1
|
Wierzbicka-Woś A, Henneberger R, Batista-García RA, Martínez-Ávila L, Jackson SA, Kennedy J, Dobson ADW. Biochemical Characterization of a Novel Monospecific Endo-β-1,4-Glucanase Belonging to GH Family 5 From a Rhizosphere Metagenomic Library. Front Microbiol 2019; 10:1342. [PMID: 31258522 PMCID: PMC6587912 DOI: 10.3389/fmicb.2019.01342] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/29/2019] [Indexed: 11/16/2022] Open
Abstract
Cellulases have a broad range of different industrial applications, ranging from food and beverages to pulp and paper and the biofuels area. Here a metagenomics based strategy was used to identify the cellulolytic enzyme CelRH5 from the rhizosphere. CelRH5 is a novel monospecific endo-β-1,4-glucanase belonging to the glycosyl hydrolase family 5 (GH5). Structural based modeling analysis indicated that CelRH5 is related to endo-β-1,4-glucanases derived from thermophilic microorganisms such as Thermotoga maritima, Fervidobacterium nodosum, and Ruminiclostridium thermocellum sharing 30-40% amino acid sequence identity. The molecular weight of the enzyme was determined as 40.5 kDa. Biochemical analyses revealed that the enzyme displayed good activity with soluble forms of cellulose as a substrate such as ostazin brilliant red hydroxyethyl cellulose (OBR-HEC), carboxymethylcellulose (CMC), hydroxyethyl cellulose (HEC), and insoluble azurine cross-linked hydroxyethylcellulose (AZCL-HEC). The enzyme shows highest enzymatic activity at pH 6.5 with high pH tolerance, remaining stable in the pH range 4.5–8.5. Highest activity was observed at 40°C, but CelRH5 is psychrotolerant being active and stable at temperatures below 30°C. The presence of the final products of cellulose hydrolysis (glucose and cellobiose) or metal ions such as Na+, K+, Li+, and Mg2+, as well as ethylenediaminetetraacetic acid (EDTA), urea, dithiothreitol (DTT), dimethyl sulfoxide (DMSO), 2-mercaptoethanol (2-ME) or glycerol, did not have a marked effect on CelRH5 activity. However, the enzyme is quite sensitive to the presence of 10 mM ions Zn2+, Ni2+, Co2+, Fe3+ and reagents such as 1 M guanidine HCl, 0.1% sodium dodecyl sulfate (SDS) and 20% ethanol. Given that it is psychrotolerant and retains activity in the presence of final cellulose degradation products, metal ions and various reagents, which are common in many technological processes; CelRH5 may be potential suitability for a variety of different biotechnological applications.
Collapse
Affiliation(s)
- Anna Wierzbicka-Woś
- Environmental Research Institute, University College Cork, Cork, Ireland.,Department of Microbiology, Faculty of Biology, University of Szczecin, Szczecin, Poland
| | - Ruth Henneberger
- Environmental Research Institute, University College Cork, Cork, Ireland.,Institute for Molecular Health Sciences, ETH Zürich, Zurich, Switzerland
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Liliana Martínez-Ávila
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Stephen A Jackson
- Environmental Research Institute, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | | | - Alan D W Dobson
- Environmental Research Institute, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
2
|
Duan CJ, Huang MY, Pang H, Zhao J, Wu CX, Feng JX. Characterization of a novel theme C glycoside hydrolase family 9 cellulase and its CBM-chimeric enzymes. Appl Microbiol Biotechnol 2017; 101:5723-5737. [DOI: 10.1007/s00253-017-8320-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/09/2017] [Accepted: 04/29/2017] [Indexed: 01/27/2023]
|
3
|
Extra carbohydrate binding module contributes to the processivity and catalytic activity of a non-modular hydrolase family 5 endoglucanase from Fomitiporia mediterranea MF3/22. Enzyme Microb Technol 2016; 91:42-51. [DOI: 10.1016/j.enzmictec.2016.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/12/2016] [Accepted: 06/01/2016] [Indexed: 11/23/2022]
|
4
|
Ichikawa S, Yoshida M, Karita S, Kondo M, Goto M. Carbohydrate-binding modules influence substrate specificity of an endoglucanase from Clostridium thermocellum. Biosci Biotechnol Biochem 2016. [DOI: 10.1080/09168451.2015.1069696] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
Most cellulases contain carbohydrate-binding modules (CBMs) that largely contribute to their activity for insoluble substrates. Clostridium thermocellum Cel5E is an endoglucanase having xylanolytic activity. The Cel5E originally has a family 11 CBM preferentially binding to β-1,4- and β-1,3-1,4-mixed linkage glucans. In this study, we replaced the CBM with a different type of CBM, either a family 3 microcrystalline cellulose-directed CBM from Clostridium josui scaffoldin, or a family 6 xylan-directed CBM from Clostridium stercorarium xylanase 11A. Chimeric endoglucanases showed enhanced activity that was affected by CBM binding specificity. These chimeric enzymes could efficiently degrade milled lignocellulosic materials, such as corn hulls, because of heterologous components in the plant cell wall, indicating that diverse CBMs play roles in degradation of lignocellulosic materials.
Collapse
Affiliation(s)
- Shunsuke Ichikawa
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Japan
| | - Mitsuki Yoshida
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Japan
| | - Shuichi Karita
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Japan
- Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Makoto Kondo
- Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Masakazu Goto
- Graduate School of Bioresources, Mie University, Tsu, Japan
| |
Collapse
|
5
|
Karita S. Carbohydrate-Binding Modules in Plant Cell Wall-Degrading Enzymes. TRENDS GLYCOSCI GLYC 2016. [DOI: 10.4052/tigg.1403.1j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
|
7
|
Wang J, Gao G, Li Y, Yang L, Liang Y, Jin H, Han W, Feng Y, Zhang Z. Cloning, Expression, and Characterization of a Thermophilic Endoglucanase, AcCel12B from Acidothermus cellulolyticus 11B. Int J Mol Sci 2015; 16:25080-95. [PMID: 26506341 PMCID: PMC4632791 DOI: 10.3390/ijms161025080] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/29/2015] [Accepted: 10/13/2015] [Indexed: 12/23/2022] Open
Abstract
The gene ABK52392 from the thermophilic bacterium Acidothermus cellulolyticus 11B was predicted to be endoglucanase and classified into glycoside hydrolase family 12. ABK52392 encodes a protein containing a catalytic domain and a carbohydrate binding module. ABK52392 was cloned and functionally expressed in Escherichia coli. After purification by Ni-NTA agarose affinity chromatography and Q-Sepharose® Fast Flow chromatography, the properties of the recombinant protein (AcCel12B) were characterized. AcCel12B exhibited optimal activity at pH 4.5 and 75 °C. The half-lives of AcCel12B at 60 and 70 °C were about 90 and 2 h, respectively, under acidic conditions. The specific hydrolytic activities of AcCel12B at 70 °C and pH 4.5 for sodium carboxymethylcellulose (CMC) and regenerated amorphous cellulose (RAC) were 118.3 and 104.0 U·mg−1, respectively. The Km and Vmax of AcCel12B for CMC were 25.47 mg·mL−1 and 131.75 U·mg−1, respectively. The time course of hydrolysis for RAC was investigated by measuring reducing ends in the soluble and insoluble phases. The total hydrolysis rate rapidly decreased after the early stage of incubation and the generation of insoluble reducing ends decreased earlier than that of soluble reducing ends. High thermostability of the cellulase indicates its potential commercial significance and it could be exploited for industrial application in the future.
Collapse
Affiliation(s)
- Junling Wang
- Key Laboratory for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun 130012, China.
- Department of Biotechnology, Jilin Agricultural Science and Technology College, Jilin 132101, China.
| | - Gui Gao
- Key Laboratory for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun 130012, China.
| | - Yuwei Li
- Key Laboratory for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun 130012, China.
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Liangzhen Yang
- Key Laboratory for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun 130012, China.
| | - Yanli Liang
- Key Laboratory for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun 130012, China.
| | - Hanyong Jin
- Key Laboratory for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun 130012, China.
| | - Weiwei Han
- Key Laboratory for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun 130012, China.
| | - Yan Feng
- Key Laboratory for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun 130012, China.
| | - Zuoming Zhang
- Key Laboratory for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun 130012, China.
| |
Collapse
|
8
|
Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Ståhlberg J, Beckham GT. Fungal Cellulases. Chem Rev 2015; 115:1308-448. [DOI: 10.1021/cr500351c] [Citation(s) in RCA: 533] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Christina M. Payne
- Department
of Chemical and Materials Engineering and Center for Computational
Sciences, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, Kentucky 40506, United States
| | - Brandon C. Knott
- National
Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver
West Parkway, Golden, Colorado 80401, United States
| | - Heather B. Mayes
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Henrik Hansson
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Michael E. Himmel
- Biosciences
Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Mats Sandgren
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Jerry Ståhlberg
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Gregg T. Beckham
- National
Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver
West Parkway, Golden, Colorado 80401, United States
| |
Collapse
|
9
|
Harris PV, Xu F, Kreel NE, Kang C, Fukuyama S. New enzyme insights drive advances in commercial ethanol production. Curr Opin Chem Biol 2014; 19:162-70. [DOI: 10.1016/j.cbpa.2014.02.015] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 02/08/2014] [Accepted: 02/12/2014] [Indexed: 01/19/2023]
|
10
|
Telke AA, Zhuang N, Ghatge SS, Lee SH, Ali Shah A, Khan H, Um Y, Shin HD, Chung YR, Lee KH, Kim SW. Engineering of family-5 glycoside hydrolase (Cel5A) from an uncultured bacterium for efficient hydrolysis of cellulosic substrates. PLoS One 2013; 8:e65727. [PMID: 23785445 PMCID: PMC3681849 DOI: 10.1371/journal.pone.0065727] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 04/27/2013] [Indexed: 01/29/2023] Open
Abstract
Cel5A, an endoglucanase, was derived from the metagenomic library of vermicompost. The deduced amino acid sequence of Cel5A shows high sequence homology with family-5 glycoside hydrolases, which contain a single catalytic domain but no distinct cellulose-binding domain. Random mutagenesis and cellulose-binding module (CBM) fusion approaches were successfully applied to obtain properties required for cellulose hydrolysis. After two rounds of error-prone PCR and screening of 3,000 mutants, amino acid substitutions were identified at various positions in thermotolerant mutants. The most heat-tolerant mutant, Cel5A_2R2, showed a 7-fold increase in thermostability. To enhance the affinity and hydrolytic activity of Cel5A on cellulose substrates, the family-6 CBM from Saccharophagus degradans was fused to the C-terminus of the Cel5A_2R2 mutant using overlap PCR. The Cel5A_2R2-CBM6 fusion protein showed 7-fold higher activity than the native Cel5A on Avicel and filter paper. Cellobiose was a major product obtained from the hydrolysis of cellulosic substrates by the fusion enzyme, which was identified by using thin layer chromatography analysis.
Collapse
Affiliation(s)
- Amar A. Telke
- Division of Applied Life Sciences (BK21), PMBBRC, Gyeongsang National University, Jinju, Republic of Korea
| | - Ningning Zhuang
- Division of Applied Life Sciences (BK21), PMBBRC, Gyeongsang National University, Jinju, Republic of Korea
| | - Sunil S. Ghatge
- Division of Applied Life Sciences (BK21), PMBBRC, Gyeongsang National University, Jinju, Republic of Korea
| | - Sook-Hee Lee
- Division of Applied Life Sciences (BK21), PMBBRC, Gyeongsang National University, Jinju, Republic of Korea
| | - Asad Ali Shah
- Division of Applied Life Sciences (BK21), PMBBRC, Gyeongsang National University, Jinju, Republic of Korea
| | - Haji Khan
- Division of Applied Life Sciences (BK21), PMBBRC, Gyeongsang National University, Jinju, Republic of Korea
| | - Youngsoon Um
- Center for Environmental Technology Research, KIST, Seoul, Republic of Korea
| | - Hyun-Dong Shin
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Young Ryun Chung
- Division of Applied Life Sciences (BK21), PMBBRC, Gyeongsang National University, Jinju, Republic of Korea
| | - Kon Ho Lee
- Division of Applied Life Sciences (BK21), PMBBRC, Gyeongsang National University, Jinju, Republic of Korea
- Department of Microbiology, School of Medicine, Gyeongsang National University, Jinju, Republic of Korea
- * E-mail: (SWK); (KHL)
| | - Seon-Won Kim
- Division of Applied Life Sciences (BK21), PMBBRC, Gyeongsang National University, Jinju, Republic of Korea
- * E-mail: (SWK); (KHL)
| |
Collapse
|