increased significantly after parasite clearance. We even found that chemical silencing of HO-1 by use of zinc protoporphyrin enhanced inflammation, oxidative stress, hepatocyte apoptosis, and liver injury. In contrast, stimulation of HO-1 by cobalt protoporphyrin alleviated liver inflammation and reduced oxidative stress, hepatocyte apoptosis, and associated tissue injury. Therefore, we propose that selective induction of HO-1 in the liver would be beneficial for the restoration of liver function after parasite clearance.
Collapse
|
16
|
Bindu S, Mazumder S, Dey S, Pal C, Goyal M, Alam A, Iqbal MS, Sarkar S, Azhar Siddiqui A, Banerjee C, Bandyopadhyay U. Nonsteroidal anti-inflammatory drug induces proinflammatory damage in gastric mucosa through NF-κB activation and neutrophil infiltration: anti-inflammatory role of heme oxygenase-1 against nonsteroidal anti-inflammatory drug. Free Radic Biol Med 2013; 65:456-467. [PMID: 23892052 DOI: 10.1016/j.freeradbiomed.2013.07.027] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 06/26/2013] [Accepted: 07/19/2013] [Indexed: 12/24/2022]
Abstract
Nonsteroidal anti-inflammatory drug (NSAID)-induced mitochondrial oxidative stress (MOS) is an important prostaglandin (PG)-independent pathway of the induction of gastric mucosal injury. However, the molecular mechanism behind MOS-mediated gastric pathology is still obscure. In various pathological conditions of tissue injury oxidative stress is often linked with inflammation. Here we report that MOS induced by indomethacin (an NSAID) induces gastric mucosal inflammation leading to proinflammatory damage. Indomethacin, time dependently stimulated the expression of proinflammatory molecules such as intercellular adhesion molecule 1(ICAM-1), vascular cell adhesion molecule 1(VCAM-1), interleukin1β (IL-1β), and monocyte chemotactic protein-1 (MCP-1) in gastric mucosa in parallel with the increase of neutrophil infiltration and injury of gastric mucosa in rat. Western immunoblotting and confocal microscopic studies revealed that indomethacin induced nuclear translocation of nuclear factor kappa-B (NF-κB) in gastric mucosal cells, which resulted in proinflammatory signaling. The prevention of MOS by antioxidant tryptamine-gallic acid hybrid (SEGA) inhibited indomethacin-induced expression of ICAM-1, VCAM-1, IL-1β, and MCP-1. SEGA also prevented indomethacin-induced NF-κB activation and neutrophil infiltration as documented by chromatin immunoprecipitation studies and neutrophil migration assay, respectively. Heme oxygenase-1 (HO-1), a cytoprotective enzyme associated with tissue repair mechanisms is stimulated in response to oxidative stress. We have investigated the role of HO-1 against MOS and MOS-mediated inflammation in recovering from gastropathy. Indomethacin stimulated the expression of HO-1 and indomethacin-stimulated HO-1 expression was reduced by SEGA, an antioxidant, which could prevent MOS. Thus, the data suggested that the induction of HO-1 was a protective response against MOS developed by indomethacin. Moreover, the induction of HO-1 by cobalt protoporphyrin inhibited inflammation and chemical silencing of HO-1 by zinc protoporphyrin aggravated the inflammation by indomethacin. Thus, NSAID by promoting MOS-induced proinflammatory response damaged gastric mucosa and HO-1 protected NSAID-induced gastric mucosal damage by preventing NF-κB activation and proinflammatory activity.
Collapse
Affiliation(s)
- Samik Bindu
- Department of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Somnath Mazumder
- Department of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Sumanta Dey
- Department of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Chinmay Pal
- Department of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Manish Goyal
- Department of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Athar Alam
- Department of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Mohd Shameel Iqbal
- Department of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Souvik Sarkar
- Department of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Asim Azhar Siddiqui
- Department of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Chinmoy Banerjee
- Department of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Uday Bandyopadhyay
- Department of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| |
Collapse
|
17
|
Kim J, Hong VS, Lee J. Antioxidant activity of 3,4,5-trihydroxyphenylacetamide derivatives. Arch Pharm Res 2013; 37:324-31. [PMID: 23812775 DOI: 10.1007/s12272-013-0189-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 06/12/2013] [Indexed: 11/30/2022]
Abstract
A series of amide derivatives of 3,4,5-trihydroxyphenylacetic acid was synthesized in two steps. The antioxidant activities were evaluated by using four different in vitro models such as ABTS and DPPH radical scavenging activity and FTC and TBA anti-lipid peroxidation activity. Most of compounds were more powerful radical scavengers than vitamin C and were comparable to Trolox. It was found that there were no direct correlations between radical scavenging and anti-peroxidation activities. The inhibitory activity of compound on lipid peroxidation showed remarkable dependency on both the number of phenolic hydroxyl group and the length of methylene linker in N-arylalkyl group of amide. Compound 14, a conjugate of 3,4,5-trihydroxyphenylacetic acid and dopamine, was found as powerful antioxidant as propyl gallate in all four antioxidant assays.
Collapse
Affiliation(s)
- Jina Kim
- Department of Chemistry, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Taegu, 704-701, Korea
| | | | | |
Collapse
|
18
|
Kundu TK, Jaisankar P, Roy S. International symposium on challenges in chemical biology: toward the formation of Chemical Biology Society of India. ACS Chem Biol 2013; 8:658-61. [PMID: 23560637 DOI: 10.1021/cb4001876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.
| | | | | |
Collapse
|
19
|
Pal C, Sarkar S, Mazumder S, Adhikari S, Bandyopadhyay U. Synthesis and biological evaluation of primaquine–chloroquine twin drug: a novel heme-interacting molecule prevents free heme and hydroxyl radical-mediated protein degradation. MEDCHEMCOMM 2013. [DOI: 10.1039/c3md00019b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Dey S, Bindu S, Goyal M, Pal C, Alam A, Iqbal MS, Kumar R, Sarkar S, Bandyopadhyay U. Impact of intravascular hemolysis in malaria on liver dysfunction: involvement of hepatic free heme overload, NF-κB activation, and neutrophil infiltration. J Biol Chem 2012; 287:26630-46. [PMID: 22696214 DOI: 10.1074/jbc.m112.341255] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We have investigated the impact of persistent intravascular hemolysis on liver dysfunction using the mouse malaria model. Intravascular hemolysis showed a positive correlation with liver damage along with the increased accumulation of free heme and reactive oxidants in liver. Hepatocytes overinduced heme oxygenase-1 (HO-1) to catabolize free heme in building up defense against this pro-oxidant milieu. However, in a condition of persistent free heme overload in malaria, the overactivity of HO-1 resulted in continuous transient generation of free iron to favor production of reactive oxidants as evident from 2',7'-dichlorofluorescein fluorescence studies. Electrophoretic mobility shift assay documented the activation of NF-κB, which in turn up-regulated intercellular adhesion molecule 1 as evident from chromatin immunoprecipitation studies. NF-κB activation also induced vascular cell adhesion molecule 1, keratinocyte chemoattractant, and macrophage inflammatory protein 2, which favored neutrophil extravasation and adhesion in liver. The infiltration of neutrophils correlated positively with the severity of hemolysis, and neutrophil depletion significantly prevented liver damage. The data further documented the elevation of serum TNFα in infected mice, and the treatment of anti-TNFα antibodies also significantly prevented neutrophil infiltration and liver injury. Deferoxamine, which chelates iron, interacts with free heme and bears antioxidant properties that prevented oxidative stress, NF-κB activation, neutrophil infiltration, hepatocyte apoptosis, and liver damage. Furthermore, the administration of N-acetylcysteine also prevented NF-κB activation, neutrophil infiltration, hepatocyte apoptosis, and liver damage. Thus, hepatic free heme accumulation, TNFα release, oxidative stress, and NF-κB activation established a link to favor neutrophil infiltration in inducing liver damage during hemolytic conditions in malaria.
Collapse
Affiliation(s)
- Sumanta Dey
- Division of Infectious Diseases and Immunology, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| | | | | | | | | | | | | | | | | |
Collapse
|