1
|
Binhi VN. Statistical Amplification of the Effects of Weak Magnetic Fields in Cellular Translation. Cells 2023; 12:724. [PMID: 36899858 PMCID: PMC10000676 DOI: 10.3390/cells12050724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
We assume that the enzymatic processes of recognition of amino acids and their addition to the synthesized molecule in cellular translation include the formation of intermediate pairs of radicals with spin-correlated electrons. The mathematical model presented describes the changes in the probability of incorrectly synthesized molecules in response to a change in the external weak magnetic field. A relatively high chance of errors has been shown to arise from the statistical enhancement of the low probability of local incorporation errors. This statistical mechanism does not require a long thermal relaxation time of electron spins of about 1 μs-a conjecture often used to match theoretical models of magnetoreception with experiments. The statistical mechanism allows for experimental verification by testing the usual Radical Pair Mechanism properties. In addition, this mechanism localizes the site where magnetic effects originate, the ribosome, which makes it possible to verify it by biochemical methods. This mechanism predicts a random nature of the nonspecific effects caused by weak and hypomagnetic fields and agrees with the diversity of biological responses to a weak magnetic field.
Collapse
Affiliation(s)
- Vladimir N Binhi
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| |
Collapse
|
2
|
Arceo XG, Koslover EF, Zid BM, Brown AI. Mitochondrial mRNA localization is governed by translation kinetics and spatial transport. PLoS Comput Biol 2022; 18:e1010413. [PMID: 35984860 PMCID: PMC9432724 DOI: 10.1371/journal.pcbi.1010413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/31/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022] Open
Abstract
For many nuclear-encoded mitochondrial genes, mRNA localizes to the mitochondrial surface co-translationally, aided by the association of a mitochondrial targeting sequence (MTS) on the nascent peptide with the mitochondrial import complex. For a subset of these co-translationally localized mRNAs, their localization is dependent on the metabolic state of the cell, while others are constitutively localized. To explore the differences between these two mRNA types we developed a stochastic, quantitative model for MTS-mediated mRNA localization to mitochondria in yeast cells. This model includes translation, applying gene-specific kinetics derived from experimental data; and diffusion in the cytosol. Even though both mRNA types are co-translationally localized we found that the steady state number, or density, of ribosomes along an mRNA was insufficient to differentiate the two mRNA types. Instead, conditionally-localized mRNAs have faster translation kinetics which modulate localization in combination with changes to diffusive search kinetics across metabolic states. Our model also suggests that the MTS requires a maturation time to become competent to bind mitochondria. Our work indicates that yeast cells can regulate mRNA localization to mitochondria by controlling mitochondrial volume fraction (influencing diffusive search times) and gene translation kinetics (adjusting mRNA binding competence) without the need for mRNA-specific binding proteins. These results shed light on both global and gene-specific mechanisms that enable cells to alter mRNA localization in response to changing metabolic conditions.
Collapse
Affiliation(s)
- Ximena G. Arceo
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California, United States of America
| | - Elena F. Koslover
- Department of Physics, University of California, San Diego, La Jolla, California, United States of America
| | - Brian M. Zid
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California, United States of America
| | - Aidan I. Brown
- Department of Physics, Ryerson University, Toronto, Canada
| |
Collapse
|
3
|
Zhao L, Fu G, Cui Y, Xu Z, Cai T, Zhang D. Compensating Complete Loss of Signal Recognition Particle During Co-translational Protein Targeting by the Translation Speed and Accuracy. Front Microbiol 2021; 12:690286. [PMID: 34305852 PMCID: PMC8299109 DOI: 10.3389/fmicb.2021.690286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/09/2021] [Indexed: 11/23/2022] Open
Abstract
Signal recognition particle (SRP) is critical for delivering co-translational proteins to the bacterial inner membrane. Previously, we identified SRP suppressors in Escherichia coli that inhibit translation initiation and elongation, which provided insights into the mechanism of bypassing the requirement of SRP. Suppressor mutations tended to be located in regions that govern protein translation under evolutionary pressure. To test this hypothesis, we re-executed the suppressor screening of SRP. Here, we isolated a novel SRP suppressor mutation located in the Shine–Dalgarno sequence of the S10 operon, which partially offset the targeting defects of SRP-dependent proteins. We found that the suppressor mutation decreased the protein translation rate, which extended the time window of protein targeting. This increased the possibility of the correct localization of inner membrane proteins. Furthermore, the fidelity of translation was decreased in suppressor cells, suggesting that the quality control of translation was inactivated to provide an advantage in tolerating toxicity caused by the loss of SRP. Our results demonstrated that the inefficient protein targeting due to SRP deletion can be rescued through modulating translational speed and accuracy.
Collapse
Affiliation(s)
- Liuqun Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Tianjin Institute of Industrial Biotechnology, University of Chinese Academy of Sciences, Beijing, China
| | - Gang Fu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Engineering Laboratory for Industrial Enzymes, Chinese Academy of Sciences, Tianjin, China
| | - Yanyan Cui
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zixiang Xu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Engineering Laboratory for Industrial Enzymes, Chinese Academy of Sciences, Tianjin, China
| | - Tao Cai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Tianjin Institute of Industrial Biotechnology, University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Engineering Laboratory for Industrial Enzymes, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
4
|
Signal Recognition Particle Suppressor Screening Reveals the Regulation of Membrane Protein Targeting by the Translation Rate. mBio 2021; 12:mBio.02373-20. [PMID: 33436432 PMCID: PMC7844537 DOI: 10.1128/mbio.02373-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The signal recognition particle (SRP) is conserved in all living organisms, and it cotranslationally delivers proteins to the inner membrane or endoplasmic reticulum. Recently, SRP loss was found not to be lethal in either the eukaryote Saccharomyces cerevisiae or the prokaryote Streptococcus mutans In Escherichia coli, the role of SRP in mediating inner membrane protein (IMP) targeting has long been studied. However, the essentiality of SRP remains a controversial topic, partly hindered by the lack of strains in which SRP is completely absent. Here we show that the SRP was nonessential in E. coli by suppressor screening. We identified two classes of extragenic suppressors-two translation initiation factors and a ribosomal protein-all of which are involved in translation initiation. The translation rate and inner membrane proteomic analyses were combined to define the mechanism that compensates for the lack of SRP. The primary factor that contributes to the efficiency of IMP targeting is the extension of the time window for targeting by pausing the initiation of translation, which further reduces translation initiation and elongation rates. Furthermore, we found that easily predictable features in the nascent chain determine the specificity of protein targeting. Our results show why the loss of the SRP pathway does not lead to lethality. We report a new paradigm in which the time delay in translation initiation is beneficial during protein targeting in the absence of SRP.IMPORTANCE Inner membrane proteins (IMPs) are cotranslationally inserted into the inner membrane or endoplasmic reticulum by the signal recognition particle (SRP). Generally, the deletion of SRP can result in protein targeting defects in Escherichia coli Suppressor screening for loss of SRP reveals that pausing at the translation start site is likely to be critical in allowing IMP targeting and avoiding aggregation. In this work, we found for the first time that SRP is nonessential in E. coli The time delay in initiation is different from the previous mechanism that only slows down the elongation rate. It not only maximizes the opportunity for untranslated ribosomes to be near the inner membrane but also extends the time window for targeting translating ribosomes by decreasing the speed of translation. We anticipate that our work will be a starting point for a more delicate regulatory mechanism of protein targeting.
Collapse
|
5
|
Tsuboi T, Leff J, Zid BM. Post-transcriptional control of mitochondrial protein composition in changing environmental conditions. Biochem Soc Trans 2020; 48:2565-2578. [PMID: 33245320 PMCID: PMC8108647 DOI: 10.1042/bst20200250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
In fluctuating environmental conditions, organisms must modulate their bioenergetic production in order to maintain cellular homeostasis for optimal fitness. Mitochondria are hubs for metabolite and energy generation. Mitochondria are also highly dynamic in their function: modulating their composition, size, density, and the network-like architecture in relation to the metabolic demands of the cell. Here, we review the recent research on the post-transcriptional regulation of mitochondrial composition focusing on mRNA localization, mRNA translation, protein import, and the role that dynamic mitochondrial structure may have on these gene expression processes. As mitochondrial structure and function has been shown to be very important for age-related processes, including cancer, metabolic disorders, and neurodegeneration, understanding how mitochondrial composition can be affected in fluctuating conditions can lead to new therapeutic directions to pursue.
Collapse
Affiliation(s)
- Tatsuhisa Tsuboi
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92023-0358, USA
| | - Jordan Leff
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92023-0358, USA
| | - Brian M. Zid
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92023-0358, USA
| |
Collapse
|
6
|
A ribosome-associated chaperone enables substrate triage in a cotranslational protein targeting complex. Nat Commun 2020; 11:5840. [PMID: 33203865 PMCID: PMC7673040 DOI: 10.1038/s41467-020-19548-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/20/2020] [Indexed: 12/22/2022] Open
Abstract
Protein biogenesis is essential in all cells and initiates when a nascent polypeptide emerges from the ribosome exit tunnel, where multiple ribosome-associated protein biogenesis factors (RPBs) direct nascent proteins to distinct fates. How distinct RPBs spatiotemporally coordinate with one another to affect accurate protein biogenesis is an emerging question. Here, we address this question by studying the role of a cotranslational chaperone, nascent polypeptide-associated complex (NAC), in regulating substrate selection by signal recognition particle (SRP), a universally conserved protein targeting machine. We show that mammalian SRP and SRP receptors (SR) are insufficient to generate the biologically required specificity for protein targeting to the endoplasmic reticulum. NAC co-binds with and remodels the conformational landscape of SRP on the ribosome to regulate its interaction kinetics with SR, thereby reducing the nonspecific targeting of signalless ribosomes and pre-emptive targeting of ribosomes with short nascent chains. Mathematical modeling demonstrates that the NAC-induced regulations of SRP activity are essential for the fidelity of cotranslational protein targeting. Our work establishes a molecular model for how NAC acts as a triage factor to prevent protein mislocalization, and demonstrates how the macromolecular crowding of RPBs at the ribosome exit site enhances the fidelity of substrate selection into individual protein biogenesis pathways.
Collapse
|
7
|
Tsuboi T, Viana MP, Xu F, Yu J, Chanchani R, Arceo XG, Tutucci E, Choi J, Chen YS, Singer RH, Rafelski SM, Zid BM. Mitochondrial volume fraction and translation duration impact mitochondrial mRNA localization and protein synthesis. eLife 2020; 9:e57814. [PMID: 32762840 PMCID: PMC7413667 DOI: 10.7554/elife.57814] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/23/2020] [Indexed: 12/31/2022] Open
Abstract
Mitochondria are dynamic organelles that must precisely control their protein composition according to cellular energy demand. Although nuclear-encoded mRNAs can be localized to the mitochondrial surface, the importance of this localization is unclear. As yeast switch to respiratory metabolism, there is an increase in the fraction of the cytoplasm that is mitochondrial. Our data point to this change in mitochondrial volume fraction increasing the localization of certain nuclear-encoded mRNAs to the surface of the mitochondria. We show that mitochondrial mRNA localization is necessary and sufficient to increase protein production to levels required during respiratory growth. Furthermore, we find that ribosome stalling impacts mRNA sensitivity to mitochondrial volume fraction and counterintuitively leads to enhanced protein synthesis by increasing mRNA localization to mitochondria. This points to a mechanism by which cells are able to use translation elongation and the geometric constraints of the cell to fine-tune organelle-specific gene expression through mRNA localization.
Collapse
Affiliation(s)
- Tatsuhisa Tsuboi
- Department of Chemistry and Biochemistry, University of California San DiegoLa JollaUnited States
- Department of Developmental and Cell Biology and Center for Complex Biological Systems, University of California IrvineIrvineUnited States
- Division of Biological Science, Graduate School of Science, Nagoya UniversityNagoyaJapan
| | - Matheus P Viana
- Department of Developmental and Cell Biology and Center for Complex Biological Systems, University of California IrvineIrvineUnited States
| | - Fan Xu
- Department of Chemistry and Biochemistry, University of California San DiegoLa JollaUnited States
| | - Jingwen Yu
- Department of Chemistry and Biochemistry, University of California San DiegoLa JollaUnited States
| | - Raghav Chanchani
- Department of Chemistry and Biochemistry, University of California San DiegoLa JollaUnited States
| | - Ximena G Arceo
- Department of Chemistry and Biochemistry, University of California San DiegoLa JollaUnited States
| | - Evelina Tutucci
- Department of Anatomy and Structural Biology, Albert Einstein College of MedicineBronxUnited States
| | - Joonhyuk Choi
- Department of Chemistry and Biochemistry, University of California San DiegoLa JollaUnited States
| | - Yang S Chen
- Department of Chemistry and Biochemistry, University of California San DiegoLa JollaUnited States
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of MedicineBronxUnited States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of MedicineBronxUnited States
- Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Susanne M Rafelski
- Department of Developmental and Cell Biology and Center for Complex Biological Systems, University of California IrvineIrvineUnited States
| | - Brian M Zid
- Department of Chemistry and Biochemistry, University of California San DiegoLa JollaUnited States
| |
Collapse
|
8
|
Spiniello M, Steinbrink MI, Cesnik AJ, Miller RM, Scalf M, Shortreed MR, Smith LM. Comprehensive in vivo identification of the c-Myc mRNA protein interactome using HyPR-MS. RNA (NEW YORK, N.Y.) 2019; 25:1337-1352. [PMID: 31296583 PMCID: PMC6800478 DOI: 10.1261/rna.072157.119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 06/27/2019] [Indexed: 05/10/2023]
Abstract
Proteins bind mRNA through their entire life cycle from transcription to degradation. We analyzed c-Myc mRNA protein interactors in vivo using the HyPR-MS method to capture the crosslinked mRNA by hybridization and then analyzed the bound proteins using mass spectrometry proteomics. Using HyPR-MS, 229 c-Myc mRNA-binding proteins were identified, confirming previously proposed interactors, suggesting new interactors, and providing information related to the roles and pathways known to involve c-Myc. We performed structural and functional analysis of these proteins and validated our findings with a combination of RIP-qPCR experiments, in vitro results released in past studies, publicly available RIP- and eCLIP-seq data, and results from software tools for predicting RNA-protein interactions.
Collapse
Affiliation(s)
- Michele Spiniello
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Medicine of Precision, University of Studi della Campania Luigi Vanvitelli, Naples 80138, Italy
- Division of Immuno-Hematology and Transfusion Medicine, Cardarelli Hospital, Naples 80131, Italy
| | - Maisie I Steinbrink
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Anthony J Cesnik
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Rachel M Miller
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Michael R Shortreed
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
9
|
Kramer G, Shiber A, Bukau B. Mechanisms of Cotranslational Maturation of Newly Synthesized Proteins. Annu Rev Biochem 2019; 88:337-364. [DOI: 10.1146/annurev-biochem-013118-111717] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The timely production of functional proteins is of critical importance for the biological activity of cells. To reach the functional state, newly synthesized polypeptides have to become enzymatically processed, folded, and assembled into oligomeric complexes and, for noncytosolic proteins, translocated across membranes. Key activities of these processes occur cotranslationally, assisted by a network of machineries that transiently engage nascent polypeptides at distinct phases of translation. The sequence of events is tuned by intrinsic features of the nascent polypeptides and timely association of factors with the translating ribosome. Considering the dynamics of translation, the heterogeneity of cellular proteins, and the diversity of interaction partners, it is a major cellular achievement that these processes are temporally and spatially so precisely coordinated, minimizing the generation of damaged proteins. This review summarizes the current progress we have made toward a comprehensive understanding of the cotranslational interactions of nascent chains, which pave the way to their functional state.
Collapse
Affiliation(s)
- Günter Kramer
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany;,
| | - Ayala Shiber
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany;,
| | - Bernd Bukau
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany;,
| |
Collapse
|
10
|
Discovery of fragments that target key interactions in the signal recognition particle (SRP) as potential leads for a new class of antibiotics. PLoS One 2018; 13:e0200387. [PMID: 30044812 PMCID: PMC6059433 DOI: 10.1371/journal.pone.0200387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 06/25/2018] [Indexed: 11/19/2022] Open
Abstract
Given the increasing incidence of antibiotic resistance, antibiotics that employ new strategies are urgently needed. Bacterial survival is dependent on proper function of the signal recognition particle (SRP) and its receptor (FtsY). A unique set of interactions in FtsY:SRP-RNA represents a promising candidate for new antibiotic development as no antibiotic targets this complex and these interactions are functionally replaced by protein:protein interactions in eukaryotes. We used a Fragment Based Drug Design (FBDD) approach to search for new compounds that can bind FtsY, and have identified three lead fragments. In vitro and in vivo analyses have shown that despite a high micromolar binding affinity, one fragment has some antimicrobial properties. X-ray structures of E. coli FtsY:fragments reveal the fragments bind in the targeted RNA interaction site. Our results show that FBDD is a suitable approach for targeting FtsY:SRP-RNA for antibiotic development and opens the possibility of targeting protein:RNA interactions in general.
Collapse
|
11
|
Non-equilibrium coupling of protein structure and function to translation-elongation kinetics. Curr Opin Struct Biol 2018; 49:94-103. [PMID: 29414517 DOI: 10.1016/j.sbi.2018.01.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/21/2017] [Accepted: 01/02/2018] [Indexed: 01/23/2023]
Abstract
Protein folding research has been dominated by the assumption that thermodynamics determines protein structure and function. And that when the folding process is compromised in vivo the proteostasis machinery-chaperones, deaggregases, the proteasome-work to restore proteins to their soluble, functional form or degrade them to maintain the cellular pool of proteins in a quasi-equilibrium state. During the past decade, however, more and more proteins have been identified for which altering only their speed of synthesis alters their structure and function, the efficiency of the down-stream processes they take part in, and cellular phenotype. Indeed, evidence has emerged that evolutionary selection pressures have encoded translation-rate information into mRNA molecules to coordinate diverse co-translational processes. Thus, non-equilibrium physics can play a fundamental role in influencing nascent protein behavior, mRNA sequence evolution, and disease. Here, we discuss how our understanding of this phenomenon is being advanced by the application of theoretical tools from the physical sciences.
Collapse
|
12
|
Guo H, Sun J, Li X, Xiong Y, Wang H, Shu H, Zhu R, Liu Q, Huang Y, Madley R, Wang Y, Cui J, Arvan P, Liu M. Positive charge in the n-region of the signal peptide contributes to efficient post-translational translocation of small secretory preproteins. J Biol Chem 2017; 293:1899-1907. [PMID: 29229776 DOI: 10.1074/jbc.ra117.000922] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 11/30/2017] [Indexed: 12/17/2022] Open
Abstract
Increasing evidence indicates that many small secretory preproteins can undergo post-translational translocation across the membrane of the endoplasmic reticulum. Although the cellular machinery involved in post-translational translocation of small secretory preproteins has begun to be elucidated, the intrinsic signals contained within these small secretory preproteins that contribute to their efficient post-translational translocation remain unknown. Here, we analyzed the eukaryotic secretory proteome and discovered the small secretory preproteins tend to have a higher probability to harbor the positive charge in the n-region of the signal peptide (SP). Eliminating the positive charge of the n-region blocked post-translational translocation of newly synthesized preproteins and selectively impaired translocation efficiency of small secretory preproteins. The pathophysiological significance of the positive charge in the n-region of SP was underscored by recently identified preproinsulin SP mutations that impair translocation of preproinsulin and cause maturity onset diabetes of youth (MODY). Remarkably, we have found that slowing the polypeptide elongation rate of small secretory preproteins could alleviate the translocation defect caused by loss of the n-region positive charge of the signal peptide. Together, these data reveal not only a previously unrecognized role of the n-region's positive charge in ensuring efficient post-translational translocation of small secretory preproteins, but they also highlight the molecular contribution of defects in this process to the pathogenesis of genetic disorders such as MODY.
Collapse
Affiliation(s)
- Huan Guo
- From the Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China.,the Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan 48105, and
| | - Jinhong Sun
- From the Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China.,the Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan 48105, and
| | - Xin Li
- From the Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yi Xiong
- the Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan 48105, and
| | - Heting Wang
- From the Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hua Shu
- From the Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ruimin Zhu
- From the Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qi Liu
- From the Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yumeng Huang
- From the Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Rachel Madley
- the Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan 48105, and
| | - Yulun Wang
- the Division of Endocrinology, Tianjin People's Hospital, Tianjin 300120, China
| | - Jingqiu Cui
- From the Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Peter Arvan
- the Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan 48105, and
| | - Ming Liu
- From the Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China, .,the Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan 48105, and
| |
Collapse
|
13
|
Hwang Fu YH, Huang WYC, Shen K, Groves JT, Miller T, Shan SO. Two-step membrane binding by the bacterial SRP receptor enable efficient and accurate Co-translational protein targeting. eLife 2017; 6. [PMID: 28753124 PMCID: PMC5533587 DOI: 10.7554/elife.25885] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 06/28/2017] [Indexed: 01/25/2023] Open
Abstract
The signal recognition particle (SRP) delivers ~30% of the proteome to the eukaryotic endoplasmic reticulum, or the bacterial plasma membrane. The precise mechanism by which the bacterial SRP receptor, FtsY, interacts with and is regulated at the target membrane remain unclear. Here, quantitative analysis of FtsY-lipid interactions at single-molecule resolution revealed a two-step mechanism in which FtsY initially contacts membrane via a Dynamic mode, followed by an SRP-induced conformational transition to a Stable mode that activates FtsY for downstream steps. Importantly, mutational analyses revealed extensive auto-inhibitory mechanisms that prevent free FtsY from engaging membrane in the Stable mode; an engineered FtsY pre-organized into the Stable mode led to indiscriminate targeting in vitro and disrupted FtsY function in vivo. Our results show that the two-step lipid-binding mechanism uncouples the membrane association of FtsY from its conformational activation, thus optimizing the balance between the efficiency and fidelity of co-translational protein targeting. DOI:http://dx.doi.org/10.7554/eLife.25885.001
Collapse
Affiliation(s)
- Yu-Hsien Hwang Fu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| | - William Y C Huang
- Department of Chemistry, University of California at Berkeley, Berkeley, United States
| | - Kuang Shen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| | - Jay T Groves
- Department of Chemistry, University of California at Berkeley, Berkeley, United States
| | - Thomas Miller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
14
|
ATPase and GTPase Tangos Drive Intracellular Protein Transport. Trends Biochem Sci 2016; 41:1050-1060. [PMID: 27658684 DOI: 10.1016/j.tibs.2016.08.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/18/2016] [Accepted: 08/23/2016] [Indexed: 11/24/2022]
Abstract
The GTPase superfamily of proteins provides molecular switches to regulate numerous cellular processes. The 'GTPase switch' paradigm, in which external regulatory factors control the switch of a GTPase between 'on' and 'off' states, has been used to interpret the regulatory mechanism of many GTPases. However, recent work unveiled a class of nucleotide hydrolases that do not adhere to this classical paradigm. Instead, they use nucleotide-dependent dimerization cycles to regulate key cellular processes. In this review article, recent studies of dimeric GTPases and ATPases involved in intracellular protein targeting are summarized. It is suggested that these proteins can use the conformational plasticity at their dimer interface to generate multiple points of regulation, thereby providing the driving force and spatiotemporal coordination of complex cellular pathways.
Collapse
|
15
|
Nissley DA, O'Brien EP. Altered Co-Translational Processing Plays a Role in Huntington's Pathogenesis-A Hypothesis. Front Mol Neurosci 2016; 9:54. [PMID: 27458341 PMCID: PMC4933702 DOI: 10.3389/fnmol.2016.00054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/22/2016] [Indexed: 11/13/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by the expansion of a CAG codon repeat region in the HTT gene's first exon that results in huntingtin protein aggregation and neuronal cell death. The development of therapeutic treatments for HD is hindered by the fact that while the etiology and symptoms of HD are understood, the molecular processes connecting this genotype to its phenotype remain unclear. Here, we propose the novel hypothesis that the perturbation of a co-translational process affects mutant huntingtin due to altered translation-elongation kinetics. These altered kinetics arise from the shift of a proline-induced translational pause site away from Htt's localization sequence due to the expansion of the CAG-repeat segment between the poly-proline and localization sequences. Motivation for this hypothesis comes from recent experiments in the field of protein biogenesis that illustrate the critical role that temporal coordination of co-translational processes plays in determining the function, localization, and fate of proteins in cells. We show that our hypothesis is consistent with various experimental observations concerning HD pathology, including the dependence of the age of symptom onset on CAG repeat number. Finally, we suggest three experiments to test our hypothesis.
Collapse
Affiliation(s)
- Daniel A Nissley
- O'Brien Lab, Department of Chemistry, The Pennsylvania State University University Park, PA, USA
| | - Edward P O'Brien
- O'Brien Lab, Department of Chemistry, The Pennsylvania State University University Park, PA, USA
| |
Collapse
|
16
|
|
17
|
Suzuki R, Kawahara H. UBQLN4 recognizes mislocalized transmembrane domain proteins and targets these to proteasomal degradation. EMBO Rep 2016; 17:842-57. [PMID: 27113755 DOI: 10.15252/embr.201541402] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 03/24/2016] [Indexed: 12/21/2022] Open
Abstract
The majority of transmembrane proteins are integrated into the endoplasmic reticulum (ER) by virtue of a signal sequence-mediated co-translational process. However, a substantial portion of transmembrane proteins fails to reach the ER, leading to mislocalized cytosolic polypeptides. Their appropriate recognition and removal are of the utmost importance to avoid proteotoxic stress. Here, we identified UBQLN4 as a BAG6-binding factor that eliminates newly synthesized defective polypeptides. Using a truncated transmembrane domain protein whose degradation occurs during a pre-ER incorporation process as a model, we show that UBQLN4 recognizes misassembled proteins in the cytoplasm and targets these to the proteasome. We suggest that the exposed transmembrane segment of the defective polypeptides is essential for the UBQLN4-mediated substrate discrimination. Importantly, UBQLN4 recognizes not only the defective model substrate but also a pool of endogenous defective proteins that were induced by the depletion of the SRP54 subunit of the signal recognition particle. This study identifies a novel quality control mechanism for newly synthesized and defective transmembrane domain polypeptides that fail to reach their correct destination at the ER membrane.
Collapse
Affiliation(s)
- Rigel Suzuki
- Laboratory of Cell Biology and Biochemistry, Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Hiroyuki Kawahara
- Laboratory of Cell Biology and Biochemistry, Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
18
|
Sharma AK, Bukau B, O'Brien EP. Physical Origins of Codon Positions That Strongly Influence Cotranslational Folding: A Framework for Controlling Nascent-Protein Folding. J Am Chem Soc 2016; 138:1180-95. [PMID: 26716464 DOI: 10.1021/jacs.5b08145] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
An emerging paradigm in the field of in vivo protein biophysics is that nascent-protein behavior is a type of nonequilibrium phenomenon, where translation-elongation kinetics can be more important in determining nascent-protein behavior than the thermodynamic properties of the protein. Synonymous codon substitutions, which change the translation rate at select codon positions along a transcript, have been shown to alter cotranslational protein folding, suggesting that evolution may have shaped synonymous codon usage in the genomes of organisms in part to increase the amount of folded and functional nascent protein. Here, we develop a Monte Carlo-master-equation method that allows for the control of nascent-chain folding during translation through the rational design of mRNA sequences to guide the cotranslational folding process. We test this framework using coarse-grained molecular dynamics simulations and find it provides optimal mRNA sequences to control the simulated, cotranslational folding of a protein in a user-prescribed manner. With this approach we discover that some codon positions in a transcript can have a much greater impact on nascent-protein folding than others because they tend to be positions where the nascent chain populates states that are far from equilibrium, as well as being dependent on a complex ratio of time scales. As a consequence, different cotranslational profiles of the same protein can have different critical codon positions and different numbers of synonymous mRNA sequences that encode for them. These findings explain that there is a fundamental connection between the nonequilibrium nature of cotranslational processes, nascent-protein behavior, and synonymous codon usage.
Collapse
Affiliation(s)
- Ajeet K Sharma
- Department of Chemistry, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Bernd Bukau
- Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg D-69120, Germany
| | - Edward P O'Brien
- Department of Chemistry, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| |
Collapse
|
19
|
Voorhees RM, Hegde RS. Structures of the scanning and engaged states of the mammalian SRP-ribosome complex. eLife 2015; 4. [PMID: 26158507 PMCID: PMC4497383 DOI: 10.7554/elife.07975] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/07/2015] [Indexed: 12/11/2022] Open
Abstract
The universally conserved signal recognition particle (SRP) is essential for the biogenesis of most integral membrane proteins. SRP scans the nascent chains of translating ribosomes, preferentially engaging those with hydrophobic targeting signals, and delivers these ribosome-nascent chain complexes to the membrane. Here, we present structures of native mammalian SRP-ribosome complexes in the scanning and engaged states. These structures reveal the near-identical SRP architecture of these two states, show many of the SRP-ribosome interactions at atomic resolution, and suggest how the polypeptide-binding M domain selectively engages hydrophobic signals. The scanning M domain, pre-positioned at the ribosomal exit tunnel, is auto-inhibited by a C-terminal amphipathic helix occluding its hydrophobic binding groove. Upon engagement, the hydrophobic targeting signal displaces this amphipathic helix, which then acts as a protective lid over the signal. Biochemical experiments suggest how scanning and engagement are coordinated with translation elongation to minimize exposure of hydrophobic signals during membrane targeting. DOI:http://dx.doi.org/10.7554/eLife.07975.001 Proteins are long chain-like molecules built from smaller building blocks, called amino acids, by a large molecular machine known as a ribosome. Although all proteins are assembled inside cells, some of them must be delivered to the outside or inserted into cell membranes. It is important to understand how this selective delivery system works because secreted proteins (i.e., those delivered outside) and membrane-embedded proteins are essential for cells to communicate with their surroundings. Proteins destined for secretion or membrane insertion contain characteristic stretches of amino acids that act as a targeting signal for delivery to the membrane. These targeting signals are recognized by the ‘signal recognition particle’ (or SRP for short), a large complex found in all living organisms. The SRP has the task of finding ribosomes that are assembling proteins with a targeting signal, and then taking them to the membrane. The protein being assembled can then either cross the membrane for secretion by the cell, or get embedded within the membrane. So, how can the SRP scan the broad range of proteins that are made by the ribosome and engage with only those containing targeting signals? Voorhees and Hegde investigated this question by analyzing SRPs bound to ribosomes that were at different stages of building a membrane protein. The experiment was devised so that SRP would be in two different states: in the first state, the SRP was scanning for its targeting signal and, in the second, it was engaged with the targeting signal. Voorhees and Hegde took many thousands of pictures of these samples using a technique called cryo-electron microscopy, and reconstructed the three-dimensional structures of both states. This revealed fine details of how SRP positions itself immediately next to the part of the ribosome where newly formed protein chains emerge. From here, the SRP scans the protein until the targeting signal emerges and then it engages with the protein. Engaging the targeting signal just as it emerges from the ribosome is probably important because targeting signals tend to aggregate if they are exposed to the contents of a cell. The new structures show how SRP cradles the targeting signal inside a binding groove and covers it with a protective lid to minimize its risk of aggregation. The next challenges are to figure out how SRP chooses which ribosomes to scan, and how it releases the targeting signal when it has delivered it to the membrane. DOI:http://dx.doi.org/10.7554/eLife.07975.002
Collapse
|
20
|
Regulation by a chaperone improves substrate selectivity during cotranslational protein targeting. Proc Natl Acad Sci U S A 2015; 112:E3169-78. [PMID: 26056263 DOI: 10.1073/pnas.1422594112] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ribosome exit site is a crowded environment where numerous factors contact nascent polypeptides to influence their folding, localization, and quality control. Timely and accurate selection of nascent polypeptides into the correct pathway is essential for proper protein biogenesis. To understand how this is accomplished, we probe the mechanism by which nascent polypeptides are accurately sorted between the major cotranslational chaperone trigger factor (TF) and the essential cotranslational targeting machinery, signal recognition particle (SRP). We show that TF regulates SRP function at three distinct stages, including binding of the translating ribosome, membrane targeting via recruitment of the SRP receptor, and rejection of ribosome-bound nascent polypeptides beyond a critical length. Together, these mechanisms enhance the specificity of substrate selection into both pathways. Our results reveal a multilayered mechanism of molecular interplay at the ribosome exit site, and provide a conceptual framework to understand how proteins are selected among distinct biogenesis machineries in this crowded environment.
Collapse
|
21
|
Nissley DA, O'Brien EP. Timing is everything: unifying codon translation rates and nascent proteome behavior. J Am Chem Soc 2014; 136:17892-8. [PMID: 25486504 DOI: 10.1021/ja510082j] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Experiments have demonstrated that changing the rate at which the ribosome translates a codon position in an mRNA molecule's open reading frame can alter the behavior of the newly synthesized protein. That is, codon translation rates can govern nascent proteome behavior. We emphasize that this phenomenon is a manifestation of the nonequilibrium nature of cotranslational processes, and as such, there exist theoretical tools that offer a potential means to quantitatively predict the influence of codon translation rates on the broad spectrum of nascent protein behaviors including cotranslational folding, aggregation, and translocation. We provide a review of the experimental evidence for the impact that codon translation rates can have, followed by a discussion of theoretical methods that can describe this phenomenon. The development and application of these tools are likely to provide fundamental insights into protein maturation and homeostasis, codon usage bias in organisms, the origins of translation related diseases, and new rational design methods for biotechnology and biopharmaceutical applications.
Collapse
Affiliation(s)
- Daniel A Nissley
- Department of Chemistry, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | | |
Collapse
|
22
|
Pechmann S, Chartron JW, Frydman J. Local slowdown of translation by nonoptimal codons promotes nascent-chain recognition by SRP in vivo. Nat Struct Mol Biol 2014; 21:1100-5. [PMID: 25420103 DOI: 10.1038/nsmb.2919] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 10/20/2014] [Indexed: 02/07/2023]
Abstract
The genetic code allows most amino acids a choice of optimal and nonoptimal codons. We report that synonymous codon choice is tuned to promote interaction of nascent polypeptides with the signal recognition particle (SRP), which assists in protein translocation across membranes. Cotranslational recognition by the SRP in vivo is enhanced when mRNAs contain nonoptimal codon clusters 35-40 codons downstream of the SRP-binding site, the distance that spans the ribosomal polypeptide exit tunnel. A local translation slowdown upon ribosomal exit of SRP-binding elements in mRNAs containing these nonoptimal codon clusters is supported experimentally by ribosome profiling analyses in yeast. Modulation of local elongation rates through codon choice appears to kinetically enhance recognition by ribosome-associated factors. We propose that cotranslational regulation of nascent-chain fate may be a general constraint shaping codon usage in the genome.
Collapse
Affiliation(s)
| | - Justin W Chartron
- Department of Biology, Stanford University, Stanford, California, USA
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, California, USA
| |
Collapse
|
23
|
Abstract
Accurate folding, assembly, localization, and maturation of newly synthesized proteins are essential to all cells and require high fidelity in the protein biogenesis machineries that mediate these processes. Here, we review our current understanding of how high fidelity is achieved in one of these processes, the cotranslational targeting of nascent membrane and secretory proteins by the signal recognition particle (SRP). Recent biochemical, biophysical, and structural studies have elucidated how the correct substrates drive a series of elaborate conformational rearrangements in the SRP and SRP receptor GTPases; these rearrangements provide effective fidelity checkpoints to reject incorrect substrates and enhance the fidelity of this essential cellular pathway. The mechanisms used by SRP to ensure fidelity share important conceptual analogies with those used by cellular machineries involved in DNA replication, transcription, and translation, and these mechanisms likely represent general principles for other complex cellular pathways.
Collapse
Affiliation(s)
- Xin Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125;
| | | |
Collapse
|
24
|
Fluman N, Navon S, Bibi E, Pilpel Y. mRNA-programmed translation pauses in the targeting of E. coli membrane proteins. eLife 2014; 3. [PMID: 25135940 PMCID: PMC4359368 DOI: 10.7554/elife.03440] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 08/16/2014] [Indexed: 02/05/2023] Open
Abstract
In all living organisms, ribosomes translating membrane proteins are targeted to membrane translocons early in translation, by the ubiquitous signal recognition particle (SRP) system. In eukaryotes, the SRP Alu domain arrests translation elongation of membrane proteins until targeting is complete. Curiously, however, the Alu domain is lacking in most eubacteria. In this study, by analyzing genome-wide data on translation rates, we identified a potential compensatory mechanism in E. coli that serves to slow down the translation during membrane protein targeting. The underlying mechanism is likely programmed into the coding sequence, where Shine-Dalgarno-like elements trigger elongation pauses at strategic positions during the early stages of translation. We provide experimental evidence that slow translation during targeting and improves membrane protein production fidelity, as it correlates with better folding of overexpressed membrane proteins. Thus, slow elongation is important for membrane protein targeting in E. coli, which utilizes mechanisms different from the eukaryotic one to control the translation speed.
Collapse
Affiliation(s)
- Nir Fluman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sivan Navon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eitan Bibi
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Yitzhak Pilpel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
25
|
Noriega TR, Tsai A, Elvekrog MM, Petrov A, Neher SB, Chen J, Bradshaw N, Puglisi JD, Walter P. Signal recognition particle-ribosome binding is sensitive to nascent chain length. J Biol Chem 2014; 289:19294-305. [PMID: 24808175 DOI: 10.1074/jbc.m114.563239] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The signal recognition particle (SRP) directs ribosome-nascent chain complexes (RNCs) displaying signal sequences to protein translocation channels in the plasma membrane of prokaryotes and endoplasmic reticulum of eukaryotes. It was initially proposed that SRP binds the signal sequence when it emerges from an RNC and that successful binding becomes impaired as translation extends the nascent chain, moving the signal sequence away from SRP on the ribosomal surface. Later studies drew this simple model into question, proposing that SRP binding is unaffected by nascent chain length. Here, we reinvestigate this issue using two novel and independent fluorescence resonance energy transfer assays. We show that the arrival and dissociation rates of SRP binding to RNCs vary according to nascent chain length, resulting in the highest affinity shortly after a functional signal sequence emerges from the ribosome. Moreover, we show that SRP binds RNCs in multiple and interconverting conformations, and that conversely, RNCs exist in two conformations distinguished by SRP interaction kinetics.
Collapse
Affiliation(s)
- Thomas R Noriega
- From the Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158
| | - Albert Tsai
- the Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, and the Department of Applied Physics, Stanford University, Stanford, California 94305
| | - Margaret M Elvekrog
- From the Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158
| | - Alexey Petrov
- the Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, and
| | - Saskia B Neher
- From the Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158
| | - Jin Chen
- the Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, and the Department of Applied Physics, Stanford University, Stanford, California 94305
| | - Niels Bradshaw
- From the Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158
| | - Joseph D Puglisi
- the Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, and
| | - Peter Walter
- From the Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158,
| |
Collapse
|
26
|
Saraogi I, Shan SO. Co-translational protein targeting to the bacterial membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:1433-41. [PMID: 24513458 DOI: 10.1016/j.bbamcr.2013.10.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 10/09/2013] [Accepted: 10/16/2013] [Indexed: 12/18/2022]
Abstract
Co-translational protein targeting by the Signal Recognition Particle (SRP) is an essential cellular pathway that couples the synthesis of nascent proteins to their proper cellular localization. The bacterial SRP, which contains the minimal ribonucleoprotein core of this universally conserved targeting machine, has served as a paradigm for understanding the molecular basis of protein localization in all cells. In this review, we highlight recent biochemical and structural insights into the molecular mechanisms by which fundamental challenges faced by protein targeting machineries are met in the SRP pathway. Collectively, these studies elucidate how an essential SRP RNA and two regulatory GTPases in the SRP and SRP receptor (SR) enable this targeting machinery to recognize, sense and respond to its biological effectors, i.e. the cargo protein, the target membrane and the translocation machinery, thus driving efficient and faithful co-translational protein targeting. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Ishu Saraogi
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Shu-ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
27
|
Kudva R, Denks K, Kuhn P, Vogt A, Müller M, Koch HG. Protein translocation across the inner membrane of Gram-negative bacteria: the Sec and Tat dependent protein transport pathways. Res Microbiol 2013; 164:505-34. [DOI: 10.1016/j.resmic.2013.03.016] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/11/2013] [Indexed: 11/28/2022]
|
28
|
Joshi T, Valliyodan B, Wu JH, Lee SH, Xu D, Nguyen HT. Genomic differences between cultivated soybean, G. max and its wild relative G. soja. BMC Genomics 2013; 14 Suppl 1:S5. [PMID: 23368680 PMCID: PMC3549820 DOI: 10.1186/1471-2164-14-s1-s5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Glycine max is an economically important crop and many different varieties of soybean exist around the world. The first draft sequences and gene models of G. max (domesticated soybean) as well as G. soja (wild soybean), both became available in 2010. This opened the door for comprehensive comparative genomics studies between the two varieties. RESULTS We have further analysed the sequences and identified the 425 genes that are unique to G. max and unavailable in G. soja. We further studied the genes with significant number of non-synonymous SNPs in their upstream regions. 12 genes involved in seed development, 3 in oil and 6 in protein concentration are unique to G. max. A significant number of unique genes are seen to overlap with the QTL regions of the three traits including seed, oil and protein. We have also developed a graphical chromosome visualizer as part of the Soybean Knowledge Base (SoyKB) tools for molecular breeding, which was used in the analysis and visualization of overlapping QTL regions for multiple traits with the deletions and SNPs in G. soja. CONCLUSIONS The comparisons between genome sequences of G. max and G. soja show significant differences between the genomic compositions of the two. The differences also highlight the phenotypic differences between the two in terms of seed development, oil and protein traits. These significant results have been integrated into the SoyKB resource and are publicly available for users to browse at http://soykb.org/GSoja.
Collapse
Affiliation(s)
- Trupti Joshi
- Department of Computer Science, University of Missouri, Columbia, MO 65211, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- National Center for Soybean Biotechnology, University of Missouri, Columbia, MO 65211, USA
- Informatics Institute, University of Missouri, Columbia, MO 65211, USA
| | - Babu Valliyodan
- National Center for Soybean Biotechnology, University of Missouri, Columbia, MO 65211, USA
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Jeng-Hung Wu
- Department of Medicine, National Yang-Ming University, Taipei, Taiwan, R.O.C
| | - Suk-Ha Lee
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921, Korea
| | - Dong Xu
- Department of Computer Science, University of Missouri, Columbia, MO 65211, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- National Center for Soybean Biotechnology, University of Missouri, Columbia, MO 65211, USA
- Informatics Institute, University of Missouri, Columbia, MO 65211, USA
| | - Henry T Nguyen
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- National Center for Soybean Biotechnology, University of Missouri, Columbia, MO 65211, USA
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|