1
|
Varadaraj K, Gao J, Mathias RT, Kumari S. Effect of hydrogen peroxide on lens transparency, intracellular pH, gap junction coupling, hydrostatic pressure and membrane water permeability. Exp Eye Res 2024; 245:109957. [PMID: 38843983 PMCID: PMC11302404 DOI: 10.1016/j.exer.2024.109957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
Clouding of the eye lens or cataract is an age-related anomaly that affects middle-aged humans. Exploration of the etiology points to a great extent to oxidative stress due to different forms of reactive oxygen species/metabolites such as Hydrogen peroxide (H2O2) that are generated due to intracellular metabolism and environmental factors like radiation. If accumulated and left unchecked, the imbalance between the production and degradation of H2O2 in the lens could lead to cataracts. Our objective was to explore ex vivo the effects of H2O2 on lens physiology. We investigated transparency, intracellular pH (pHi), intercellular gap junction coupling (GJC), hydrostatic pressure (HP) and membrane water permeability after subjecting two-month-old C57 wild-type (WT) mouse lenses for 3 h or 8 h in lens saline containing 50 μM H2O2; the results were compared with control lenses incubated in the saline without H2O2. There was a significant decrease in lens transparency in H2O2-treated lenses. In control lenses, pHi decreases from ∼7.34 in the surface fiber cells to 6.64 in the center. Experimental lenses exposed to H2O2 for 8 h showed a significant decrease in surface pH (from 7.34 to 6.86) and central pH (from 6.64 to 6.56), compared to the controls. There was a significant increase in GJC resistance in the differentiating (12-fold) and mature (1.4-fold) fiber cells compared to the control. Experimental lenses also showed a significant increase in HP which was ∼2-fold higher at the junction between the differentiating and mature fiber cells and ∼1.5-fold higher at the center compared to these locations in control lenses; HP at the surface was 0 mm Hg in either type lens. Fiber cell membrane water permeability significantly increased in H2O2-exposed lenses compared to controls. Our data demonstrate that elevated levels of lens intracellular H2O2 caused a decrease in intracellular pH and led to acidosis which most likely uncoupled GJs, and increased AQP0-dependent membrane water permeability causing a consequent rise in HP. We infer that an abnormal increase in intracellular H2O2 could induce acidosis, cause oxidative stress, alter lens microcirculation, and lead to the development of accelerated lens opacity and age-related cataracts.
Collapse
Affiliation(s)
- Kulandaiappan Varadaraj
- Physiology and Biophysics, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA.
| | - Junyuan Gao
- Physiology and Biophysics, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Richard T Mathias
- Physiology and Biophysics, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Sindhu Kumari
- Physiology and Biophysics, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
2
|
Beyer EC, Mathias RT, Berthoud VM. Loss of fiber cell communication may contribute to the development of cataracts of many different etiologies. Front Physiol 2022; 13:989524. [PMID: 36171977 PMCID: PMC9511111 DOI: 10.3389/fphys.2022.989524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The lens is an avascular organ that is supported by an internal circulation of water and solutes. This circulation is driven by ion pumps, channels and transporters in epithelial cells and by ion channels in fiber cells and is maintained by fiber-fiber and fiber-epithelial cell communication. Gap junctional intercellular channels formed of connexin46 and connexin50 are critical components of this circulation as demonstrated by studies of connexin null mice and connexin mutant mice. Moreover, connexin mutants are one of the most common causes of autosomal dominant congenital cataracts. However, alterations of the lens circulation and coupling between lens fiber cells are much more prevalent, beyond the connexin mutant lenses. Intercellular coupling and levels of connexins are decreased with aging. Gap junction-mediated intercellular communication decreases in mice expressing mutant forms of several different lens proteins and in some mouse models of lens protein damage. These observations suggest that disruption of ionic homeostasis due to reduction of the lens circulation is a common component of the development of many different types of cataracts. The decrease in the lens circulation often reflects low levels of lens fiber cell connexins and/or functional gap junction channels.
Collapse
Affiliation(s)
- Eric C. Beyer
- Department of Pediatrics, University of Chicago, Chicago, IL, United States
- *Correspondence: Eric C. Beyer,
| | - Richard T. Mathias
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, United States
| | | |
Collapse
|
3
|
Zhou L, Sun X, Wang X, Liu K, Zhong Z, Chen J. Identification and functional analysis of two GJA8 variants in Chinese families with eye anomalies. Mol Genet Genomics 2022; 297:1553-1564. [PMID: 35980487 DOI: 10.1007/s00438-022-01939-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/30/2022] [Indexed: 11/30/2022]
Abstract
In this study, we report on two different GJA8 variants related to congenital eye anomalies in two unrelated families, respectively. GJA8 (or Cx50) encoding a transmembrane protein to form lens connexons has been known as a common causative gene in congenital cataracts and its variants have recently been reported related to a wide phenotypic spectrum of eye defects. We identified two GJA8 variants, c.134G>T (p.Try45Leu, W45L) detected in a cataract family by Sanger sequencing and c.281G>A (p.Gly94Glu, G94E) found in a family with severe eye malformations including microphthalmia by whole-exome sequencing. These two variants were absent in healthy population and predicted deleterious by bioinformatic analysis. Furthermore, we compared the expression in cell lines between these mutants and the wildtype to explore their potential mechanism. Cell counting kit-8 assay showed that overexpression of either W45L or G94E decreased cell viability compared with wild-type Cx50 and the control. A lower protein level in W45L found by western blotting and fewer punctate fluorescent signals showed by fluorescence microscopy suggested that W45L may have less protein expression. A higher G94E protein level and abundant dotted distribution indicated that G94E may cause aberrant protein degradation and accumulation. Such results from in vitro assays confirmed the impact of these two variants and gave us a hint about their different pathogenic roles in different phenotypes. In conclusion, our study is the first to have the functional analysis of two GJA8 variants c.134G>T and c.281G>A in Chinese pedigrees and explore the impact of these variants, which can help in prenatal diagnosis and genetic counseling as well in basic studies on GJA8.
Collapse
Affiliation(s)
- Linlin Zhou
- Department of Pediatrics, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China.,Department of Medical Genetics, School of Medicine, Tongji University, Room 505, Birth defect group, Medical Wing Building, 1239 Siping Road, Yangpu District, Shanghai, 200092, China
| | - Xuejiao Sun
- Department of Pediatrics, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China.,Department of Medical Genetics, School of Medicine, Tongji University, Room 505, Birth defect group, Medical Wing Building, 1239 Siping Road, Yangpu District, Shanghai, 200092, China
| | - Xinyao Wang
- Department of Pediatrics, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China.,Department of Medical Genetics, School of Medicine, Tongji University, Room 505, Birth defect group, Medical Wing Building, 1239 Siping Road, Yangpu District, Shanghai, 200092, China
| | - Kangyu Liu
- Department of Pediatrics, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China.,Department of Medical Genetics, School of Medicine, Tongji University, Room 505, Birth defect group, Medical Wing Building, 1239 Siping Road, Yangpu District, Shanghai, 200092, China
| | - Zilin Zhong
- Department of Pediatrics, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China.,Department of Medical Genetics, School of Medicine, Tongji University, Room 505, Birth defect group, Medical Wing Building, 1239 Siping Road, Yangpu District, Shanghai, 200092, China
| | - Jianjun Chen
- Department of Pediatrics, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China. .,Department of Medical Genetics, School of Medicine, Tongji University, Room 505, Birth defect group, Medical Wing Building, 1239 Siping Road, Yangpu District, Shanghai, 200092, China.
| |
Collapse
|
4
|
Quan Y, Du Y, Wu C, Gu S, Jiang JX. Connexin hemichannels regulate redox potential via metabolite exchange and protect lens against cellular oxidative damage. Redox Biol 2021; 46:102102. [PMID: 34474393 PMCID: PMC8408634 DOI: 10.1016/j.redox.2021.102102] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/23/2022] Open
Abstract
Increased oxidative stress contributes to cataract formation during aging. Anterior epithelial cells are a frontline antioxidant defense system with powerful capacities to maintain redox homeostasis and lens transparency. In this study, we report a new molecular mechanism of connexin (Cx) hemichannels (HCs) in lens epithelial cells to protect lens against oxidative stress. Our results showed haploinsufficiency of Cx43 elevated oxidative stress and susceptibility to cataracts in the mouse lens. Cx43 HCs opened in response to hydrogen peroxide (H2O2) or ultraviolet radiation (UVR) in human lens epithelium HLE-B3 cells, and this activation contributed to a cellular protective mechanism against oxidative stress-induced apoptotic cell death. Furthermore, we found that Cx43 HCs mediated the exchange of oxidants and antioxidants in lens epithelial cells undergoing oxidative stress. These transporting activities facilitated a reduction of intracellular reactive oxygen species (ROS) accumulation and maintained the intracellular glutathione (GSH) level through the exchange of redox metabolites and change of anti-oxidative gene expression. In addition, we show that Cx43 HCs can be regulated by the intracellular redox state and this regulation is mediated by residue Cys260 located at the Cx43 C-terminus. Together, our results demonstrate that Cx43 HCs activated by oxidative stress in the lens epithelial cells play a key role in maintaining redox homeostasis in lens under oxidative stress. Our findings contribute to advancing our understanding of oxidative stress induced lens disorders, such as age-related non-congenital cataracts.
Collapse
Affiliation(s)
- Yumeng Quan
- Department of Ophthalmology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Yu Du
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Changrui Wu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA.
| |
Collapse
|
5
|
Gong XD, Wang Y, Hu XB, Zheng SY, Fu JL, Nie Q, Wang L, Hou M, Xiang JW, Xiao Y, Gao Q, Bai YY, Liu YZ, Li DWC. Aging-dependent loss of GAP junction proteins Cx46 and Cx50 in the fiber cells of human and mouse lenses accounts for the diminished coupling conductance. Aging (Albany NY) 2021; 13:17568-17591. [PMID: 34226295 PMCID: PMC8312418 DOI: 10.18632/aging.203247] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
The homeostasis of the ocular lens is maintained by a microcirculation system propagated through gap junction channels. It is well established that the intercellular communications of the lens become deteriorative during aging. However, the molecular basis for this change in human lenses has not been well defined. Here, we present evidence to show that over 90% of Cx46 and Cx50 are lost in the fiber cells of normal human lenses aged 50 and above. From transparent to cataractous lenses, while Cx43 was upregulated, both Cx46 and Cx50 were significantly down-regulated in the lens epithelia. During aging of mouse lenses, Cx43 remained unchanged, but both Cx46 and Cx50 were significantly downregulated. Under oxidative stress treatment, mouse lenses develop in vitro cataractogenesis. Associated with this process, Cx43 was significantly upregulated, in contrast, Cx46 and Cx50 were sharply downregulated. Together, our results for the first time reveal that downregulation in Cx46 and Cx50 levels appears to be the major reason for the diminished coupling conductance, and the aging-dependent loss of Cx46 and Cx50 promotes senile cataractogenesis.
Collapse
Affiliation(s)
- Xiao-Dong Gong
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - Yan Wang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - Xue-Bin Hu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - Shu-Yu Zheng
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - Jia-Ling Fu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - Qian Nie
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - Ling Wang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - Min Hou
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - Jia-Wen Xiang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - Yuan Xiao
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - Qian Gao
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - Yue-Yue Bai
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - Yi-Zhi Liu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - David Wan-Cheng Li
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| |
Collapse
|
6
|
Liu J, Riquelme MA, Li Z, Li Y, Tong Y, Quan Y, Pei C, Gu S, Jiang JX. Mechanosensitive collaboration between integrins and connexins allows nutrient and antioxidant transport into the lens. J Cell Biol 2021; 219:211530. [PMID: 33180092 PMCID: PMC7668387 DOI: 10.1083/jcb.202002154] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/01/2020] [Accepted: 09/28/2020] [Indexed: 01/08/2023] Open
Abstract
The delivery of glucose and antioxidants is vital to maintain homeostasis and lens transparency. Here, we report a new mechanism whereby mechanically activated connexin (Cx) hemichannels serve as a transport portal for delivering glucose and glutathione (GSH). Integrin α6β1 in outer cortical lens fiber activated by fluid flow shear stress (FFSS) induced opening of hemichannels. Inhibition of α6 activation prevented hemichannel opening as well as glucose and GSH uptake. The activation of integrin β1, a heterodimeric partner of α6 in the absence of FFSS, increased Cx50 hemichannel opening. Hemichannel activation by FFSS depended on the interaction of integrin α6 and Cx50 C-terminal domain. Moreover, hemichannels in nuclear fiber were unresponsive owing to Cx50 truncation. Taken together, these results show that mechanically activated α6β1 integrin in outer cortical lens fibers leads to opening of hemichannels, which transport glucose and GSH into cortical lens fibers. This study unveils a new transport mechanism that maintains metabolic and antioxidative function of the lens.
Collapse
Affiliation(s)
- Jie Liu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX.,The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Manuel A Riquelme
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX
| | - Zhen Li
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX
| | - Yuting Li
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX
| | - Yuxin Tong
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX
| | - Yumeng Quan
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX.,The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Cheng Pei
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX
| |
Collapse
|
7
|
Tang S, Di G, Hu S, Liu Y, Dai Y, Chen P. AQP5 regulates vimentin expression via miR-124-3p.1 to protect lens transparency. Exp Eye Res 2021; 205:108485. [PMID: 33582182 DOI: 10.1016/j.exer.2021.108485] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/18/2022]
Abstract
The pathogenesis of congenital cataract (CC), a major disease associated with blindness in infants, is complex and diverse. Aquaporin 5 (AQP5) represents an essential membrane water channel. In the present study, whole exome sequencing revealed a novel heterozygous missense mutation of AQP5 (c.152 T > C, p. L51P) in the four generations of the autosomal dominant CC (adCC) family. By constructing a mouse model of AQP5 knockout (KO) using the CRISPR/Cas9 technology, we observed that the lens of AQP5-KO mice showed mild opacity at approximately six months of age. miR-124-3p.1 expression was identified to be downregulated in the lens of AQP5-KO mice as evidenced by qRT-PCR analysis. A dual luciferase reporter assay confirmed that vimentin was a target gene of miR-124-3p.1. Organ-cultured AQP5-KO mouse lenses were showed increased opacity compared to those of WT mice, and vimentin expression was upregulated as determined by RT-PCR, western blotting, and immunofluorescence staining. After miR-124-3p.1 agomir was added, the lens opacity in WT mice and AQP5-KO mice decreased, accompanied by the downregulation of vimentin. AQP5-L51P increased vimentin expression of in human lens epithelial cells. Therefore, a missense mutation in AQP5 (c.152 T > C, p. L51P) was associated with adCC, and AQP5 could participate in the maintenance of lens transparency by regulating vimentin expression via miR-124-3p.1.
Collapse
Affiliation(s)
- Suzhen Tang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Guohu Di
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China; Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Shaohua Hu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Yaning Liu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Yunhai Dai
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.
| | - Peng Chen
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China; Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
8
|
Dayang W, Dongbo P. Taurine Protects Lens Epithelial Cells Against Ultraviolet B-Induced Apoptosis. Curr Eye Res 2017; 42:1407-1411. [PMID: 28708005 DOI: 10.1080/02713683.2016.1255759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Wu Dayang
- Department of Ophthalmology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, P.R. China
| | - Pang Dongbo
- Department of Ophthalmology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, P.R. China
| |
Collapse
|
9
|
Abstract
The lens is an avascular organ composed of an anterior epithelial cell layer and fiber cells that form the bulk of the organ. The lens expresses connexin43 (Cx43), connexin46 (Cx46) and connexin50 (Cx50). Epithelial Cx50 has critical roles in cell proliferation and differentiation, likely involving growth factor-dependent signaling pathways. Both Cx46 and Cx50 are crucial for lens transparency; mutations in their genes have been linked to congenital and age-related cataracts. Congenital cataract-associated connexin mutants can affect protein trafficking, stability and/or function, and the functional effects may differ between gap junction channels and hemichannels. Dominantly inherited cataracts may result from effects of the connexin mutant on its wild type isotype, the other co-expressed wild type connexin and/or its interaction with other cellular components.
Collapse
Affiliation(s)
| | - Anaclet Ngezahayo
- Institute of Biophysics, Leibniz University Hannover, Hannover, Germany.
| |
Collapse
|
10
|
Slavi N, Wang Z, Harvey L, Schey KL, Srinivas M. Identification and Functional Assessment of Age-Dependent Truncations to Cx46 and Cx50 in the Human Lens. Invest Ophthalmol Vis Sci 2016; 57:5714-5722. [PMID: 27787559 PMCID: PMC5089213 DOI: 10.1167/iovs.16-19698] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/21/2016] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Many proteins in the lens undergo extensive posttranslational modifications (PTMs) with age, leading to alterations in their function. The extent to which lens gap junction proteins, Cx46 and Cx50, accumulate PTMs with aging is not known. In this study, we identified truncations in Cx46 and Cx50 in the human lens using mass spectrometry. We also examined the effect of truncations on channel function using electrophysiological measurements. METHODS Human lenses were dissected into cortex, outer nucleus, and nucleus regions, and fiber cell membranes were subjected to trypsin digestion. Tryptic peptides were analyzed by liquid chromatography (LC)-electrospray tandem mass spectrometry (ESI/MS/MS). Effects of truncations on channel conductance, permeability, and gating were assessed in transfected cells. RESULTS Cleavage sites were identified in the C-terminus, the cytoplasmic loop, and the N-terminus of Cx46 and Cx50. Levels of C-terminal truncations, which were found at residues 238 to 251 in Cx46 and at residues 238 to 253 and 274 to 284 in Cx50, were similar in different lens regions. In contrast, levels of truncations in cytoplasmic loop and N-terminal domains of Cx46 and Cx50 increased dramatically from outer cortex to nucleus. Most of the C-terminally truncated proteins were functional, whereas truncations in the cytoplasmic loop did not result in the formation of functional channels. CONCLUSIONS Accumulation of cytoplasmic loop and N-terminal truncations in the core might lead to decreases in coupling with age. This reduction is expected to lead to an increase in intracellular calcium and a decrease in levels of glutathione in the nucleus. These changes may ultimately lead to age-related nuclear cataracts.
Collapse
Affiliation(s)
- Nefeli Slavi
- Department of Biological and Vision Sciences and the Graduate Center for Vision Research, SUNY College of Optometry, New York, New York, United States
| | - Zhen Wang
- Department of Biochemistry and Mass Spectrometry Research Center Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Lucas Harvey
- Department of Biological and Vision Sciences and the Graduate Center for Vision Research, SUNY College of Optometry, New York, New York, United States
| | - Kevin L. Schey
- Department of Biochemistry and Mass Spectrometry Research Center Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Miduturu Srinivas
- Department of Biological and Vision Sciences and the Graduate Center for Vision Research, SUNY College of Optometry, New York, New York, United States
| |
Collapse
|
11
|
Petrova RS, Schey KL, Donaldson PJ, Grey AC. Spatial distributions of AQP5 and AQP0 in embryonic and postnatal mouse lens development. Exp Eye Res 2015; 132:124-35. [PMID: 25595964 DOI: 10.1016/j.exer.2015.01.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 12/19/2014] [Accepted: 01/12/2015] [Indexed: 12/11/2022]
Abstract
The expression of the water channel protein aquaporin (AQP)-5 in adult rodent and human lenses was recently reported using immunohistochemistry, molecular biology, and mass spectrometry techniques, confirming a second transmembrane water channel that is present in lens fibre cells in addition to the abundant AQP0 protein. Interestingly, the sub-cellular distribution and level of post-translational modification of both proteins changes with fibre cell differentiation and location in the adult rodent lens. This study compares the sub-cellular distribution of AQP0 and AQP5 during embryonic and postnatal fibre cell development in the mouse lens to understand how the immunolabelling patterns for both AQPs observed in adult lens are first established. Immunohistochemistry was used to map the cellular and sub-cellular distribution of AQP5 and AQP0 throughout the lens in cryosections from adult (6 weeks-8 months) and postnatal (0-2 weeks) mouse lenses and in sections from paraffin embedded mouse embryos (E10-E19). All sections were imaged by fluorescence confocal microscopy. Using antibodies directed against the C-terminus of each AQP, AQP5 was abundantly expressed early in development, being found in the cytoplasm of cells of the lens vesicle and surrounding tissues (E10), while AQP0 was detected later (E11), and only in the membranes of elongating primary fibre cells. During the course of subsequent embryonic and postnatal development the pattern of cytoplasmic AQP5 and membranous AQP0 labelling was maintained until postnatal day 6 (P6). From P6 AQP5 labelling became progressively more membranous initially in the lens nucleus and then later in all regions of the lens, while AQP0 labelling was abruptly lost in the lens nucleus due to C-terminal truncation. Our results show that the spatial distribution patterns of AQP0 and AQP5 observed in the adult lens are established during a narrow window of postnatal development (P6-P15) that precedes eye opening and coincides with regression of the hyaloid vascular system. Our results support the hypothesis that, in the older fibre cells, insertion of AQP5 into the fibre cell membrane may compensate for any change in the functionality of AQP0 induced by truncation of its C-terminal tail.
Collapse
Affiliation(s)
- Rosica S Petrova
- School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Kevin L Schey
- Departments of Biochemistry and Ophthalmology, Vanderbilt University, Nashville, TN, USA
| | - Paul J Donaldson
- School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Angus C Grey
- School of Medical Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
12
|
León-Paravic CG, Figueroa VA, Guzmán DJ, Valderrama CF, Vallejos AA, Fiori MC, Altenberg GA, Reuss L, Retamal MA. Carbon monoxide (CO) is a novel inhibitor of connexin hemichannels. J Biol Chem 2014; 289:36150-7. [PMID: 25384983 PMCID: PMC4276878 DOI: 10.1074/jbc.m114.602243] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 11/07/2014] [Indexed: 12/13/2022] Open
Abstract
Hemichannels (HCs) are hexamers of connexins that can form gap-junction channels at points of cell contacts or "free HCs" at non-contacting regions. HCs are involved in paracrine and autocrine cell signaling, and under pathological conditions may induce and/or accelerate cell death. Therefore, studies of HC regulation are of great significance. Nitric oxide affects the activity of Cx43 and Cx46 HCs, whereas carbon monoxide (CO), another gaseous transmitter, modulates the activity of several ion channels, but its effect on HCs has not been explored. We studied the effect of CO donors (CORMs) on Cx46 HCs expressed in Xenopus laevis oocytes using two-electrode voltage clamp and on Cx43 and Cx46 expressed in HeLa cells using a dye-uptake technique. CORM-2 inhibited Cx46 HC currents in a concentration-dependent manner. The C-terminal domain and intracellular Cys were not necessary for the inhibition. The effect of CORM-2 was not prevented by guanylyl-cyclase, protein kinase G, or thioredoxin inhibitors, and was not due to endocytosis of HCs. However, the effect of CORM-2 was reversed by reducing agents that act extracellularly. Additionally, CO inhibited dye uptake of HeLa cells expressing Cx43 or Cx46, and MCF-7 cells, which endogenously express Cx43 and Cx46. Because CORM-2 carbonylates Cx46 in vitro and induces conformational changes, a direct effect of that CO on Cx46 is possible. The inhibition of HCs could help to understand some of the biological actions of CO in physiological and pathological conditions.
Collapse
Affiliation(s)
- Carmen G León-Paravic
- From the Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile 7690000 and
| | - Vania A Figueroa
- From the Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile 7690000 and
| | - Diego J Guzmán
- From the Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile 7690000 and
| | - Carlos F Valderrama
- From the Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile 7690000 and
| | - Antonio A Vallejos
- From the Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile 7690000 and
| | - Mariana C Fiori
- the Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | - Guillermo A Altenberg
- the Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | - Luis Reuss
- the Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | - Mauricio A Retamal
- From the Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile 7690000 and the Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| |
Collapse
|
13
|
Identification of a novel GJA8 (Cx50) point mutation causes human dominant congenital cataracts. Sci Rep 2014; 4:4121. [PMID: 24535056 PMCID: PMC3927206 DOI: 10.1038/srep04121] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 01/31/2014] [Indexed: 12/26/2022] Open
Abstract
Hereditary cataracts are clinically and genetically heterogeneous lens diseases that cause a significant proportion of visual impairment and blindness in children. Human cataracts have been linked with mutations in two genes, GJA3 and GJA8, respectively. To identify the causative mutation in a family with hereditary cataracts, family members were screened for mutations by PCR for both genes. Sequencing the coding regions of GJA8, coding for connexin 50, revealed a C > A transversion at nucleotide 264, which caused p.P88T mutation. To dissect the molecular consequences of this mutation, plasmids carrying wild-type and mutant mouse ORFs of Gja8 were generated and ectopically expressed in HEK293 cells and human lens epithelial cells, respectively. The recombinant proteins were assessed by confocal microscopy and Western blotting. The results demonstrate that the molecular consequences of the p.P88T mutation in GJA8 include changes in connexin 50 protein localization patterns, accumulation of mutant protein, and increased cell growth.
Collapse
|
14
|
Abstract
The normal function and survival of cells in the avascular lens is facilitated by intercellular communication through an extensive network of gap junctions formed predominantly by three connexins (Cx43, Cx46, and Cx50). In expression systems, these connexins can all induce hemichannel currents, but other lens proteins (e.g., pannexin1) can also induce similar currents. Hemichannel currents have been detected in isolated lens fiber cells. These hemichannels may make significant contributions to normal lens physiology and pathophysiology. Studies of some connexin mutants linked to congenital cataracts have implicated hemichannels with aberrant voltage-dependent gating or modulation by divalent cations in disease pathogenesis. Hemichannels may also contribute to age- and disease-related cataracts.
Collapse
Affiliation(s)
- Eric C Beyer
- Department of Pediatrics, University of Chicago Chicago, IL, USA
| | | |
Collapse
|