1
|
p62-containing, proteolytically active nuclear condensates, increase the efficiency of the ubiquitin-proteasome system. Proc Natl Acad Sci U S A 2021; 118:2107321118. [PMID: 34385323 DOI: 10.1073/pnas.2107321118] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Degradation of a protein by the ubiquitin-proteasome system (UPS) is a multistep process catalyzed by sequential reactions. Initially, ubiquitin is conjugated to the substrate in a process mediated by concerted activity of three enzymes; the last of them-a ubiquitin ligase (E3)-belongs to a family of several hundred members, each recognizing a few specific substrates. This is followed by repeated addition of ubiquitin moieties to the previously conjugated one to generate a ubiquitin chain that serves as a recognition element for the proteasome, which then degrades the substrate. Ubiquitin is recycled via the activity of deubiquitinating enzymes (DUBs). It stands to reason that efficiency of such a complex process would depend on colocalization of the different components in an assembly that allows the reactions to be carried out sequentially and processively. Here we describe nuclear condensates that are dynamic in their composition. They contain p62 as an essential component. These assemblies are generated by liquid-liquid phase separation (LLPS) and also contain ubiquitinated targets, 26S proteasome, the three conjugating enzymes, and DUBs. Under basal conditions, they serve as efficient centers for proteolysis of nuclear proteins (e.g., c-Myc) and unassembled subunits of the proteasome, suggesting they are involved in cellular protein quality control. Supporting this notion is the finding that such foci are also involved in degradation of misfolded proteins induced by heat and oxidative stresses, following recruitment of heat shock proteins and their associated ubiquitin ligase CHIP.
Collapse
|
2
|
Saffert P, Adamla F, Schieweck R, Atkins JF, Ignatova Z. An Expanded CAG Repeat in Huntingtin Causes +1 Frameshifting. J Biol Chem 2016; 291:18505-13. [PMID: 27382061 DOI: 10.1074/jbc.m116.744326] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Indexed: 01/08/2023] Open
Abstract
Maintenance of triplet decoding is crucial for the expression of functional protein because deviations either into the -1 or +1 reading frames are often non-functional. We report here that expression of huntingtin (Htt) exon 1 with expanded CAG repeats, implicated in Huntington pathology, undergoes a sporadic +1 frameshift to generate from the CAG repeat a trans-frame AGC repeat-encoded product. This +1 recoding is exclusively detected in pathological Htt variants, i.e. those with expanded repeats with more than 35 consecutive CAG codons. An atypical +1 shift site, UUC C at the 5' end of CAG repeats, which has some resemblance to the influenza A virus shift site, triggers the +1 frameshifting and is enhanced by the increased propensity of the expanded CAG repeats to form a stem-loop structure. The +1 trans-frame-encoded product can directly influence the aggregation of the parental Htt exon 1.
Collapse
Affiliation(s)
- Paul Saffert
- From the Institute of Biochemistry, University of Potsdam, 14467 Potsdam, Germany
| | - Frauke Adamla
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Rico Schieweck
- From the Institute of Biochemistry, University of Potsdam, 14467 Potsdam, Germany
| | - John F Atkins
- the School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland, and the Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112
| | - Zoya Ignatova
- From the Institute of Biochemistry, University of Potsdam, 14467 Potsdam, Germany, Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, 20146 Hamburg, Germany,
| |
Collapse
|
3
|
Berger TR, Montie HL, Jain P, Legleiter J, Merry DE. Identification of novel polyglutamine-expanded aggregation species in spinal and bulbar muscular atrophy. Brain Res 2015; 1628:254-264. [PMID: 26453288 DOI: 10.1016/j.brainres.2015.09.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/26/2015] [Accepted: 09/28/2015] [Indexed: 11/16/2022]
Abstract
Polyglutamine-repeat disorders are part of a larger family of neurodegenerative diseases characterized by protein misfolding and aggregation. In spinal and bulbar muscular atrophy (SBMA), polyglutamine expansion within the androgen receptor (AR) causes progressive debilitating muscular atrophy and lower motor neuron loss in males. Although soluble polyglutamine-expanded aggregation species are considered toxic intermediates in the aggregation process, relatively little is known about the spectrum of structures that are formed. Here we identify novel polyglutamine-expanded AR aggregates that are SDS-soluble and bind the toxicity-predicting antibody 3B5H10. Soluble, 3B5H10-reactive aggregation species exist in low-density conformations and are larger by atomic force microscopy, suggesting that they may be less compact than later-stage, insoluble aggregates. We demonstrate disease-relevance in vivo and draw correlations with toxicity in vitro. This article is part of a Special Issue entitled SI: Neuroprotection.
Collapse
Affiliation(s)
- Tamar R Berger
- Thomas Jefferson University, Department of Biochemistry and Molecular Biology, Philadelphia, PA, USA
| | - Heather L Montie
- Philadelphia College of Osteopathic Medicine, Department of Bio-Medical Sciences, Philadelphia, PA, USA
| | - Pranav Jain
- West Virginia University, Department of Chemistry, Morgantown, WV, USA
| | - Justin Legleiter
- West Virginia University, Department of Chemistry, Morgantown, WV, USA
| | - Diane E Merry
- Thomas Jefferson University, Department of Biochemistry and Molecular Biology, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Somatic expression of unc-54 and vha-6 mRNAs declines but not pan-neuronal rgef-1 and unc-119 expression in aging Caenorhabditis elegans. Sci Rep 2015; 5:10692. [PMID: 26031360 PMCID: PMC4649908 DOI: 10.1038/srep10692] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 04/22/2015] [Indexed: 12/13/2022] Open
Abstract
Aging is a highly controlled biological process characterized by a progressive deterioration of various cellular activities. One of several hallmarks of aging describes a link to transcriptional alteration, suggesting that it may impact the steady-state mRNA levels. We analyzed the mRNA steady-state levels of polyCAG-encoding transgenes and endogenous genes under the control of well-characterized promoters for intestinal (vha-6), muscular (unc-54, unc-15) and pan-neuronal (rgef-1, unc-119) expression in the nematode Caenorhabditis elegans. We find that there is not a uniform change in transcriptional profile in aging, but rather a tissue-specific difference in the mRNA levels of these genes. While levels of mRNA in the intestine (vha-6) and muscular (unc-54, unc-15) cells decline with age, pan-neuronal tissue shows more stable mRNA expression (rgef-1, unc-119) which even slightly increases with the age of the animals. Our data on the variations in the mRNA abundance from exemplary cases of endogenous and transgenic gene expression contribute to the emerging evidence for tissue-specific variations in the aging process.
Collapse
|
5
|
Miettinen MS, Monticelli L, Nedumpully-Govindan P, Knecht V, Ignatova Z. Stable polyglutamine dimers can contain β-hairpins with interdigitated side chains-but not α-helices, β-nanotubes, β-pseudohelices, or steric zippers. Biophys J 2014; 106:1721-8. [PMID: 24739171 PMCID: PMC4008795 DOI: 10.1016/j.bpj.2014.02.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 02/03/2014] [Accepted: 02/25/2014] [Indexed: 10/25/2022] Open
Abstract
A common thread connecting nine fatal neurodegenerative protein aggregation diseases is an abnormally expanded polyglutamine tract found in the respective proteins. Although the structure of this tract in the large mature aggregates is increasingly well described, its structure in the small early aggregates remains largely unknown. As experimental evidence suggests that the most toxic species along the aggregation pathway are the small early ones, developing strategies to alleviate disease pathology calls for understanding the structure of polyglutamine peptides in the early stages of aggregation. Here, we present a criterion, grounded in available experimental data, that allows for using kinetic stability of dimers to assess whether a given polyglutamine conformer can be on the aggregation path. We then demonstrate that this criterion can be assessed using present-day molecular dynamics simulations. We find that although the α-helical conformer of polyglutamine is very stable, dimers of α-helices lack the kinetic stability necessary to support further oligomerization. Dimers of steric zipper, β-nanotube, and β-pseudohelix conformers are also too short-lived to initiate aggregation. The β-hairpin-containing conformers, instead, invariably form very stable dimers when their side chains are interdigitated. Combining these findings with the implications of recent solid-state NMR data on mature fibrils, we propose a possible pathway for the initial stages of polyglutamine aggregation, in which β-hairpin-containing conformers act as templates for fibril formation.
Collapse
Affiliation(s)
- Markus S Miettinen
- Fachbereich Physik, Freie Universität Berlin, Berlin, Germany; Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
| | - Luca Monticelli
- Institut National de la santé et de la recherche medicale, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France; Institut National de la Transfusion Sanguine, Paris, France
| | | | - Volker Knecht
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Zoya Ignatova
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
| |
Collapse
|
6
|
Marelja Z, Mullick Chowdhury M, Dosche C, Hille C, Baumann O, Löhmannsröben HG, Leimkühler S. The L-cysteine desulfurase NFS1 is localized in the cytosol where it provides the sulfur for molybdenum cofactor biosynthesis in humans. PLoS One 2013; 8:e60869. [PMID: 23593335 PMCID: PMC3625234 DOI: 10.1371/journal.pone.0060869] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/04/2013] [Indexed: 11/18/2022] Open
Abstract
In humans, the L-cysteine desulfurase NFS1 plays a crucial role in the mitochondrial iron-sulfur cluster biosynthesis and in the thiomodification of mitochondrial and cytosolic tRNAs. We have previously demonstrated that purified NFS1 is able to transfer sulfur to the C-terminal domain of MOCS3, a cytosolic protein involved in molybdenum cofactor biosynthesis and tRNA thiolation. However, no direct evidence existed so far for the interaction of NFS1 and MOCS3 in the cytosol of human cells. Here, we present direct data to show the interaction of NFS1 and MOCS3 in the cytosol of human cells using Förster resonance energy transfer and a split-EGFP system. The colocalization of NFS1 and MOCS3 in the cytosol was confirmed by immunodetection of fractionated cells and localization studies using confocal fluorescence microscopy. Purified NFS1 was used to reconstitute the lacking molybdoenzyme activity of the Neurospora crassa nit-1 mutant, giving additional evidence that NFS1 is the sulfur donor for Moco biosynthesis in eukaryotes in general.
Collapse
Affiliation(s)
- Zvonimir Marelja
- Department of Molecular Enzymology, Institute of Biochemistry, University of Potsdam, Potsdam, Germany
| | - Mita Mullick Chowdhury
- Department of Molecular Enzymology, Institute of Biochemistry, University of Potsdam, Potsdam, Germany
| | - Carsten Dosche
- Department of Physical Chemistry, Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | - Carsten Hille
- Department of Physical Chemistry, Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | - Otto Baumann
- Department of Animal Physiology, Institute of Biochemistry, University of Potsdam, Potsdam, Germany
| | - Hans-Gerd Löhmannsröben
- Department of Physical Chemistry, Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | - Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry, University of Potsdam, Potsdam, Germany
- * E-mail:
| |
Collapse
|
7
|
Miettinen MS, Knecht V, Monticelli L, Ignatova Z. Assessing polyglutamine conformation in the nucleating event by molecular dynamics simulations. J Phys Chem B 2012; 116:10259-65. [PMID: 22770401 DOI: 10.1021/jp305065c] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polyglutamine (polyQ) diseases comprise a group of dominantly inherited pathology caused by an expansion of an unstable polyQ stretch which is presumed to form β-sheets. Similar to other amyloid pathologies, polyQ amyloidogenesis occurs via a nucleated polymerization mechanism, and proceeds through energetically unfavorable nucleus whose existence and structure are difficult to detect. Here, we use atomistic molecular dynamics simulations in explicit solvent to assess the conformation of the polyQ stretch in the nucleus that initiates polyQ fibrillization. Comparison of the kinetic stability of various structures of polyQ peptide with a Q-length in the pathological range (Q40) revealed that steric zipper or nanotube-like structures (β-nanotube or β-pseudohelix) are not kinetically stable enough to serve as a template to initiate polyQ fibrillization as opposed to β-hairpin-based (β-sheet and β-sheetstack) or α-helical conformations. The selection of different structures of the polyQ stretch in the aggregation-initiating event may provide an alternative explanation for polyQ aggregate polymorphism.
Collapse
Affiliation(s)
- Markus S Miettinen
- Institute of Biochemistry and Biology, University of Potsdam , Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | | | | | | |
Collapse
|