1
|
Vázquez Rivera A, Donald H, Alaoui-El-Azher M, Skoko JJ, Lazo JS, Parniak MA, Johnston PA, Sluis-Cremer N. Discovery of Benzisothiazolone Derivatives as Bifunctional Inhibitors of HIV-1 Reverse Transcriptase DNA Polymerase and Ribonuclease H Activities. Biomolecules 2024; 14:819. [PMID: 39062532 PMCID: PMC11274943 DOI: 10.3390/biom14070819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
The ribonuclease H (RNase H) active site of HIV-1 reverse transcriptase (RT) is the only viral enzyme not targeted by approved antiretroviral drugs. Using a fluorescence-based in vitro assay, we screened 65,239 compounds at a final concentration of 10 µM to identify inhibitors of RT RNase H activity. We identified 41 compounds that exhibited 50% inhibitory concentration (i.e., IC50) values < 1.0 µM. Two of these compounds, 2-(4-methyl-3-(piperidin-1-ylsulfonyl)phenyl)benzo[d]isothiazol-3(2H)-one (1) and ethyl 2-(2-(3-oxobenzo[d]isothiazol-2(3H)-yl)thiazol-4-yl)acetate (2), which both share the same benzisothiazolone pharmacophore, demonstrate robust antiviral activity (50% effective concentrations of 1.68 ± 0.94 µM and 2.68 ± 0.54, respectively) in the absence of cellular toxicity. A limited structure-activity relationship analysis identified two additional benzisothiazolone analogs, 2-methylbenzo[d]isothiazol-3(2H)-one (3) and N,N-diethyl-3-(3-oxobenzo[d]isothiazol-2(3H)-yl)benzenesulfonamide (4), which also resulted in the inhibition of RT RNase H activity and virus replication. Compounds 1, 2 and 4, but not 3, inhibited the DNA polymerase activity of RT (IC50 values~1 to 6 µM). In conclusion, benzisothiazolone derivatives represent a new class of multifunctional RT inhibitors that warrants further assessment for the treatment of HIV-1 infection.
Collapse
Affiliation(s)
- Alondra Vázquez Rivera
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA (H.D.); (M.A.-E.-A.)
| | - Heather Donald
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA (H.D.); (M.A.-E.-A.)
| | - Mounia Alaoui-El-Azher
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA (H.D.); (M.A.-E.-A.)
| | - John J. Skoko
- Department of Chemical Biology and Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA;
| | - John S. Lazo
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA;
| | - Michael A. Parniak
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA;
| | - Paul A. Johnston
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261, USA
| | - Nicolas Sluis-Cremer
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA (H.D.); (M.A.-E.-A.)
| |
Collapse
|
2
|
Tocco G, Canton S, Laus A, Caboni P, Le Grice SFJ, Tramontano E, Esposito F. Dihydroxyphenyl- and Heteroaromatic-Based Thienopyrimidinones to Tackle HIV-1 LEDGF/p75-Dependent IN Activity. Molecules 2023; 28:6700. [PMID: 37764476 PMCID: PMC10537185 DOI: 10.3390/molecules28186700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/16/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
The spread of Human Immunodeficiency Virus (HIV) still represents a global public health issue of major concern, and would benefit from unveiling unique viral features as targets for drug design. In this respect, HIV-1 integrase (IN), due to the absence of homologs in human cells, is a popular target for the synthesis of novel selective compounds. Moreover, as drug-resistant viral strains are rapidly evolving, the development of novel allosteric inhibitors is acutely required. Recently, we have observed that Kuwanon-L, quinazolinones and thienopyrimidinones containing at least one polyphenol unit, effectively inhibited HIV-1 IN activity. Thus, in the present research, novel dihydroxyphenyl-based thienopyrimidinone derivatives were investigated for their LEDGF/p75-dependent IN inhibitory activity. Our findings indicated a close correlation between the position of the OH group on the phenyl moiety and IN inhibitory activity of these compounds. As catechol may be involved in cytotoxicity, its replacement by other aromatic scaffolds was also exploited. As a result, compounds 21-23, 25 and 26 with enhanced IN inhibitory activity provided good lead candidates, with 25 being the most selective for IN. Lastly, UV spectrometric experiments suggested a plausible allosteric mode of action, as none of the thienopirimidinones showed Mg2+ chelation properties otherwise typical of IN strand transfer inhibitors (INSTIs).
Collapse
Affiliation(s)
- Graziella Tocco
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (S.C.); (A.L.); (P.C.); (E.T.); (F.E.)
| | - Serena Canton
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (S.C.); (A.L.); (P.C.); (E.T.); (F.E.)
| | - Antonio Laus
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (S.C.); (A.L.); (P.C.); (E.T.); (F.E.)
| | - Pierluigi Caboni
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (S.C.); (A.L.); (P.C.); (E.T.); (F.E.)
| | - Stuart F. J. Le Grice
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA;
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (S.C.); (A.L.); (P.C.); (E.T.); (F.E.)
| | - Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (S.C.); (A.L.); (P.C.); (E.T.); (F.E.)
| |
Collapse
|
3
|
Fois B, Corona A, Tramontano E, Distinto S, Maccioni E, Meleddu R, Caboni P, Floris C, Cottiglia F. Flavonoids and Acid-Hydrolysis derivatives of Neo-Clerodane diterpenes from Teucrium flavum subsp. glaucum as inhibitors of the HIV-1 reverse transcriptase-associated RNase H function. J Enzyme Inhib Med Chem 2021; 36:749-757. [PMID: 33715562 PMCID: PMC7952052 DOI: 10.1080/14756366.2021.1887170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bioassay-guided fractionation of the ethyl acetate extract from Teucrium flavum subsp. glaucum, endowed with inhibitory activity towards the HIV-1 reverse transcriptase–associated RNase H function, led to the isolation of salvigenin (1), cirsimaritin (2) and cirsiliol (3) along with the neo-clerodanes teuflavin (4) and teuflavoside (5). Acid hydrolysis of the inactive teuflavoside provided three undescribed neo-clerodanes, flavuglaucins A-C (7-9) and one known neo-clerodane (10). Among all neo-clerodanes, flavuglaucin B showed the highest inhibitory activity towards RNase H function with a IC50 value of 9.1 μM. Molecular modelling and site-directed mutagenesis analysis suggested that flavuglaucin B binds into an allosteric pocket close to RNase H catalytic site. This is the first report of clerodane diterpenoids endowed with anti-reverse transcriptase activity. Neo-clerodanes represent a valid scaffold for the development of a new class of HIV-1 RNase H inhibitors.
Collapse
Affiliation(s)
- Benedetta Fois
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Italy.,Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato, Italy
| | - Simona Distinto
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Elias Maccioni
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Rita Meleddu
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Pierluigi Caboni
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Costantino Floris
- Department of Chemical and Geological Sciences, University of Cagliari, Monserrato, Italy
| | - Filippo Cottiglia
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Italy
| |
Collapse
|
4
|
Tocco G, Esposito F, Caboni P, Laus A, Beutler JA, Wilson JA, Corona A, Le Grice SFJ, Tramontano E. Scaffold hopping and optimisation of 3',4'-dihydroxyphenyl- containing thienopyrimidinones: synthesis of quinazolinone derivatives as novel allosteric inhibitors of HIV-1 reverse transcriptase-associated ribonuclease H. J Enzyme Inhib Med Chem 2020; 35:1953-1963. [PMID: 33143469 PMCID: PMC7646544 DOI: 10.1080/14756366.2020.1835884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Bioisosteric replacement and scaffold hopping are powerful strategies in drug design useful for rationally modifying a hit compound towards novel lead therapeutic agents. Recently, we reported a series of thienopyrimidinones that compromise dynamics at the p66/p51 HIV-1 reverse transcriptase (RT)-associated Ribonuclease H (RNase H) dimer interface, thereby allosterically interrupting catalysis by altering the active site geometry. Although they exhibited good submicromolar activity, the isosteric replacement of the thiophene ring, a potential toxicophore, is warranted. Thus, in this article, the most active 2-(3,4-dihydroxyphenyl)-5,6-dimethylthieno[2,3-d]pyrimidin-4(3H)-one 1 was selected as the hit scaffold and several isosteric substitutions of the thiophene ring were performed. A novel series of highly active RNase H allosteric quinazolinone inhibitors was thus obtained. To determine their target selectivity, they were tested against RT-associated RNA-dependent DNA polymerase (RDDP) and integrase (IN). Interestingly, none of the compounds were particularly active on (RDDP) but many displayed micromolar to submicromolar activity against IN.
Collapse
Affiliation(s)
- Graziella Tocco
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Cagliari, Italy
| | - Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Cagliari, Italy
| | - Pierluigi Caboni
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Cagliari, Italy
| | - Antonio Laus
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Cagliari, Italy
| | - John A Beutler
- Molecular Targets Program, National Cancer Institute, Frederick, MD, USA
| | - Jennifer A Wilson
- Molecular Targets Program, National Cancer Institute, Frederick, MD, USA
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Cagliari, Italy
| | | | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Cagliari, Italy
| |
Collapse
|
5
|
1,2,4-Triazolo[1,5- a]pyrimidines as a Novel Class of Inhibitors of the HIV-1 Reverse Transcriptase-Associated Ribonuclease H Activity. Molecules 2020; 25:molecules25051183. [PMID: 32151066 PMCID: PMC7179434 DOI: 10.3390/molecules25051183] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 12/27/2022] Open
Abstract
Despite great efforts have been made in the prevention and therapy of human immunodeficiency virus (HIV-1) infection, however the difficulty to eradicate latent viral reservoirs together with the emergence of multi-drug-resistant strains require the search for innovative agents, possibly exploiting novel mechanisms of action. In this context, the HIV-1 reverse transcriptase (RT)-associated ribonuclease H (RNase H), which is one of the few HIV-1 encoded enzymatic function still not targeted by any current drug, can be considered as an appealing target. In this work, we repurposed in-house anti-influenza derivatives based on the 1,2,4-triazolo[1,5-a]-pyrimidine (TZP) scaffold for their ability to inhibit HIV-1 RNase H function. Based on the results, a successive multi-step structural exploration around the TZP core was performed leading to identify catechol derivatives that inhibited RNase H in the low micromolar range without showing RT-associated polymerase inhibitory activity. The antiviral evaluation of the compounds in the MT4 cells showed any activity against HIV-1 (IIIB strain). Molecular modelling and mutagenesis analysis suggested key interactions with an unexplored allosteric site providing insights for the future optimization of this class of RNase H inhibitors.
Collapse
|
6
|
Poongavanam V, Corona A, Steinmann C, Scipione L, Grandi N, Pandolfi F, Di Santo R, Costi R, Esposito F, Tramontano E, Kongsted J. Structure-guided approach identifies a novel class of HIV-1 ribonuclease H inhibitors: binding mode insights through magnesium complexation and site-directed mutagenesis studies. MEDCHEMCOMM 2018; 9:562-575. [PMID: 30108947 PMCID: PMC6072344 DOI: 10.1039/c7md00600d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 01/29/2018] [Indexed: 11/21/2022]
Abstract
Persistent HIV infection requires lifelong treatment and among the 2.1 million new HIV infections that occur every year there is an increased rate of transmitted drug-resistant mutations. This fact requires a constant and timely effort in order to identify and develop new HIV inhibitors with innovative mechanisms. The HIV-1 reverse transcriptase (RT) associated ribonuclease H (RNase H) is the only viral encoded enzyme that still lacks an efficient inhibitor despite the fact that it is a well-validated target whose functional abrogation compromises viral infectivity. Identification of new drugs is a long and expensive process that can be speeded up by in silico methods. In the present study, a structure-guided screening is coupled with a similarity-based search on the Specs database to identify a new class of HIV-1 RNase H inhibitors. Out of the 45 compounds selected for experimental testing, 15 inhibited the RNase H function below 100 μM with three hits exhibiting IC50 values <10 μM. The most active compound, AA, inhibits HIV-1 RNase H with an IC50 of 5.1 μM and exhibits a Mg-independent mode of inhibition. Site-directed mutagenesis studies provide valuable insight into the binding mode of newly identified compounds; for instance, compound AA involves extensive interactions with a lipophilic pocket formed by Ala502, Lys503, and Trp (406, 426 and 535) and polar interactions with Arg557 and the highly conserved RNase H primer-grip residue Asn474. The structural insights obtained from this work provide the bases for further lead optimization.
Collapse
Affiliation(s)
- Vasanthanathan Poongavanam
- Department of Physics , Chemistry and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark . ;
| | - Angela Corona
- Department of Life and Environmental Sciences , University of Cagliari , Italy .
| | - Casper Steinmann
- Department of Physics , Chemistry and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark . ;
| | - Luigi Scipione
- Dipartimento di Chimica e Tecnologie del Farmaco , Istituto Pasteur-Fondazione Cenci Bolognetti , "Sapienza" Università di Roma , Roma , Italy
| | - Nicole Grandi
- Department of Life and Environmental Sciences , University of Cagliari , Italy .
| | - Fabiana Pandolfi
- Dipartimento di Chimica e Tecnologie del Farmaco , Istituto Pasteur-Fondazione Cenci Bolognetti , "Sapienza" Università di Roma , Roma , Italy
| | - Roberto Di Santo
- Dipartimento di Chimica e Tecnologie del Farmaco , Istituto Pasteur-Fondazione Cenci Bolognetti , "Sapienza" Università di Roma , Roma , Italy
| | - Roberta Costi
- Dipartimento di Chimica e Tecnologie del Farmaco , Istituto Pasteur-Fondazione Cenci Bolognetti , "Sapienza" Università di Roma , Roma , Italy
| | - Francesca Esposito
- Department of Life and Environmental Sciences , University of Cagliari , Italy .
| | - Enzo Tramontano
- Department of Life and Environmental Sciences , University of Cagliari , Italy .
- Istituto di Ricerca Genetica e Biomedica , Consiglio Nazionale delle Ricerche (CNR) , Monserrato(CA) , Italy
| | - Jacob Kongsted
- Department of Physics , Chemistry and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark . ;
| |
Collapse
|
7
|
Menéndez-Arias L, Sebastián-Martín A, Álvarez M. Viral reverse transcriptases. Virus Res 2016; 234:153-176. [PMID: 28043823 DOI: 10.1016/j.virusres.2016.12.019] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/19/2016] [Accepted: 12/24/2016] [Indexed: 12/11/2022]
Abstract
Reverse transcriptases (RTs) play a major role in the replication of Retroviridae, Metaviridae, Pseudoviridae, Hepadnaviridae and Caulimoviridae. RTs are enzymes that are able to synthesize DNA using RNA or DNA as templates (DNA polymerase activity), and degrade RNA when forming RNA/DNA hybrids (ribonuclease H activity). In retroviruses and LTR retrotransposons (Metaviridae and Pseudoviridae), the coordinated action of both enzymatic activities converts single-stranded RNA into a double-stranded DNA that is flanked by identical sequences known as long terminal repeats (LTRs). RTs of retroviruses and LTR retrotransposons are active as monomers (e.g. murine leukemia virus RT), homodimers (e.g. Ty3 RT) or heterodimers (e.g. human immunodeficiency virus type 1 (HIV-1) RT). RTs lack proofreading activity and display high intrinsic error rates. Besides, high recombination rates observed in retroviruses are promoted by poor processivity that causes template switching, a hallmark of reverse transcription. HIV-1 RT inhibitors acting on its polymerase activity constitute the backbone of current antiretroviral therapies, although novel drugs, including ribonuclease H inhibitors, are still necessary to fight HIV infections. In Hepadnaviridae and Caulimoviridae, reverse transcription leads to the formation of nicked circular DNAs that will be converted into episomal DNA in the host cell nucleus. Structural and biochemical information on their polymerases is limited, although several drugs inhibiting HIV-1 RT are known to be effective against the human hepatitis B virus polymerase. In this review, we summarize current knowledge on reverse transcription in the five virus families and discuss available biochemical and structural information on RTs, including their biosynthesis, enzymatic activities, and potential inhibition.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Alba Sebastián-Martín
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Mar Álvarez
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
8
|
Structural Maturation of HIV-1 Reverse Transcriptase-A Metamorphic Solution to Genomic Instability. Viruses 2016; 8:v8100260. [PMID: 27690082 PMCID: PMC5086598 DOI: 10.3390/v8100260] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/12/2016] [Indexed: 12/13/2022] Open
Abstract
Human immunodeficiency virus 1 (HIV-1) reverse transcriptase (RT)—a critical enzyme of the viral life cycle—undergoes a complex maturation process, required so that a pair of p66 precursor proteins can develop conformationally along different pathways, one evolving to form active polymerase and ribonuclease H (RH) domains, while the second forms a non-functional polymerase and a proteolyzed RH domain. These parallel maturation pathways rely on the structural ambiguity of a metamorphic polymerase domain, for which the sequence–structure relationship is not unique. Recent nuclear magnetic resonance (NMR) studies utilizing selective labeling techniques, and structural characterization of the p66 monomer precursor have provided important insights into the details of this maturation pathway, revealing many aspects of the three major steps involved: (1) domain rearrangement; (2) dimerization; and (3) subunit-selective RH domain proteolysis. This review summarizes the major structural changes that occur during the maturation process. We also highlight how mutations, often viewed within the context of the mature RT heterodimer, can exert a major influence on maturation and dimerization. It is further suggested that several steps in the RT maturation pathway may provide attractive targets for drug development.
Collapse
|
9
|
Corona A, Desantis J, Massari S, Distinto S, Masaoka T, Sabatini S, Esposito F, Manfroni G, Maccioni E, Cecchetti V, Pannecouque C, Le Grice SFJ, Tramontano E, Tabarrini O. Studies on Cycloheptathiophene-3-carboxamide Derivatives as Allosteric HIV-1 Ribonuclease H Inhibitors. ChemMedChem 2016; 11:1709-20. [PMID: 26990134 DOI: 10.1002/cmdc.201600015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Indexed: 02/04/2023]
Abstract
Despite the significant progress achieved with combination antiretroviral therapy in the fight against human immunodeficiency virus (HIV) infection, the difficulty to eradicate the virus together with the rapid emergence of multidrug-resistant strains clearly underline a pressing need for innovative agents, possibly endowed with novel mechanisms of action. In this context, owing to its essential role in HIV genome replication, the reverse transcriptase associated ribonuclease H (RNase H) has proven to be an appealing target. To identify new RNase H inhibitors, an in-house cycloheptathiophene-3-carboxamide library was screened; this led to compounds endowed with inhibitory activity, the structural optimization of which led to the catechol derivative 2-(3,4-dihydroxybenzamido)-N-(pyridin-2-yl)-5,6,7,8-tetrahydro-4H-cyclohepta[b]thiophene-3-carboxamide (compound 33) with an IC50 value on the RNase H activity in the nanomolar range. Mechanistic studies suggested selective inhibition of the RNase H through binding to an innovative allosteric site, which could be further exploited to enrich this class of inhibitors.
Collapse
Affiliation(s)
- Angela Corona
- Dipartimento di Scienze della Vita e dell'Ambiente, Cittadella Universitaria di Monserrato, SS554, 09042, Monserrato, Italy
| | - Jenny Desantis
- Dipartimento di Scienze Farmaceutiche, Università di Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Serena Massari
- Dipartimento di Scienze Farmaceutiche, Università di Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Simona Distinto
- Dipartimento di Scienze della Vita e dell'Ambiente, Cittadella Universitaria di Monserrato, SS554, 09042, Monserrato, Italy
| | - Takashi Masaoka
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, 21702-1201, USA
| | - Stefano Sabatini
- Dipartimento di Scienze Farmaceutiche, Università di Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Francesca Esposito
- Dipartimento di Scienze della Vita e dell'Ambiente, Cittadella Universitaria di Monserrato, SS554, 09042, Monserrato, Italy
| | - Giuseppe Manfroni
- Dipartimento di Scienze Farmaceutiche, Università di Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Elias Maccioni
- Dipartimento di Scienze della Vita e dell'Ambiente, Cittadella Universitaria di Monserrato, SS554, 09042, Monserrato, Italy
| | - Violetta Cecchetti
- Dipartimento di Scienze Farmaceutiche, Università di Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Christophe Pannecouque
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research-KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
| | - Stuart F J Le Grice
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, 21702-1201, USA
| | - Enzo Tramontano
- Dipartimento di Scienze della Vita e dell'Ambiente, Cittadella Universitaria di Monserrato, SS554, 09042, Monserrato, Italy.
| | - Oriana Tabarrini
- Dipartimento di Scienze Farmaceutiche, Università di Perugia, Via del Liceo 1, 06123, Perugia, Italy.
| |
Collapse
|
10
|
Ribonuclease H/DNA Polymerase HIV-1 Reverse Transcriptase Dual Inhibitor: Mechanistic Studies on the Allosteric Mode of Action of Isatin-Based Compound RMNC6. PLoS One 2016; 11:e0147225. [PMID: 26800261 PMCID: PMC4723341 DOI: 10.1371/journal.pone.0147225] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/30/2015] [Indexed: 12/11/2022] Open
Abstract
The DNA polymerase and ribonuclease H (RNase H) activities of human immunodeficiency virus type 1 (HIV-1) are needed for the replication of the viral genome and are validated drug targets. However, there are no approved drugs inhibiting RNase H and the efficiency of DNA polymerase inhibitors can be diminished by the presence of drug resistance mutations. In this context, drugs inhibiting both activities could represent a significant advance towards better anti-HIV therapies. We report on the mechanisms of allosteric inhibition of a newly synthesized isatin-based compound designated as RMNC6 that showed IC50 values of 1.4 and 9.8 μM on HIV-1 RT-associated RNase H and polymerase activities, respectively. Blind docking studies predict that RMNC6 could bind two different pockets in the RT: one in the DNA polymerase domain (partially overlapping the non-nucleoside RT inhibitor [NNRTI] binding pocket), and a second one close to the RNase H active site. Enzymatic studies showed that RMNC6 interferes with efavirenz (an approved NNRTI) in its binding to the RT polymerase domain, although NNRTI resistance-associated mutations such as K103N, Y181C and Y188L had a minor impact on RT susceptibility to RMNC6. In addition, despite being naturally resistant to NNRTIs, the polymerase activity of HIV-1 group O RT was efficiently inhibited by RMNC6. The compound was also an inhibitor of the RNase H activity of wild-type HIV-1 group O RT, although we observed a 6.5-fold increase in the IC50 in comparison with the prototypic HIV-1 group M subtype B enzyme. Mutagenesis studies showed that RT RNase H domain residues Asn474 and Tyr501, and in a lesser extent Ala502 and Ala508, are critical for RMNC6 inhibition of the endonuclease activity of the RT, without affecting its DNA polymerization activity. Our results show that RMNC6 acts as a dual inhibitor with allosteric sites in the DNA polymerase and the RNase H domains of HIV-1 RT.
Collapse
|
11
|
The nature of the N-terminal amino acid residue of HIV-1 RNase H is critical for the stability of reverse transcriptase in viral particles. J Virol 2014; 89:1286-97. [PMID: 25392207 DOI: 10.1128/jvi.02312-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Reverse transcriptase (RT) of human immunodeficiency virus type 1 (HIV-1) is synthesized and packaged into the virion as a part of the GagPol polyprotein. Mature RT is released by the action of viral protease. However, unlike other viral proteins, RT is subject to an internal cleavage event leading to the formation of two subunits in the virion: a p66 subunit and a p51 subunit that lacks the RNase H domain. We have previously identified RNase H to be an HIV-1 protein that has the potential to be a substrate for the N-end rule pathway, which is an ubiquitin-dependent proteolytic system in which the identity of the N-terminal amino acid determines the half-life of a protein. Here we examined the importance of the N-terminal amino acid residue of RNase H in the early life cycle of HIV-1. We show that changing this residue to an amino acid structurally different from the conserved residue leads to the degradation of RT and, in some cases, integrase in the virus particle and this abolishes infectivity. Using intravirion complementation and in vitro protease cleavage assays, we show that degradation of RT in RNase H N-terminal mutants occurs in the absence of active viral protease in the virion. Our results also indicate the importance of the RNase H N-terminal residue in the dimerization of RT subunits. IMPORTANCE HIV-1 proteins are initially made as part of a polyprotein that is cleaved by the viral protease into the proteins that form the virus particle. We were interested in one particular protein, RNase H, that is cleaved from reverse transcriptase. In particular, we found that the first amino acid of RNase H never varied in over 1,850 isolates of HIV-1 that we compared. When we changed the first amino acid, we found that the reverse transcriptase in the virus was degraded. While other studies have implied that the viral protease can degrade mutant RT proteins, we show here that this may not be the case for our mutants. Our results suggest that the presence of active viral protease is not required for the degradation of RT in RNase H N-terminal mutants, suggesting a role for a cellular protease in this process.
Collapse
|
12
|
Identification of highly conserved residues involved in inhibition of HIV-1 RNase H function by Diketo acid derivatives. Antimicrob Agents Chemother 2014; 58:6101-10. [PMID: 25092689 DOI: 10.1128/aac.03605-14] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
HIV-1 reverse transcriptase (RT)-associated RNase H activity is an essential function in viral genome retrotranscription. RNase H is a promising drug target for which no inhibitor is available for therapy. Diketo acid (DKA) derivatives are active site Mg(2+)-binding inhibitors of both HIV-1 RNase H and integrase (IN) activities. To investigate the DKA binding site of RNase H and the mechanism of action, six couples of ester and acid DKAs, derived from 6-[1-(4-fluorophenyl)methyl-1H-pyrrol-2-yl)]-2,4-dioxo-5-hexenoic acid ethyl ester (RDS1643), were synthesized and tested on both RNase H and IN functions. Most of the ester derivatives showed selectivity for HIV-1 RNase H versus IN, while acids inhibited both functions. Molecular modeling and site-directed mutagenesis studies on the RNase H domain demonstrated different binding poses for ester and acid DKAs and proved that DKAs interact with residues (R448, N474, Q475, Y501, and R557) involved not in the catalytic motif but in highly conserved portions of the RNase H primer grip motif. The ester derivative RDS1759 selectively inhibited RNase H activity and viral replication in the low micromolar range, making contacts with residues Q475, N474, and Y501. Quantitative PCR studies and fluorescence-activated cell sorting (FACS) analyses showed that RDS1759 selectively inhibited reverse transcription in cell-based assays. Overall, we provide the first demonstration that RNase H inhibition by DKAs is due not only to their chelating properties but also to specific interactions with highly conserved amino acid residues in the RNase H domain, leading to effective targeting of HIV retrotranscription in cells and hence offering important insights for the rational design of RNase H inhibitors.
Collapse
|
13
|
Active site and allosteric inhibitors of the ribonuclease H activity of HIV reverse transcriptase. Future Med Chem 2014; 5:2127-39. [PMID: 24261890 DOI: 10.4155/fmc.13.178] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Despite the wealth of information available for the reverse transcriptase (RT)-associated ribonuclease H (RNaseH) domain of lentiviruses, gammaretroviruses and long terminal repeat containing retrotransposons, exploiting this information in the form of an RNaseH inhibitor with high specificity and low cellular toxicity has been disappointing. However, it is now becoming increasingly evident that the two-subunit HIV-1 RT is a highly versatile enzyme, undergoing major structural alterations in order to interact with, position and ultimately hydrolyze the RNA component of an RNA/DNA hybrid. Thus, in addition to targeting the RNaseH active site, identifying small molecules that bind elsewhere and disrupt catalysis allosterically by impairing conformational flexibility is gaining increased attention. This review summarizes current progress towards development of both active site and allosteric RNaseH inhibitors.
Collapse
|
14
|
Ilina T, LaBarge K, Sarafianos SG, Ishima R, Parniak MA. Inhibitors of HIV-1 Reverse Transcriptase-Associated Ribonuclease H Activity. BIOLOGY 2014; 1:521-41. [PMID: 23599900 PMCID: PMC3627382 DOI: 10.3390/biology1030521] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
HIV-1 enzyme reverse transcriptase (RT) is a major target for antiviral drug development, with over half of current FDA-approved therapeutics against HIV infection targeting the DNA polymerase activity of this enzyme. HIV-1 RT is a multifunctional enzyme that has RNA and DNA dependent polymerase activity, along with ribonuclease H (RNase H) activity. The latter is responsible for degradation of the viral genomic RNA template during first strand DNA synthesis to allow completion of reverse transcription and the viral dsDNA. While the RNase H activity of RT has been shown to be essential for virus infectivity, all currently used drugs directed at RT inhibit the polymerase activity of the enzyme; none target RNase H. In the last decade, the increasing prevalence of HIV variants resistant to clinically used antiretrovirals has stimulated the search for inhibitors directed at stages of HIV replication different than those targeted by current drugs. HIV RNase H is one such novel target and, over the past few years, significant progress has been made in identifying and characterizing new RNase H inhibitor pharmacophores. In this review we focus mainly on the most potent low micromolar potency compounds, as these provide logical bases for further development. We also discuss why HIV RNase H has been a difficult target for antiretroviral drug development.
Collapse
Affiliation(s)
- Tatiana Ilina
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, S.414, Pittsburgh, PA 15219, USA; (T.I.); (K.L.)
| | - Krystal LaBarge
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, S.414, Pittsburgh, PA 15219, USA; (T.I.); (K.L.)
- Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO, USA;
| | - Stefan G. Sarafianos
- Structural Biology, University of Pittsburgh School of Medicine, 450 Technology Drive, S.414, Pittsburgh, PA 15219, USA;
| | - Rieko Ishima
- Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO, USA;
| | - Michael A. Parniak
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, S.414, Pittsburgh, PA 15219, USA; (T.I.); (K.L.)
- Author to whom correspondence should be addressed; ; Tel.: +1-412-648-1927; Fax: +1-412-648-9653
| |
Collapse
|
15
|
Inhibition of foamy virus reverse transcriptase by human immunodeficiency virus type 1 RNase H inhibitors. Antimicrob Agents Chemother 2014; 58:4086-93. [PMID: 24798282 DOI: 10.1128/aac.00056-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
RNase H plays an essential role in the replication of human immunodeficiency virus type 1 (HIV-1). Therefore, it is a promising target for drug development. However, the identification of HIV-1 RNase H inhibitors (RHIs) has been hampered by the open morphology of its active site, the limited number of available RNase H crystal structures in complex with inhibitors, and the fact that, due to the high concentrations of Mg(2+) needed for protein stability, HIV-1 RNase H is not suitable for nuclear magnetic resonance (NMR) inhibitor studies. We recently showed that the RNase H domains of HIV-1 and prototype foamy virus (PFV) reverse transcriptases (RTs) exhibit a high degree of structural similarity. Thus, we examined whether PFV RNase H can serve as an HIV-1 RNase H model for inhibitor interaction studies. Five HIV-1 RHIs inhibited PFV RNase H activity at low-micromolar concentrations similar to those of HIV-1 RNase H, suggesting pocket similarity of the RNase H domains. NMR titration experiments with the PFV RNase H domain and the RHI RDS1643 (6-[1-(4-fluorophenyl)methyl-1H-pyrrol-2-yl)]-2,4-dioxo-5-hexenoic acid ethyl ester) were performed to determine its binding site. Based on these results and previous data, in silico docking analysis showed a putative RDS1643 binding region that reaches into the PFV RNase H active site. Structural overlays were performed with HIV-1 and PFV RNase H to propose the RDS1643 binding site in HIV-1 RNase H. Our results suggest that this approach can be used to establish PFV RNase H as a model system for HIV-1 RNase H in order to identify putative inhibitor binding sites in HIV-1 RNase H.
Collapse
|
16
|
Masaoka T, Chung S, Caboni P, Rausch JW, Wilson JA, Taskent-Sezgin H, Beutler JA, Tocco G, Le Grice SFJ. Exploiting drug-resistant enzymes as tools to identify thienopyrimidinone inhibitors of human immunodeficiency virus reverse transcriptase-associated ribonuclease H. J Med Chem 2013; 56:5436-45. [PMID: 23631411 PMCID: PMC3880631 DOI: 10.1021/jm400405z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The thienopyrimidinone 5,6-dimethyl-2-(4-nitrophenyl)thieno[2,3-d]pyrimidin-4(3H)-one (DNTP) occupies the interface between the p66 ribonuclease H (RNase H) domain and p51 thumb of human immunodeficiency virus reverse transcriptase (HIV RT), thereby inducing a conformational change incompatible with catalysis. Here, we combined biochemical characterization of 39 DNTP derivatives with antiviral testing of selected compounds. In addition to wild-type HIV-1 RT, derivatives were evaluated with rationally designed, p66/p51 heterodimers exhibiting high-level DNTP sensitivity or resistance. This strategy identified 3',4'-dihydroxyphenyl (catechol) substituted thienopyrimidinones with submicromolar in vitro activity against both wild type HIV-1 RT and drug-resistant variants. Thermal shift analysis indicates that, in contrast to active site RNase H inhibitors, these thienopyrimidinones destabilize the enzyme, in some instances reducing the Tm by 5 °C. Importantly, catechol-containing thienopyrimidinones also inhibit HIV-1 replication in cells. Our data strengthen the case for allosteric inhibition of HIV RNase H activity, providing a platform for designing improved antagonists for use in combination antiviral therapy.
Collapse
Affiliation(s)
- Takashi Masaoka
- RT Biochemistry Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD21702, USA
| | - Suhman Chung
- RT Biochemistry Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD21702, USA
| | - Pierluigi Caboni
- Department of Life and Environmental Sciences-Unit of Drug Sciences, University of Cagliari, via Ospedale 72, 09124 Cagliari, Italy
| | - Jason W. Rausch
- RT Biochemistry Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD21702, USA
| | - Jennifer A. Wilson
- Molecular Targets Laboratory, National Cancer Institute, Frederick, MD21702, USA
| | - Humeyra Taskent-Sezgin
- RT Biochemistry Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD21702, USA
| | - John A. Beutler
- Molecular Targets Laboratory, National Cancer Institute, Frederick, MD21702, USA
| | - Graziella Tocco
- Department of Life and Environmental Sciences-Unit of Drug Sciences, University of Cagliari, via Ospedale 72, 09124 Cagliari, Italy
| | - Stuart F. J. Le Grice
- RT Biochemistry Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD21702, USA
| |
Collapse
|
17
|
Wang J, Li D, Bambara RA, Dykes C. Reverse transcriptase backbone can alter the polymerization and RNase activities of non-nucleoside reverse transcriptase mutants K101E+G190S. J Gen Virol 2013; 94:2297-2308. [PMID: 23804564 DOI: 10.1099/vir.0.054999-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous work by our group showed that human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) containing non-nucleoside RT inhibitor (NNRTI) drug resistance mutations has defects in RNase H activity as well as reduced amounts of RT protein in virions. These deficits correlate with replication fitness in the absence of NNRTIs. Viruses with the mutant combination K101E+G190S replicated better in the presence of NNRTIs than in the absence of drug. Stimulation of virus growth by NNRTIs occurred during the early steps of the virus life cycle and was modulated by the RT backbone sequence in which the resistance mutations arose. We wanted to determine what effects RT backbone sequence would have on RT content and polymerization and RNase H activities in the absence of NNRTIs. We compared a NL4-3 RT with K101E+G190S to a patient-isolate RT sequence D10 with K101E+G190S. We show here that, unlike the NL4-3 backbone, the D10 backbone sequence decreased the RNA-dependent DNA polymerization activity of purified recombinant RT compared to WT. In contrast, RTs with the D10 backbone had increased RNase H activity compared to WT and K101E+G190S in the NL4-3 backbone. D10 virions also had increased amounts of RT compared to K101E+G190S in the NL4-3 backbone. We conclude that the backbone sequence of RT can alter the activities of the NNRTI drug-resistant mutant K101E+G190S, and that identification of the amino acids responsible will aid in understanding the mechanism by which NNRTI drug-resistant mutants alter fitness and NNRTIs stimulate HIV-1 virus replication.
Collapse
Affiliation(s)
- Jiong Wang
- University of Rochester, School of Medicine and Dentistry, Department of Medicine, Rochester, NY, USA
| | - Dongge Li
- University of Rochester, School of Medicine and Dentistry, Department of Medicine, Rochester, NY, USA
| | - Robert A Bambara
- University of Rochester, School of Medicine and Dentistry, Department of Microbiology and Immunology, Rochester, NY, USA
| | - Carrie Dykes
- University of Rochester, School of Medicine and Dentistry, Department of Medicine, Rochester, NY, USA
| |
Collapse
|
18
|
Chung S, Miller JT, Lapkouski M, Tian L, Yang W, Le Grice SFJ. Examining the role of the HIV-1 reverse transcriptase p51 subunit in positioning and hydrolysis of RNA/DNA hybrids. J Biol Chem 2013; 288:16177-84. [PMID: 23595992 DOI: 10.1074/jbc.m113.465641] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent crystallographic analysis of p66/p51 human immunodeficiency virus (HIV) type 1 reverse transcriptase (RT) complexed with a non-polypurine tract RNA/DNA hybrid has illuminated novel and important contacts between structural elements at the C terminus of the noncatalytic p51 subunit and the nucleic acid duplex in the vicinity of the ribonuclease H (RNase H) active site. In particular, a short peptide spanning residues Phe-416-Pro-421 was shown to interact with the DNA strand, cross the minor groove of the helix, and then form Van der Waals contacts with the RNA strand adjacent to the scissile phosphate. At the base of the adjoining α-helix M', Tyr-427 forms a hydrogen bond with Asn-348, the latter of which, when mutated to Ile, is implicated in resistance to both nucleoside and non-nucleoside RT inhibitors. Based on our structural data, we analyzed the role of the p51 C terminus by evaluating selectively mutated p66/p51 heterodimers carrying (i) p51 truncations that encroach on α-M', (ii) alterations that interrupt the Asn-348-Tyr-427 interaction, and (iii) alanine substitutions throughout the region Phe-416-Pro-421. Collectively, our data support the notion that the p51 C terminus makes an important contribution toward hybrid binding and orienting the RNA strand for catalysis at the RNase H active site.
Collapse
Affiliation(s)
- Suhman Chung
- RT Biochemistry Section, HIV Drug Resistance Program, Center for Cancer Research, NCI, National Institutes of Health, Frederick Maryland 21702, USA
| | | | | | | | | | | |
Collapse
|
19
|
Nowak E, Potrzebowski W, Konarev PV, Rausch JW, Bona MK, Svergun DI, Bujnicki JM, Le Grice SFJ, Nowotny M. Structural analysis of monomeric retroviral reverse transcriptase in complex with an RNA/DNA hybrid. Nucleic Acids Res 2013; 41:3874-87. [PMID: 23382176 PMCID: PMC3616737 DOI: 10.1093/nar/gkt053] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 01/11/2013] [Accepted: 01/11/2013] [Indexed: 11/19/2022] Open
Abstract
A key step in proliferation of retroviruses is the conversion of their RNA genome to double-stranded DNA, a process catalysed by multifunctional reverse transcriptases (RTs). Dimeric and monomeric RTs have been described, the latter exemplified by the enzyme of Moloney murine leukaemia virus. However, structural information is lacking that describes the substrate binding mechanism for a monomeric RT. We report here the first crystal structure of a complex between an RNA/DNA hybrid substrate and polymerase-connection fragment of the single-subunit RT from xenotropic murine leukaemia virus-related virus, a close relative of Moloney murine leukaemia virus. A comparison with p66/p51 human immunodeficiency virus-1 RT shows that substrate binding around the polymerase active site is conserved but differs in the thumb and connection subdomains. Small-angle X-ray scattering was used to model full-length xenotropic murine leukaemia virus-related virus RT, demonstrating that its mobile RNase H domain becomes ordered in the presence of a substrate-a key difference between monomeric and dimeric RTs.
Collapse
Affiliation(s)
- Elżbieta Nowak
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, European Molecular Biology Laboratory, Hamburg Outstation c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany, RT Biochemistry Section, HIV Drug Resistance Program, Frederick National Laboratory, Frederick, MD 21702, USA and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Wojciech Potrzebowski
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, European Molecular Biology Laboratory, Hamburg Outstation c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany, RT Biochemistry Section, HIV Drug Resistance Program, Frederick National Laboratory, Frederick, MD 21702, USA and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Petr V. Konarev
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, European Molecular Biology Laboratory, Hamburg Outstation c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany, RT Biochemistry Section, HIV Drug Resistance Program, Frederick National Laboratory, Frederick, MD 21702, USA and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Jason W. Rausch
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, European Molecular Biology Laboratory, Hamburg Outstation c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany, RT Biochemistry Section, HIV Drug Resistance Program, Frederick National Laboratory, Frederick, MD 21702, USA and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Marion K. Bona
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, European Molecular Biology Laboratory, Hamburg Outstation c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany, RT Biochemistry Section, HIV Drug Resistance Program, Frederick National Laboratory, Frederick, MD 21702, USA and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Dmitri I. Svergun
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, European Molecular Biology Laboratory, Hamburg Outstation c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany, RT Biochemistry Section, HIV Drug Resistance Program, Frederick National Laboratory, Frederick, MD 21702, USA and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Janusz M. Bujnicki
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, European Molecular Biology Laboratory, Hamburg Outstation c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany, RT Biochemistry Section, HIV Drug Resistance Program, Frederick National Laboratory, Frederick, MD 21702, USA and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Stuart F. J. Le Grice
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, European Molecular Biology Laboratory, Hamburg Outstation c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany, RT Biochemistry Section, HIV Drug Resistance Program, Frederick National Laboratory, Frederick, MD 21702, USA and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, European Molecular Biology Laboratory, Hamburg Outstation c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany, RT Biochemistry Section, HIV Drug Resistance Program, Frederick National Laboratory, Frederick, MD 21702, USA and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| |
Collapse
|
20
|
Lapkouski M, Tian L, Miller JT, Le Grice SFJ, Yang W. Complexes of HIV-1 RT, NNRTI and RNA/DNA hybrid reveal a structure compatible with RNA degradation. Nat Struct Mol Biol 2013; 20:230-236. [PMID: 23314251 PMCID: PMC3973182 DOI: 10.1038/nsmb.2485] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 12/05/2012] [Indexed: 11/25/2022]
Abstract
Structures of type-1 human immunodeficiency virus (HIV-1) reverse transcriptase (RT) have been determined in several forms, but only one contains an RNA/DNA hybrid. Here we report three structures of HIV-1 RT complexed with a non-nucleotide RT inhibitor (NNRTI) and an RNA/DNA hybrid. In the presence of an NNRTI, the RNA/DNA structure differs from all prior nucleic acid bound to RT including the RNA/DNA hybrid. The enzyme structure also differs from all previous RT–DNA complexes. As a result, the hybrid has ready access to the RNase H active site. These observations indicate that an RT–nucleic acid complex may adopt two structural states, one competent for DNA polymerization and the other for RNA degradation. RT mutations that confer drug resistance but are distant from the inhibitor-binding sites often map to the unique RT–hybrid interface that undergoes conformational changes between two catalytic states.
Collapse
Affiliation(s)
- Mikalai Lapkouski
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lan Tian
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jennifer T Miller
- HIV Drug Resistance Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Stuart F J Le Grice
- HIV Drug Resistance Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
21
|
Le Grice SFJ. Human immunodeficiency virus reverse transcriptase: 25 years of research, drug discovery, and promise. J Biol Chem 2012; 287:40850-7. [PMID: 23043108 DOI: 10.1074/jbc.r112.389056] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synthesis of integration-competent, double-stranded DNA from the (+)-RNA strand genome of retroviruses and long terminal repeat-containing retrotransposons reflects a multistep process catalyzed by the virus-encoded reverse transcriptase (RT). In conjunction with RNA- and DNA-templated DNA synthesis, a hydrolytic activity of the same enzyme (RNase H) is required to remove genomic RNA of the RNA/DNA replication intermediate. Together, these combined synthetic and degradative functions ensure correct selection, extension, and removal of the RNA primers of (-)- and (+)-strand DNA synthesis (tRNA and the polypurine tract, respectively). For HIV-1 RT, a quarter century of research has not only illuminated the biochemical properties, structure, and conformational dynamics of this highly versatile enzyme but has also witnessed drug discovery advances from the first Food and Drug Administration-approved anti-RT drug to recent use of RT inhibitors as potential colorectal microbicides. Salient features of HIV-1 RT and extension of these findings into programs of drug discovery are reviewed here.
Collapse
Affiliation(s)
- Stuart F J Le Grice
- RT Biochemistry Section, HIV Drug Resistance Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA.
| |
Collapse
|