1
|
Barillari G, Bei R, Manzari V, Modesti A. Infection by High-Risk Human Papillomaviruses, Epithelial-to-Mesenchymal Transition and Squamous Pre-Malignant or Malignant Lesions of the Uterine Cervix: A Series of Chained Events? Int J Mol Sci 2021; 22:13543. [PMID: 34948338 PMCID: PMC8703928 DOI: 10.3390/ijms222413543] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022] Open
Abstract
Wound healing requires static epithelial cells to gradually assume a mobile phenotype through a multi-step process termed epithelial-to-mesenchymal transition (EMT). Although it is inherently transient and reversible, EMT perdures and is abnormally activated when the epithelium is chronically exposed to pathogens: this event deeply alters the tissue and eventually contributes to the development of diseases. Among the many of them is uterine cervical squamous cell carcinoma (SCC), the most frequent malignancy of the female genital system. SCC, whose onset is associated with the persistent infection of the uterine cervix by high-risk human papillomaviruses (HR-HPVs), often relapses and/or metastasizes, being resistant to conventional chemo- or radiotherapy. Given that these fearsome clinical features may stem, at least in part, from the exacerbated and long-lasting EMT occurring in the HPV-infected cervix; here we have reviewed published studies concerning the impact that HPV oncoproteins, cellular tumor suppressors, regulators of gene expression, inflammatory cytokines or growth factors, and the interactions among these effectors have on EMT induction and cervical carcinogenesis. It is predictable and desirable that a broader comprehension of the role that EMT inducers play in SCC pathogenesis will provide indications to flourish new strategies directed against this aggressive tumor.
Collapse
Affiliation(s)
- Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 1 via Montellier, 00133 Rome, Italy; (R.B.); (V.M.); (A.M.)
| | | | | | | |
Collapse
|
2
|
Rozenberg JM, Zvereva S, Dalina A, Blatov I, Zubarev I, Luppov D, Bessmertnyi A, Romanishin A, Alsoulaiman L, Kumeiko V, Kagansky A, Melino G, Ganini C, Barlev NA. The p53 family member p73 in the regulation of cell stress response. Biol Direct 2021; 16:23. [PMID: 34749806 PMCID: PMC8577020 DOI: 10.1186/s13062-021-00307-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022] Open
Abstract
During oncogenesis, cells become unrestrictedly proliferative thereby altering the tissue homeostasis and resulting in subsequent hyperplasia. This process is paralleled by resumption of cell cycle, aberrant DNA repair and blunting the apoptotic program in response to DNA damage. In most human cancers these processes are associated with malfunctioning of tumor suppressor p53. Intriguingly, in some cases two other members of the p53 family of proteins, transcription factors p63 and p73, can compensate for loss of p53. Although both p63 and p73 can bind the same DNA sequences as p53 and their transcriptionally active isoforms are able to regulate the expression of p53-dependent genes, the strongest overlap with p53 functions was detected for p73. Surprisingly, unlike p53, the p73 is rarely lost or mutated in cancers. On the contrary, its inactive isoforms are often overexpressed in cancer. In this review, we discuss several lines of evidence that cancer cells develop various mechanisms to repress p73-mediated cell death. Moreover, p73 isoforms may promote cancer growth by enhancing an anti-oxidative response, the Warburg effect and by repressing senescence. Thus, we speculate that the role of p73 in tumorigenesis can be ambivalent and hence, requires new therapeutic strategies that would specifically repress the oncogenic functions of p73, while keeping its tumor suppressive properties intact.
Collapse
Affiliation(s)
- Julian M Rozenberg
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| | - Svetlana Zvereva
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Aleksandra Dalina
- The Engelhardt Institute of Molecular Biology, Russian Academy of Science, Moscow, Russia
| | - Igor Blatov
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ilya Zubarev
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Daniil Luppov
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | | - Alexander Romanishin
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia.,School of Life Sciences, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Lamak Alsoulaiman
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Vadim Kumeiko
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Alexander Kagansky
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Gerry Melino
- Department of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carlo Ganini
- Department of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Nikolai A Barlev
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia. .,Institute of Cytology, Russian Academy of Science, Saint-Petersburg, Russia.
| |
Collapse
|
3
|
Ramzan F, Klees S, Schmitt AO, Cavero D, Gültas M. Identification of Age-Specific and Common Key Regulatory Mechanisms Governing Eggshell Strength in Chicken Using Random Forests. Genes (Basel) 2020; 11:genes11040464. [PMID: 32344666 PMCID: PMC7230204 DOI: 10.3390/genes11040464] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/08/2020] [Accepted: 04/21/2020] [Indexed: 12/21/2022] Open
Abstract
In today's chicken egg industry, maintaining the strength of eggshells in longer laying cycles is pivotal for improving the persistency of egg laying. Eggshell development and mineralization underlie a complex regulatory interplay of various proteins and signaling cascades involving multiple organ systems. Understanding the regulatory mechanisms influencing this dynamic trait over time is imperative, yet scarce. To investigate the temporal changes in the signaling cascades, we considered eggshell strength at two different time points during the egg production cycle and studied the genotype-phenotype associations by employing the Random Forests algorithm on chicken genotypic data. For the analysis of corresponding genes, we adopted a well established systems biology approach to delineate gene regulatory pathways and master regulators underlying this important trait. Our results indicate that, while some of the master regulators (Slc22a1 and Sox11) and pathways are common at different laying stages of chicken, others (e.g., Scn11a, St8sia2, or the TGF- β pathway) represent age-specific functions. Overall, our results provide: (i) significant insights into age-specific and common molecular mechanisms underlying the regulation of eggshell strength; and (ii) new breeding targets to improve the eggshell quality during the later stages of the chicken production cycle.
Collapse
Affiliation(s)
- Faisal Ramzan
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany; (F.R.); (S.K.); (A.O.S.)
- Department of Animal Breeding and Genetics, University of Agriculture Faisalabad, 38000 Faisalabad, Pakistan
| | - Selina Klees
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany; (F.R.); (S.K.); (A.O.S.)
| | - Armin Otto Schmitt
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany; (F.R.); (S.K.); (A.O.S.)
- Center for Integrated Breeding Research (CiBreed), Albrecht-Thaer-Weg 3, Georg-August University, 37075 Göttingen, Germany
| | | | - Mehmet Gültas
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany; (F.R.); (S.K.); (A.O.S.)
- Center for Integrated Breeding Research (CiBreed), Albrecht-Thaer-Weg 3, Georg-August University, 37075 Göttingen, Germany
- Correspondence:
| |
Collapse
|
4
|
Transient induction of telomerase expression mediates senescence and reduces tumorigenesis in primary fibroblasts. Proc Natl Acad Sci U S A 2019; 116:18983-18993. [PMID: 31481614 PMCID: PMC6754593 DOI: 10.1073/pnas.1907199116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Telomerase is an enzymatic ribonucleoprotein complex that acts as a reverse transcriptase in the elongation of telomeres. Telomerase activity is well documented in embryonic stem cells and the vast majority of tumor cells, but its role in somatic cells remains to be understood. Here, we report an unexpected function of telomerase during cellular senescence and tumorigenesis. We crossed Tert heterozygous knockout mice (mTert +/- ) for 26 generations, during which time there was progressive shortening of telomeres, and obtained primary skin fibroblasts from mTert +/+ and mTert -/- progeny of the 26th cross. As a consequence of insufficient telomerase activities in prior generations, both mTert +/+ and mTert -/- fibroblasts showed comparable and extremely short telomere length. However, mTert -/- cells approached cellular senescence faster and exhibited a significantly higher rate of malignant transformation than mTert +/+ cells. Furthermore, an evident up-regulation of telomerase reverse-transcriptase (TERT) expression was detected in mTert +/+ cells at the presenescence stage. Moreover, removal or down-regulation of TERT expression in mTert +/+ and human primary fibroblast cells via CRISPR/Cas9 or shRNA recapitulated mTert -/- phenotypes of accelerated senescence and transformation, and overexpression of TERT in mTert -/- cells rescued these phenotypes. Taking these data together, this study suggests that TERT has a previously underappreciated, protective role in buffering senescence stresses due to short, dysfunctional telomeres, and preventing malignant transformation.
Collapse
|
5
|
Li X, Xu X, Fang J, Wang L, Mu Y, Zhang P, Yao Z, Ma Z, Liu Z. Rs2853677 modulates Snail1 binding to the TERT enhancer and affects lung adenocarcinoma susceptibility. Oncotarget 2018; 7:37825-37838. [PMID: 27191258 PMCID: PMC5122352 DOI: 10.18632/oncotarget.9339] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/28/2016] [Indexed: 01/07/2023] Open
Abstract
Genome wide association studies (GWAS) have shown that SNPs in non-coding regions are associated with inherited susceptibility to cancer. The effect of one single SNP, however, is weak. To identify potential co-factors of SNPs, we investigated the underlying mechanism by which SNPs affect lung cancer susceptibility. We found that rs2853677 is located within the Snail1 binding site in a TERT enhancer. This enhancer increases TERT transcription when juxtaposed to the TERT promoter. The binding of Snail1 to the enhancer disrupts enhancer-promoter colocalization and silences TERT transcription. The high risk variant of rs2853677 disrupts the Snail1 binding site and derepresses TERT expression in response to Snail1 upregulation, thus increasing lung adenocarcinoma susceptibility. Our data suggest that Snail1 may be a co-factor of rs2853677 for predicting lung adenocarcinoma susceptibility and prognosis.
Collapse
Affiliation(s)
- Xiaoting Li
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China.,Department of Forensic Medicine, Tianjin Medical University, Tianjin, China
| | - Xing Xu
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Jiali Fang
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Lin Wang
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Yanchao Mu
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Peng Zhang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhi Yao
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin Medical University, Tianjin, China
| | - Zhenyi Ma
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Zhe Liu
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| |
Collapse
|
6
|
Huang C, Li R, Zhang Y, Gong J. Amarogentin Induces Apoptosis of Liver Cancer Cells via Upregulation of p53 and Downregulation of Human Telomerase Reverse Transcriptase in Mice. Technol Cancer Res Treat 2017; 16:546-558. [PMID: 27402632 PMCID: PMC5665146 DOI: 10.1177/1533034616657976] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 04/27/2016] [Accepted: 06/06/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Amarogentin has been reported to have a preventive effect on liver cancer via inducing cancer cell apoptosis. We attempted to elucidate the roles of p53-associated apoptosis pathways in the chemopreventive mechanism of amarogentin. The findings of this study will facilitate the development of a novel supplementary strategy for the treatment of liver cancer. MATERIALS AND METHODS The purity of amarogentin was assessed by high-performance liquid chromatography. The inhibitory ratios of the liver cell lines were determined using a Cell Counting Kit-8 following treatment with a gradient concentration of amarogentin. Cell apoptosis was detected by flow cytometry using annexin V-fluorescein isothiocyanate/propidium iodide kits. The gene and protein expression of p53-associated molecules, such as Akt, human telomerase reverse transcriptase, RelA, and p38, was detected by real-time quantitative polymerase chain reaction, Western blotting, and immunohistochemical staining in liver cancer cells and mouse tumor tissues after treatment with amarogentin. RESULTS The inhibitory effect of amarogentin on cell proliferation was more obvious in liver cancer cells, and amarogentin was more likely to induce the apoptosis of liver cancer cells than that of normal liver cells. The gene and protein expression levels of Akt, RelA, and human telomerase reverse transcriptase were markedly higher in the control group than in the preventive group and treatment groups. Only the expression of human telomerase reverse transcriptase was downregulated, accompanied by the upregulation of p53. CONCLUSION The results of our study suggest that amarogentin promotes apoptosis of liver cancer cells by the upregulation of p53 and downregulation of human telomerase reverse transcriptase and prevents the malignant transformation of these cells.
Collapse
Affiliation(s)
- Chun Huang
- Chongqing Key Laboratory of Hepatobiliary Surgery, Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Division of Basic Medical Science, Chongqing Three Gorges Medical College, Chongqing, Wanzhou, People’s Republic of China
| | - Runqin Li
- Division of Basic Medical Science, Chongqing Three Gorges Medical College, Chongqing, Wanzhou, People’s Republic of China
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yinglin Zhang
- Department of Hepatobiliary Surgery, The Third Hospital of Mianyang, Mianyang, Sichuan, People’s Republic of China
| | - Jianping Gong
- Chongqing Key Laboratory of Hepatobiliary Surgery, Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
7
|
Zhao T, Hu F, Liu X, Tao Q. Blockade of telomerase reverse transcriptase enhances chemosensitivity in head and neck cancers through inhibition of AKT/ERK signaling pathways. Oncotarget 2016; 6:35908-21. [PMID: 26497550 PMCID: PMC4742150 DOI: 10.18632/oncotarget.5468] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 10/06/2015] [Indexed: 12/14/2022] Open
Abstract
Head and Neck squamous cell carcinomas (HNSCC), characterized by the high frequency of local recurrence and distant metastases, is mostly related to highly malignant and resistant to apoptosis, resulting in significant insensitivity to chemotherapy. Telomerase reverse transcriptase (TERT), as the catalytic subunit of telomerase, was implicated in the telomerase-mediated cellular transformation, proliferation, stemness and cell survival. Moreover, overexpression of human TERT (hTERT) is reported to be correlated with advanced invasive stage of the tumor progression and poor prognosis. Here, we show that hTERT potentially mediated the apoptotic resistance and blockade of telomerase reverse transcriptase could enhance chemosensitivity in head and neck cancers. Mechanistically, hTERT interacts with the phosphorylation of AKT and ERK to suppress the expression of p53, ultimately, leading to modulation of the cellular sensitivity to chemotherapy. Thus, these findings suggest that hTERT targeting could be an attractive approach in combination with conventional chemotherapies for patients suffering from chemoinsensitivity or refractory HNSCC.
Collapse
Affiliation(s)
- Tengda Zhao
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China.,Department of Oral and Maxillofacial Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Fengchun Hu
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China.,Department of Stomatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xingguang Liu
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| | - Qian Tao
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Transcription Regulation of the Human Telomerase Reverse Transcriptase (hTERT) Gene. Genes (Basel) 2016; 7:genes7080050. [PMID: 27548225 PMCID: PMC4999838 DOI: 10.3390/genes7080050] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/23/2016] [Accepted: 08/01/2016] [Indexed: 12/11/2022] Open
Abstract
Embryonic stem cells and induced pluripotent stem cells have the ability to maintain their telomere length via expression of an enzymatic complex called telomerase. Similarly, more than 85%–90% of cancer cells are found to upregulate the expression of telomerase, conferring them with the potential to proliferate indefinitely. Telomerase Reverse Transcriptase (TERT), the catalytic subunit of telomerase holoenzyme, is the rate-limiting factor in reconstituting telomerase activity in vivo. To date, the expression and function of the human Telomerase Reverse Transcriptase (hTERT) gene are known to be regulated at various molecular levels (including genetic, mRNA, protein and subcellular localization) by a number of diverse factors. Among these means of regulation, transcription modulation is the most important, as evident in its tight regulation in cancer cell survival as well as pluripotent stem cell maintenance and differentiation. Here, we discuss how hTERT gene transcription is regulated, mainly focusing on the contribution of trans-acting factors such as transcription factors and epigenetic modifiers, as well as genetic alterations in hTERT proximal promoter.
Collapse
|
9
|
Robson A, Shukur Z, Ally M, Kluk J, Liu K, Pincus L, Sahni D, Sundram U, Subtil A, Karai L, Kempf W, Schieke S, Coates P. Immunocytochemical p63 expression discriminates between primary cutaneous follicle centre cell and diffuse large B cell lymphoma-leg type, and is of the TAp63 isoform. Histopathology 2016; 69:11-9. [PMID: 26332336 DOI: 10.1111/his.12855] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/28/2015] [Indexed: 12/20/2022]
Abstract
AIMS The p63 gene shares structural and functional homologies with the p53 family of transcriptional activators, but differs in exhibiting a consistent expression pattern in normal tissues. Although p63 is rarely mutated in malignancy studies of primary human tumours and cell lines suggest that p63 may promote tumour development. In non-Hodgkin's nodal lymphoma, TAp63 expression in follicular lymphoma (54%) and diffuse large B cell lymphoma (34%) has been described and correlated with the proliferative index. In this study, we analysed a series of primary cutaneous B cell lymphomas for immunohistochemical expression of p63. METHODS AND RESULTS Thirty cases of diffuse large B cell lymphoma leg type (pcDLBCLL) and 34 cases of follicle centre cell lymphoma (pcFCCL) were stained using a generic antibody to p63, and a subset of these with an antibody specific for delta-Np63 isoform. The results indicate a significant difference between pcDLBCLL (21 of 30) and pcFCCL (four of 34) in p63 expression (P = 0.000); expression correlated strongly with the proliferation rate as assessed by Ki-67 (P = 0.015). None of the p63((+)) cases tested expressed the delta-Np63 isoform, suggesting that expression is of the TAp63 isoform. CONCLUSIONS Functional studies are required to clarify the significance of p63 overexpression in primary cutaneous B cell lymphoma.
Collapse
Affiliation(s)
| | - Zena Shukur
- St John's Institute of Dermatology, London, UK
| | - Mina Ally
- Department of Dermatology, Stanford University, Stanford, CA, USA
| | | | - Kun Liu
- Division of Health and Social Care Research, Kings College London, London, UK
| | - Laura Pincus
- Department of Pathology, UCSF, San Francisco, CA, USA
| | - Debjani Sahni
- Department of Dermatology, Boston University Medical Center, Boston, MA, USA
| | - Uma Sundram
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Antonio Subtil
- Dermatopathology Department, Yale University School of Medicine, New Haven, CT, USA
| | | | - Werner Kempf
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Stefan Schieke
- Department of Dermatology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Philip Coates
- Dundee Cancer Centre, Ninewells Hospital and Medical School, Dundee, UK
| |
Collapse
|
10
|
Shi Z, Gu T, Xin H, Wu J, Xu C, Zhang C, He Q, Ruan D. Intervention of rAAV-hTERT-Transducted Nucleus Pulposus Cells in Early Stage of Intervertebral Disc Degeneration: A Study in Canine Model. Tissue Eng Part A 2015; 21:2186-94. [PMID: 25953361 DOI: 10.1089/ten.tea.2014.0408] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES To investigate the efficacy of recombinant adeno-associated virus (rAAV)-human telomerase reverse transcriptase (hTERT)-transducted nucleus pulposus cells (NPCs) in disc degeneration process in a canine disc degeneration model. METHODS The intervertebral disc degeneration of lumbar (L) 1-2, L3-4, and L5-6, from 12 female mongrels was prepared with the 20-gauge biopsy gun. Four weeks after animal model preparation, intervention experiment with rAAV-hTERT-transducted NPCs was conducted: group A, L1-2, serum-free medium with rAAV-hTERT modified NPCs; group B, L3-4, serum-free medium with NPCs; group C, L5-6, serum-free medium alone. Canines underwent digital radiography and magnetic resonance imaging 1 day before intervention, and 4, 8, and 12 weeks after intervention to evaluate the change of disc height and hydration status of interventional intervertebral discs. Twelve weeks after intervention, histological, biomechanical, and biochemical studies were carried out. RESULTS The rAAV-hTERT-transducted NPCs were constructed successfully. The mRNA level of hTERT from rAAV-hTERT-transfected NPCs increased obviously. There was no significant change of disc height index observed between groups and within groups. The relative grayscale index (RGI) was maintained 8 weeks after the intervention in group A, whereas in group B and group C, the RGI decreased significantly (p<0.05). No significant differences of the angle of lateral bending and extension-flexion bending were observed in group A compared with other groups (p>0.05). The morphology of disc structure was preserved in group A. In group B, the structure of inner annulus was broken down and the jelly-like nucleus pulposus (NP) tissue transmitted into the fibrocartilaginous tissue. In group C, the jelly-like NP tissue was completely replaced by fibrocartilaginous tissue. In the NP, the content of proteoglycan (PG) and collagen II was higher in group A than in group C (p<0.05). The content of PG was 13, 8.9, and 15.6 times higher than the content of collagen II in group A, group B, and group C, respectively. CONCLUSIONS In 12 weeks of observation, rAAV-hTERT-transducted NPCs could delay the degeneration process in the canine model which was superior than the capacity of NPCs in preserving structure integrity, content of extracellular matrix, and mechanical stability.
Collapse
Affiliation(s)
- Zhiyuan Shi
- 1 Department of Orthopedic Surgery, Navy General Hospital , Beijing, People's Republic of China .,2 Department of Burn and Plastic Surgery, Navy General Hospital , Beijing, People's Republic of China
| | - Tao Gu
- 1 Department of Orthopedic Surgery, Navy General Hospital , Beijing, People's Republic of China
| | - Hongkui Xin
- 1 Department of Orthopedic Surgery, Navy General Hospital , Beijing, People's Republic of China
| | - Jianhong Wu
- 1 Department of Orthopedic Surgery, Navy General Hospital , Beijing, People's Republic of China
| | - Cheng Xu
- 1 Department of Orthopedic Surgery, Navy General Hospital , Beijing, People's Republic of China
| | - Chao Zhang
- 1 Department of Orthopedic Surgery, Navy General Hospital , Beijing, People's Republic of China
| | - Qing He
- 1 Department of Orthopedic Surgery, Navy General Hospital , Beijing, People's Republic of China
| | - Dike Ruan
- 1 Department of Orthopedic Surgery, Navy General Hospital , Beijing, People's Republic of China
| |
Collapse
|
11
|
Mathematical model of a telomerase transcriptional regulatory network developed by cell-based screening: analysis of inhibitor effects and telomerase expression mechanisms. PLoS Comput Biol 2014; 10:e1003448. [PMID: 24550717 PMCID: PMC3923661 DOI: 10.1371/journal.pcbi.1003448] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 11/30/2013] [Indexed: 12/16/2022] Open
Abstract
Cancer cells depend on transcription of telomerase reverse transcriptase (TERT). Many transcription factors affect TERT, though regulation occurs in context of a broader network. Network effects on telomerase regulation have not been investigated, though deeper understanding of TERT transcription requires a systems view. However, control over individual interactions in complex networks is not easily achievable. Mathematical modelling provides an attractive approach for analysis of complex systems and some models may prove useful in systems pharmacology approaches to drug discovery. In this report, we used transfection screening to test interactions among 14 TERT regulatory transcription factors and their respective promoters in ovarian cancer cells. The results were used to generate a network model of TERT transcription and to implement a dynamic Boolean model whose steady states were analysed. Modelled effects of signal transduction inhibitors successfully predicted TERT repression by Src-family inhibitor SU6656 and lack of repression by ERK inhibitor FR180204, results confirmed by RT-QPCR analysis of endogenous TERT expression in treated cells. Modelled effects of GSK3 inhibitor 6-bromoindirubin-3′-oxime (BIO) predicted unstable TERT repression dependent on noise and expression of JUN, corresponding with observations from a previous study. MYC expression is critical in TERT activation in the model, consistent with its well known function in endogenous TERT regulation. Loss of MYC caused complete TERT suppression in our model, substantially rescued only by co-suppression of AR. Interestingly expression was easily rescued under modelled Ets-factor gain of function, as occurs in TERT promoter mutation. RNAi targeting AR, JUN, MXD1, SP3, or TP53, showed that AR suppression does rescue endogenous TERT expression following MYC knockdown in these cells and SP3 or TP53 siRNA also cause partial recovery. The model therefore successfully predicted several aspects of TERT regulation including previously unknown mechanisms. An extrapolation suggests that a dominant stimulatory system may programme TERT for transcriptional stability. Tumour cells acquire the ability to divide and multiply indefinitely whereas normal cells can undergo only a limited number of divisions. The switch to immortalisation of the tumour cell is dependent on maintaining the integrity of telomere DNA which forms chromosome ends and is achieved through activation of the telomerase enzyme by turning on synthesis of the TERT gene, which is usually silenced in normal cells. Suppressing telomerase is toxic to cancer cells and it is widely believed that understanding TERT regulation could lead to potential cancer therapies. Previous studies have identified many of the factors which individually contribute to activate or repress TERT levels in cancer cells. However, transcription factors do not behave in isolation in cells, but rather as a complex co-operative network displaying inter-regulation. Therefore, full understanding of TERT regulation will require a broader view of the transcriptional network. In this paper we take a computational modelling approach to study TERT regulation at the network level. We tested interactions between 14 TERT-regulatory factors in an ovarian cancer cell line using a screening approach and developed a model to analyse which network interventions were able to silence TERT.
Collapse
|
12
|
hTERT: Another brick in the wall of cancer cells. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2013; 752:119-128. [DOI: 10.1016/j.mrrev.2012.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/28/2012] [Accepted: 12/10/2012] [Indexed: 01/06/2023]
|