1
|
Guo Y, Gong W, Wang L, Guo J, Jin G, Gu G, Guo Z. Characterization and biochemical investigation of the potential inositol monophosphate phosphatase involved in bacterial mycothiol biosynthesis. J Carbohydr Chem 2019. [DOI: 10.1080/07328303.2018.1559326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yuchuan Guo
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
- Department of Chemistry, University of Florida, Gainesville, USA
| | - Wei Gong
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| | - Lizhen Wang
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| | - Jiatong Guo
- Department of Chemistry, University of Florida, Gainesville, USA
| | - Guoxia Jin
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, China
| | - Guofeng Gu
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| | - Zhongwu Guo
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
- Department of Chemistry, University of Florida, Gainesville, USA
| |
Collapse
|
2
|
Huang X, Hernick M. Automated docking studies provide insights into molecular determinants of ligand recognition by N-acetyl-1-D-myo-inosityl-2-amino-2-deoxy-α-D-glucopyranoside deacetylase (MshB). Biopolymers 2016; 101:406-17. [PMID: 24037975 DOI: 10.1002/bip.22397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/19/2013] [Accepted: 08/20/2013] [Indexed: 11/10/2022]
Abstract
The metal-dependent deacetylase N-acetyl-1-D-myo-inosityl-2-amino-2-deoxy-α-D-glucopyranoside deacetylase (MshB) catalyzes the deacetylation of N-acetyl-1-D-myo-inosityl-2-amino-2-deoxy-α-D-glucopyranoside (GlcNAc-Ins), the committed step in mycothiol (MSH) biosynthesis. MSH is the thiol redox buffer used by mycobacteria to protect against oxidative damage and is involved in the detoxification of xenobiotics. As such, MshB is a target for the discovery of new drugs to treat tuberculosis (TB). While MshB substrate specificity and inhibitor activity have been probed extensively using enzyme kinetics, information regarding the molecular basis for the observed differences in substrate specificity and inhibitor activity is lacking. Herein we begin to examine the molecular determinants of MshB substrate specificity using automated docking studies with a set of known MshB substrates. Results from these studies offer insights into molecular recognition by MshB via identification of side chains and dynamic loops that may play roles in ligand binding. Additionally, results from these studies suggest that a hydrophobic cavity adjacent to the active site may be one important determinant of MshB substrate specificity. Importantly, this hydrophobic cavity may be advantageous for the design of MshB inhibitors with high affinity and specificity as potential TB drugs.
Collapse
Affiliation(s)
- Xinyi Huang
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, 24061
| | | |
Collapse
|
3
|
Mazurkewich S, Brott AS, Kimber MS, Seah SYK. Structural and Kinetic Characterization of the 4-Carboxy-2-hydroxymuconate Hydratase from the Gallate and Protocatechuate 4,5-Cleavage Pathways of Pseudomonas putida KT2440. J Biol Chem 2016; 291:7669-86. [PMID: 26867578 PMCID: PMC4817193 DOI: 10.1074/jbc.m115.682054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 02/03/2016] [Indexed: 11/06/2022] Open
Abstract
The bacterial catabolism of lignin and its breakdown products is of interest for applications in industrial processing of ligno-biomass. The gallate degradation pathway ofPseudomonas putidaKT2440 requires a 4-carboxy-2-hydroxymuconate (CHM) hydratase (GalB), which has a 12% sequence identity to a previously identified CHM hydratase (LigJ) fromSphingomonassp. SYK-6. The structure of GalB was determined and found to be a member of the PIG-LN-acetylglucosamine deacetylase family; GalB is structurally distinct from the amidohydrolase fold of LigJ. LigJ has the same stereospecificity as GalB, providing an example of convergent evolution for catalytic conversion of a common metabolite in bacterial aromatic degradation pathways. Purified GalB contains a bound Zn(2+)cofactor; however the enzyme is capable of using Fe(2+)and Co(2+)with similar efficiency. The general base aspartate in the PIG-L deacetylases is an alanine in GalB; replacement of the alanine with aspartate decreased the GalB catalytic efficiency for CHM by 9.5 × 10(4)-fold, and the variant enzyme did not have any detectable hydrolase activity. Kinetic analyses and pH dependence studies of the wild type and variant enzymes suggested roles for Glu-48 and His-164 in the catalytic mechanism. A comparison with the PIG-L deacetylases led to a proposed mechanism for GalB wherein Glu-48 positions and activates the metal-ligated water for the hydration reaction and His-164 acts as a catalytic acid.
Collapse
Affiliation(s)
- Scott Mazurkewich
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Ashley S Brott
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Matthew S Kimber
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Stephen Y K Seah
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
4
|
Romero JM, Martin M, Ramirez CL, Dumas VG, Marti MA. Efficient Calculation of Enzyme Reaction Free Energy Profiles Using a Hybrid Differential Relaxation Algorithm: Application to Mycobacterial Zinc Hydrolases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 100:33-65. [PMID: 26415840 DOI: 10.1016/bs.apcsb.2015.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Determination of the free energy profile for an enzyme reaction mechanism is of primordial relevance, paving the way for our understanding of the enzyme's catalytic power at the molecular level. Although hybrid, mostly DFT-based, QM/MM methods have been extensively applied to this type of studies, achieving accurate and statistically converged results at a moderate computational cost is still an open challenge. Recently, we have shown that accurate results can be achieved in less computational time, combining Jarzynski's relationship with a hybrid differential relaxation algorithm (HyDRA), which allows partial relaxation of the solvent during the nonequilibrium steering of the reaction. In this work, we have applied this strategy to study two mycobacterial zinc hydrolases. Mycobacterium tuberculosis infections are still a worldwide problem and thus characterization and validation of new drug targets is an intense field of research. Among possible drug targets, recently two essential zinc hydrolases, MshB (Rv1170) and MA-amidase (Rv3717), have been proposed and structurally characterized. Although possible mechanisms have been proposed by analogy to the widely studied human Zn hydrolases, several key issues, particularly those related to Zn coordination sphere and its role in catalysis, remained unanswered. Our results show that mycobacterial Zn hydrolases share a basic two-step mechanism. First, the attacking water becomes deprotonated by the conserved base and establishes the new C-O bond leading to a tetrahedral intermediate. The intermediate requires moderate reorganization to allow for proton transfer to the amide N and C-N bond breaking to occur in the second step. Zn ion plays a key role in stabilizing the tetrahedral intermediate and balancing the negative charge of the substrate during hydroxide ion attack. Finally, comparative analysis of other Zn hydrolases points to a convergent mechanistic evolution.
Collapse
Affiliation(s)
- Juan Manuel Romero
- Instituto de Química Física de los Materiales Medio Ambiente y Energía (INQUIMAE), UBA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Mariano Martin
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Claudia Lilián Ramirez
- Instituto de Química Física de los Materiales Medio Ambiente y Energía (INQUIMAE), UBA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Victoria Gisel Dumas
- Instituto de Química Física de los Materiales Medio Ambiente y Energía (INQUIMAE), UBA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Marcelo Adrián Marti
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Huang X, Hernick M. Molecular Determinants of N-Acetylglucosamine Recognition and Turnover by N-Acetyl-1-d-myo-inosityl-2-amino-2-deoxy-α-d-glucopyranoside Deacetylase (MshB). Biochemistry 2015; 54:3784-90. [DOI: 10.1021/acs.biochem.5b00068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xinyi Huang
- Department
of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Marcy Hernick
- Department
of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Pharmaceutical Sciences, Appalachian College of Pharmacy, Oakwood, Virginia 24631, United States
| |
Collapse
|
6
|
Viars S, Valentine J, Hernick M. Structure and function of the LmbE-like superfamily. Biomolecules 2014; 4:527-45. [PMID: 24970229 PMCID: PMC4101496 DOI: 10.3390/biom4020527] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/18/2014] [Accepted: 04/18/2014] [Indexed: 11/17/2022] Open
Abstract
The LmbE-like superfamily is comprised of a series of enzymes that use a single catalytic metal ion to catalyze the hydrolysis of various substrates. These substrates are often key metabolites for eukaryotes and prokaryotes, which makes the LmbE-like enzymes important targets for drug development. Herein we review the structure and function of the LmbE-like proteins identified to date. While this is the newest superfamily of metallohydrolases, a growing number of functionally interesting proteins from this superfamily have been characterized. Available crystal structures of LmbE-like proteins reveal a Rossmann fold similar to lactate dehydrogenase, which represented a novel fold for (zinc) metallohydrolases at the time the initial structure was solved. The structural diversity of the N-acetylglucosamine containing substrates affords functional diversity for the LmbE-like enzyme superfamily. The majority of enzymes identified to date are metal-dependent deacetylases that catalyze the hydrolysis of a N-acetylglucosamine moiety on substrate using a combination of amino acid side chains and a single bound metal ion, predominantly zinc. The catalytic zinc is coordinated to proteins via His2-Asp-solvent binding site. Additionally, studies indicate that protein dynamics play important roles in regulating access to the active site and facilitating catalysis for at least two members of this protein superfamily.
Collapse
Affiliation(s)
- Shane Viars
- Department of Pharmaceutical Sciences, Appalachian College of Pharmacy, Oakwood, VA 24631, USA.
| | - Jason Valentine
- Department of Pharmaceutical Sciences, Appalachian College of Pharmacy, Oakwood, VA 24631, USA.
| | - Marcy Hernick
- Department of Pharmaceutical Sciences, Appalachian College of Pharmacy, Oakwood, VA 24631, USA.
| |
Collapse
|
7
|
Hernick M. Mycothiol: a target for potentiation of rifampin and other antibiotics againstMycobacterium tuberculosis. Expert Rev Anti Infect Ther 2014; 11:49-67. [DOI: 10.1586/eri.12.152] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Nilewar SS, Kathiravan MK. Mycothiol: a promising antitubercular target. Bioorg Chem 2013; 52:62-8. [PMID: 24368170 DOI: 10.1016/j.bioorg.2013.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/12/2013] [Accepted: 11/15/2013] [Indexed: 11/30/2022]
Abstract
Tuberculosis (TB) is the world's second commonest cause of death next to HIV/AIDS. The increasing emergence of multi drug resistance and the recalcitrant nature of persistent infections pose an additional challenge for the treatment of TB. Due to the development of resistance to conventional antibiotics there is a need for new therapeutic strategies to combat M. tuberculosis. One such target is Mycothiol (MSH), a major low molecular-mass thiol in mycobacteria, an important cellular anti-oxidant. MSH is present only in actinomycetes and hence is a good target. This review explores mycothiol as a potential target against tuberculosis and various research ongoing worldwide.
Collapse
Affiliation(s)
- S S Nilewar
- Sinhgad College of Pharmacy, Vadgoan (BK), Pune 411041, India
| | - M K Kathiravan
- Sinhgad College of Pharmacy, Vadgoan (BK), Pune 411041, India.
| |
Collapse
|
9
|
Cross-functionalities of Bacillus deacetylases involved in bacillithiol biosynthesis and bacillithiol-S-conjugate detoxification pathways. Biochem J 2013; 454:239-47. [PMID: 23758290 DOI: 10.1042/bj20130415] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BshB, a key enzyme in bacillithiol biosynthesis, hydrolyses the acetyl group from N-acetylglucosamine malate to generate glucosamine malate. In Bacillus anthracis, BA1557 has been identified as the N-acetylglucosamine malate deacetylase (BshB); however, a high content of bacillithiol (~70%) was still observed in the B. anthracis ∆BA1557 strain. Genomic analysis led to the proposal that another deacetylase could exhibit cross-functionality in bacillithiol biosynthesis. In the present study, BA1557, its paralogue BA3888 and orthologous Bacillus cereus enzymes BC1534 and BC3461 have been characterized for their deacetylase activity towards N-acetylglucosamine malate, thus providing biochemical evidence for this proposal. In addition, the involvement of deacetylase enzymes is also expected in bacillithiol-detoxifying pathways through formation of S-mercapturic adducts. The kinetic analysis of bacillithiol-S-bimane conjugate favours the involvement of BA3888 as the B. anthracis bacillithiol-S-conjugate amidase (Bca). The high degree of specificity of this group of enzymes for its physiological substrate, along with their similar pH-activity profile and Zn²⁺-dependent catalytic acid-base reaction provides further evidence for their cross-functionalities.
Collapse
|
10
|
Fahey RC. Glutathione analogs in prokaryotes. Biochim Biophys Acta Gen Subj 2012; 1830:3182-98. [PMID: 23075826 DOI: 10.1016/j.bbagen.2012.10.006] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/25/2012] [Accepted: 10/08/2012] [Indexed: 01/17/2023]
Abstract
BACKGROUND Oxygen is both essential and toxic to all forms of aerobic life and the chemical versatility and reactivity of thiols play a key role in both aspects. Cysteine thiol groups have key catalytic functions in enzymes but are readily damaged by reactive oxygen species (ROS). Low-molecular-weight thiols provide protective buffers against the hazards of ROS toxicity. Glutathione is the small protective thiol in nearly all eukaryotes but in prokaryotes the situation is far more complex. SCOPE OF REVIEW This review provides an introduction to the diversity of low-molecular-weight thiol protective systems in bacteria. The topics covered include the limitations of cysteine as a protector, the multiple origins and distribution of glutathione biosynthesis, mycothiol biosynthesis and function in Actinobacteria, recent discoveries involving bacillithiol found in Firmicutes, new insights on the biosynthesis and distribution of ergothioneine, and the potential protective roles played by coenzyme A and other thiols. MAJOR CONCLUSIONS Bacteria have evolved a diverse collection of low-molecular-weight protective thiols to deal with oxygen toxicity and environmental challenges. Our understanding of how many of these thiols are produced and utilized is still at an early stage. GENERAL SIGNIFICANCE Extensive diversity existed among prokaryotes prior to evolution of the cyanobacteria and the development of an oxidizing atmosphere. Bacteria that managed to adapt to life under oxygen evolved, or acquired, the ability to produce a variety of small thiols for protection against the hazards of aerobic metabolism. Many pathogenic prokaryotes depend upon novel thiol protection systems that may provide targets for new antibacterial agents. This article is part of a Special Issue entitled Cellular functions of glutathione.
Collapse
Affiliation(s)
- Robert C Fahey
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
11
|
Broadley SG, Gumbart JC, Weber BW, Marakalala MJ, Steenkamp DJ, Sewell BT. A new crystal form of MshB from Mycobacterium tuberculosis with glycerol and acetate in the active site suggests the catalytic mechanism. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1450-9. [PMID: 23090394 DOI: 10.1107/s090744491203449x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 08/02/2012] [Indexed: 11/10/2022]
Abstract
MshB, a zinc-based deacetylase, catalyses a step in the mycothiol biosynthetic pathway that involves the deacetylation of 1-O-(2-acetamido-2-deoxy-α-D-glucopyranosyl)-D-myo-inositol (GlcNAc-Ins), via cleavage of an amide bond, to 1-O-(2-amino-2-deoxy-α-D-glucopyranosyl)-D-myo-inositol (GlcN-Ins) and acetate. In this study, MshB was expressed, purified and crystallized. A new crystal form was encountered in 0.1 M sodium acetate, 0.2 M ammonium sulfate, 25% PEG 4000 pH 4.6. The crystals diffracted to 1.95 Å resolution and the resulting electron-density map revealed glycerol and the reaction product, acetate, in the active site. These ligands enabled the natural substrate GlcNAc-Ins to be modelled in the active site with some certainty. One acetate O atom is hydrogen bonded to Tyr142 and is located 2.5 Å from the catalytic zinc. The other acetate O atom is located 2.7 Å from a carboxylate O atom of Asp15. This configuration strongly suggests that Asp15 acts both as a general base catalyst in the nucleophilic attack of water on the amide carbonyl C atom and in its protonated form acts as a general acid to protonate the amide N atom. The configuration of Tyr142 differs from that observed previously in crystal structures of MshB (PDB entries 1q74 and 1q7t) and its location provides direct structural support for recently published biochemical and mutational studies suggesting that this residue is involved in a conformational change on substrate binding and contributes to the oxyanion hole that stabilizes the tetrahedral intermediate.
Collapse
Affiliation(s)
- Simon Gareth Broadley
- Department of Molecular and Cell Biology, University of Cape Town, University Avenue, Rondebosch, Western Cape 7700, South Africa
| | | | | | | | | | | |
Collapse
|
12
|
Lamprecht DA, Muneri NO, Eastwood H, Naidoo KJ, Strauss E, Jardine A. An enzyme-initiated Smiles rearrangement enables the development of an assay of MshB, the GlcNAc-Ins deacetylase of mycothiol biosynthesis. Org Biomol Chem 2012; 10:5278-88. [PMID: 22678300 DOI: 10.1039/c2ob25429h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MshB is the N-acetyl-1-D-myo-inosityl-2-amino-2-deoxy-D-glucopyranoside (GlcNAc-Ins) deacetylase active as one of the enzymes involved in the biosynthesis of mycothiol (MSH), a protective low molecular weight thiol present only in Mycobacterium tuberculosis and other actinomycetes. In this study, structural analogues of GlcNAc-Ins in which the inosityl moiety is replaced by a chromophore were synthesized and evaluated as alternate substrates of MshB, with the goal of identifying a compound that would be useful in high-throughput assays of the enzyme. In an unexpected and surprising finding one of the GlcNAc-Ins analogues is shown to undergo a Smiles rearrangement upon MshB-mediated deacetylation, uncovering a free thiol group. We demonstrate that this chemistry can be exploited for the development of the first continuous assay of MshB activity based on the detection of thiol formation by DTNB (Ellman's reagent); such an assay should be ideally suited for the identification of MshB inhibitors by means of high-throughput screens in microplates.
Collapse
Affiliation(s)
- Dirk A Lamprecht
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | | | | | | | | | | |
Collapse
|