1
|
Pugacheva EM, Bhatt DN, Rivero-Hinojosa S, Tajmul M, Fedida L, Price E, Ji Y, Loukinov D, Strunnikov AV, Ren B, Lobanenkov VV. BORIS/CTCFL epigenetically reprograms clustered CTCF binding sites into alternative transcriptional start sites. Genome Biol 2024; 25:40. [PMID: 38297316 PMCID: PMC10832218 DOI: 10.1186/s13059-024-03175-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/15/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Pervasive usage of alternative promoters leads to the deregulation of gene expression in carcinogenesis and may drive the emergence of new genes in spermatogenesis. However, little is known regarding the mechanisms underpinning the activation of alternative promoters. RESULTS Here we describe how alternative cancer-testis-specific transcription is activated. We show that intergenic and intronic CTCF binding sites, which are transcriptionally inert in normal somatic cells, could be epigenetically reprogrammed into active de novo promoters in germ and cancer cells. BORIS/CTCFL, the testis-specific paralog of the ubiquitously expressed CTCF, triggers the epigenetic reprogramming of CTCF sites into units of active transcription. BORIS binding initiates the recruitment of the chromatin remodeling factor, SRCAP, followed by the replacement of H2A histone with H2A.Z, resulting in a more relaxed chromatin state in the nucleosomes flanking the CTCF binding sites. The relaxation of chromatin around CTCF binding sites facilitates the recruitment of multiple additional transcription factors, thereby activating transcription from a given binding site. We demonstrate that the epigenetically reprogrammed CTCF binding sites can drive the expression of cancer-testis genes, long noncoding RNAs, retro-pseudogenes, and dormant transposable elements. CONCLUSIONS Thus, BORIS functions as a transcription factor that epigenetically reprograms clustered CTCF binding sites into transcriptional start sites, promoting transcription from alternative promoters in both germ cells and cancer cells.
Collapse
Affiliation(s)
- Elena M Pugacheva
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Dharmendra Nath Bhatt
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Samuel Rivero-Hinojosa
- Center for Cancer and Immunology Research, Children's National Research Institute, Washington, DC, 20010, USA
| | - Md Tajmul
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Liron Fedida
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Emma Price
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yon Ji
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dmitri Loukinov
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alexander V Strunnikov
- Guangzhou Institutes of Biomedicine and Health, Molecular Epigenetics Laboratory, 190 Kai Yuan Avenue, Science Park, Guangzhou, 510530, China
| | - Bing Ren
- Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Department of Cellular and Molecular Medicine, Center for Epigenomics, Moores Cancer Center and Institute of Genomic Medicine, University of California, San Diego School of Medicine, La Jolla, CA, 92093-0653, USA
| | - Victor V Lobanenkov
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
2
|
Nir U, Grinshtain E, Breitbart H. Fer and FerT: A New Regulatory Link between Sperm and Cancer Cells. Int J Mol Sci 2023; 24:ijms24065256. [PMID: 36982326 PMCID: PMC10049441 DOI: 10.3390/ijms24065256] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/12/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Fer and its sperm and cancer specific variant, FerT, are non-receptor tyrosine kinases which play roles in cancer progression and metastasis. Recent studies have shed light on the regulatory role of these kinases in ensuring proper sperm function. Comparison of the regulatory cascades in which Fer and FerT are engaged in sperm and cancer cells presents an interesting picture, in which similar regulatory interactions of these enzymes are integrated in a similar or different regulatory context in the two cell types. These diverse compositions extend from the involvement of Fer in modulation of actin cytoskeleton integrity and function, to the unique regulatory interactions of Fer with PARP-1 and the PP1 phosphatase. Furthermore, recent findings link the metabolic regulatory roles of Fer and FerT in sperm and cancer cells. In the current review, we discuss the above detailed aspects, which portray Fer and FerT as new regulatory links between sperm and malignant cells. This perspective view can endow us with new analytical and research tools that will deepen our understanding of the regulatory trajectories and networks that govern these two multi-layered systems.
Collapse
|
3
|
Zhou S, Li L, Zhang M, Qin Y, Li B. The function of brother of the regulator of imprinted sites in cancer development. Cancer Gene Ther 2023; 30:236-244. [PMID: 36376421 DOI: 10.1038/s41417-022-00556-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 11/15/2022]
Abstract
As Douglas Hanahan and Robert Weinberg compiled, there are nine hallmarks of cancer that are conducive to cancer cell development and survival. Previous studies showed that brother of the regulator of imprinted sites (BORIS) might promote cancer progression through these aspects. The competition between BORIS and CCCTC-binding factor (CTCF), which is crucial in the formation of chromatin loops, affects the normal function of CTCF and leads to neoplasia and deformity. In addition, BORIS belongs to the cancer-testis antigen families, which are potential targets in cancer diagnosis and treatment. Herein, we discuss the function and mechanisms of BORIS, especially in cancer development.
Collapse
Affiliation(s)
- Siqi Zhou
- Department of Liver Surgery, West China Hospital, Sichuan University Medical School, 37 Guo Xue Road, Chengdu, 610041, Sichuan Province, China
| | - Lian Li
- Department of Liver Surgery, West China Hospital, Sichuan University Medical School, 37 Guo Xue Road, Chengdu, 610041, Sichuan Province, China
| | - Ming Zhang
- Department of Liver Surgery, West China Hospital, Sichuan University Medical School, 37 Guo Xue Road, Chengdu, 610041, Sichuan Province, China
| | - Yang Qin
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China.
| | - Bo Li
- Department of Liver Surgery, West China Hospital, Sichuan University Medical School, 37 Guo Xue Road, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
4
|
Rivero-Hinojosa S, Pugacheva EM, Kang S, Méndez-Catalá CF, Kovalchuk AL, Strunnikov AV, Loukinov D, Lee JT, Lobanenkov VV. The combined action of CTCF and its testis-specific paralog BORIS is essential for spermatogenesis. Nat Commun 2021; 12:3846. [PMID: 34158481 PMCID: PMC8219828 DOI: 10.1038/s41467-021-24140-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/28/2021] [Indexed: 01/03/2023] Open
Abstract
CTCF is a key organizer of the 3D genome. Its specialized paralog, BORIS, heterodimerizes with CTCF but is expressed only in male germ cells and in cancer states. Unexpectedly, BORIS-null mice have only minimal germ cell defects. To understand the CTCF-BORIS relationship, mouse models with varied CTCF and BORIS levels were generated. Whereas Ctcf+/+Boris+/+, Ctcf+/-Boris+/+, and Ctcf+/+Boris-/- males are fertile, Ctcf+/-Boris-/- (Compound Mutant; CM) males are sterile. Testes with combined depletion of both CTCF and BORIS show reduced size, defective meiotic recombination, increased apoptosis, and malformed spermatozoa. Although CM germ cells exhibit only 25% of CTCF WT expression, chromatin binding of CTCF is preferentially lost from CTCF-BORIS heterodimeric sites. Furthermore, CM testes lose the expression of a large number of spermatogenesis genes and gain the expression of developmentally inappropriate genes that are "toxic" to fertility. Thus, a combined action of CTCF and BORIS is required to both repress pre-meiotic genes and activate post-meiotic genes for a complete spermatogenesis program.
Collapse
Affiliation(s)
- Samuel Rivero-Hinojosa
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
- Center for Cancer and Immunology Research, Children's National Research Institute, Washington, DC, USA.
| | - Elena M Pugacheva
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Sungyun Kang
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Claudia Fabiola Méndez-Catalá
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Genetics and Molecular Oncology, Building A4, Faculty of Higher Studies (FES) Iztacala, National Autonomous University of Mexico (UNAM), Tlalnepantla, State of Mexico, Mexico
| | - Alexander L Kovalchuk
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alexander V Strunnikov
- Guangzhou Institutes of Biomedicine and Health, Molecular Epigenetics Laboratory, Guangzhou, China
| | - Dmitri Loukinov
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Victor V Lobanenkov
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
5
|
Marciano O, Mehazri L, Shpungin S, Varvak A, Zacksenhaus E, Nir U. Fer and FerT Govern Mitochondrial Susceptibility to Metformin and Hypoxic Stress in Colon and Lung Carcinoma Cells. Cells 2021; 10:cells10010097. [PMID: 33430475 PMCID: PMC7826929 DOI: 10.3390/cells10010097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/26/2020] [Accepted: 01/05/2021] [Indexed: 12/25/2022] Open
Abstract
Aerobic glycolysis is an important metabolic adaptation of cancer cells. However, there is growing evidence that reprogrammed mitochondria also play an important metabolic role in metastatic dissemination. Two constituents of the reprogrammed mitochondria of cancer cells are the intracellular tyrosine kinase Fer and its cancer- and sperm-specific variant, FerT. Here, we show that Fer and FerT control mitochondrial susceptibility to therapeutic and hypoxic stress in metastatic colon (SW620) and non-small cell lung cancer (NSCLC-H1299) cells. Fer- and FerT-deficient SW620 and H1299 cells (SW∆Fer/FerT and H∆Fer/FerT cells, respectively) become highly sensitive to metformin treatment and to hypoxia under glucose-restrictive conditions. Metformin impaired mitochondrial functioning that was accompanied by ATP deficiency and robust death in SW∆Fer/FerT and H∆Fer/FerT cells compared to the parental SW620 and H1299 cells. Notably, selective knockout of the fer gene without affecting FerT expression reduced sensitivity to metformin and hypoxia seen in SW∆Fer/FerT cells. Thus, Fer and FerT modulate the mitochondrial susceptibility of metastatic cancer cells to hypoxia and metformin. Targeting Fer/FerT may therefore provide a novel anticancer treatment by efficient, selective, and more versatile disruption of mitochondrial function in malignant cells.
Collapse
Affiliation(s)
- Odeya Marciano
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (O.M.); (L.M.); (S.S.); (A.V.)
| | - Linoy Mehazri
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (O.M.); (L.M.); (S.S.); (A.V.)
| | - Sally Shpungin
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (O.M.); (L.M.); (S.S.); (A.V.)
| | - Alexander Varvak
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (O.M.); (L.M.); (S.S.); (A.V.)
| | - Eldad Zacksenhaus
- Laboratory of Medicine & Pathology, University of Toronto, Toronto, ON M5G 2M1, Canada;
| | - Uri Nir
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (O.M.); (L.M.); (S.S.); (A.V.)
- Correspondence: ; Tel.: +972-52-4416968
| |
Collapse
|
6
|
Jebelli A, Baradaran B, Mosafer J, Baghbanzadeh A, Mokhtarzadeh A, Tayebi L. Recent developments in targeting genes and pathways by RNAi-based approaches in colorectal cancer. Med Res Rev 2020; 41:395-434. [PMID: 32990372 DOI: 10.1002/med.21735] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 08/16/2020] [Accepted: 09/16/2020] [Indexed: 12/18/2022]
Abstract
A wide spectrum of genetic and epigenetic variations together with environmental factors has made colorectal cancer (CRC), which involves the colon and rectum, a challenging and heterogeneous cancer. CRC cannot be effectively overcomed by common conventional therapies including surgery, chemotherapy, targeted therapy, and hormone replacement which highlights the need for a rational design of novel anticancer therapy. Accumulating evidence indicates that RNA interference (RNAi) could be an important avenue to generate great therapeutic efficacy for CRC by targeting genes that are responsible for the viability, cell cycle, proliferation, apoptosis, differentiation, metastasis, and invasion of CRC cells. In this review, we underline the documented benefits of small interfering RNAs and short hairpin RNAs to target genes and signaling pathways related to CRC tumorigenesis. We address the synergistic effects of RNAi-mediated gene knockdown and inhibitors/chemotherapy agents to increase the sensitivity of CRC cells to common therapies. Finally, this review points new delivery systems/materials for improving the cellular uptake efficiency and reducing off-target effects of RNAi.
Collapse
Affiliation(s)
- Asiyeh Jebelli
- Department of Biological Science, Faculty of Basic Science, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Mosafer
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, Wisconsin, USA
| |
Collapse
|
7
|
Soltanian S, Dehghani H. BORIS: a key regulator of cancer stemness. Cancer Cell Int 2018; 18:154. [PMID: 30323717 PMCID: PMC6173857 DOI: 10.1186/s12935-018-0650-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/27/2018] [Indexed: 02/07/2023] Open
Abstract
BORIS (CTCFL) is a DNA binding protein which is involved in tumorigenesis. Although, there are different opinions on the level of gene expression and function of BORIS in normal and cancer tissues, the results of many studies have classified BORIS as a protein belonging to cancer/testis (CT) genes, which are identified as a group of genes that are expressed normally in testis, and abnormally in various types of cancers. In testis, BORIS induces the expression of some male germ cell/testis specific genes, and plays crucial roles during spermatogenesis and production of sperm. In tumorigenesis, the role of BORIS in the expression induction of some CT genes and oncogenes, as well as increasing proliferation/viability of cancer cells has been demonstrated in many researches. In addition to cancer cells, some believe that BORIS is also expressed in normal conditions and plays a universal function in cell division and regulation of genes. The following is a comprehensive review on contradictory views on the expression pattern and biological function of BORIS in normal, as well as cancer cells/tissues, and presents some evidence that support the expression of BORIS in cancer stem cells (CSCs) and advanced stage/poorer differentiation grade of cancers. Boris is involved in the regulation of CSC cellular and molecular features such as self-renewal, chemo-resistance, tumorigenicity, sphere-forming ability, and migration capacity. Finally, the role of BORIS in regulating two important signaling pathways including Wnt/β-catenin and Notch in CSCs, and its ability in recruiting transcription factors or chromatin-remodeling proteins to induce tumorigenesis is discussed.
Collapse
Affiliation(s)
- Sara Soltanian
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hesam Dehghani
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, 91775-1793 Iran
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
- Stem Cells and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
8
|
Elkis Y, Cohen M, Yaffe E, Satmary-Tusk S, Feldman T, Hikri E, Nyska A, Feiglin A, Ofran Y, Shpungin S, Nir U. A novel Fer/FerT targeting compound selectively evokes metabolic stress and necrotic death in malignant cells. Nat Commun 2017; 8:940. [PMID: 29038547 PMCID: PMC5643328 DOI: 10.1038/s41467-017-00832-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/28/2017] [Indexed: 12/31/2022] Open
Abstract
Disruption of the reprogrammed energy management system of malignant cells is a prioritized goal of targeted cancer therapy. Two regulators of this system are the Fer kinase, and its cancer cell specific variant, FerT, both residing in subcellular compartments including the mitochondrial electron transport chain. Here, we show that a newly developed inhibitor of Fer and FerT, E260, selectively evokes metabolic stress in cancer cells by imposing mitochondrial dysfunction and deformation, and onset of energy-consuming autophagy which decreases the cellular ATP level. Notably, Fer was also found to associate with PARP-1 and E260 disrupted this association thereby leading to PARP-1 activation. The cooperative intervention with these metabolic pathways leads to energy crisis and necrotic death in malignant, but not in normal human cells, and to the suppression of tumors growth in vivo. Thus, E260 is a new anti-cancer agent which imposes metabolic stress and cellular death in cancer cells. The tyrosine-kinases Fer/FerT associate with the mitochondrial electron transport chain in cancer cells supporting their metabolic reprogramming. Here the authors discover a compound that disrupts Fer /FerT activity and selectively induces cell death of cancer cell lines displaying anti-tumor activity in vivo.
Collapse
Affiliation(s)
- Yoav Elkis
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Moshe Cohen
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Etai Yaffe
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Shirly Satmary-Tusk
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Tal Feldman
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Elad Hikri
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Abraham Nyska
- Consultant in Toxicological Pathology, Timrat, and Sackler School of Medicine, Tel Aviv University, Tel Aviv, 36576, Israel
| | - Ariel Feiglin
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Yanay Ofran
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Sally Shpungin
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Uri Nir
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel.
| |
Collapse
|
9
|
Yaffe E, Hikri E, Elkis Y, Cohen O, Segal A, Makovski A, Varvak A, Shpungin S, Nir U. Oncogenic properties of a spermatogenic meiotic variant of fer kinase expressed in somatic cells. Cancer Res 2014; 74:6474-85. [PMID: 25237066 DOI: 10.1158/0008-5472.can-14-0058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The kinase Fer and its spermatogenic meiotic variant, FerT, are coexpressed in normal testes and cancerous tumors, but whether they exert related roles in spermatogenic or malignant cells has not been known. Here, we show that Fer and FerT reside in the mitochondria of spermatogenic cells and are harnessed to the reprogrammed mitochondria of colon carcinoma cells. Both kinases bound complex I of the mitochondrial electron transport chain (ETC) in spermatogenic and in colon carcinoma cells, and silencing of either Fer or FerT was sufficient to impair the activity of this complex. Directed mitochondrial accumulation of FerT in nonmalignant NIH3T3 cells increased their ETC complex I activity, ATP production, and survival, contingent upon stress conditions caused by nutrient and oxygen deprivation. Strikingly, directed mitochondrial accumulation of FerT endowed nonmalignant cells with tumor-forming ability. Thus, recruitment of a meiotic mitochondrial component to cancer cell mitochondria highlights a pivotal role for reprogrammed mitochondria in tumorigenesis.
Collapse
Affiliation(s)
- Etai Yaffe
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Elad Hikri
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Yoav Elkis
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Ortal Cohen
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Ariela Segal
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Adar Makovski
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Alexander Varvak
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Sally Shpungin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Uri Nir
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
10
|
Chen K, Huang W, Huang B, Wei Y, Li B, Ge Y, Qin Y. BORIS, brother of the regulator of imprinted sites, is aberrantly expressed in hepatocellular carcinoma. Genet Test Mol Biomarkers 2012; 17:160-5. [PMID: 23237599 DOI: 10.1089/gtmb.2012.0242] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The brother of the regulator of imprinted sites (BORIS) is a novel member of the cancer testis antigen gene family, which are normally expressed only in spermatocytes, but abnormally activated in different malignancies. AIM The aim of this study was to explore the expression of BORIS in hepatocellular carcinoma (HCC) and its correlation with the clinicopathologic features and prognosis of HCC. METHODS We investigated BORIS expression in HCC cell lines and 105 primary HCC clinical surgical specimens using real-time polymerase chain reaction and Western blot analysis. We further examined the correlation of BORIS with a liver stem cell marker (CD90) in HCC tissues by histochemical double staining. The correlation of BORIS with clinicopathologic features and prognosis of HCC was analyzed using patient data. RESULTS The expression of BORIS was found in SMMC-7721, BEL-7402, and Huh-7, but not in hep-G2 cells. The expression rate of BORIS was significantly higher in the HCC tissues than in the adjacent noncancerous tissues (p=0.000). BORIS expression was correlated with the tumor size (p=0.000), CD90 expression (p=0.000), and satellite nodule (p=0.000). Kaplan-Meier survival curves showed that patients with positive expression of BORIS had lower overall survival rate (p=0.003). CONCLUSIONS Our data indicate that BORIS may be an auxiliary diagnosis index and a novel favorable prognostic indicator of HCC.
Collapse
Affiliation(s)
- Kefei Chen
- Division of Liver Transplantation, Department of Surgery, West China Hospital, Chengdu, China
| | | | | | | | | | | | | |
Collapse
|
11
|
The BAR Domain Superfamily Proteins from Subcellular Structures to Human Diseases. MEMBRANES 2012; 2:91-117. [PMID: 24957964 PMCID: PMC4021885 DOI: 10.3390/membranes2010091] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 02/07/2012] [Accepted: 02/15/2012] [Indexed: 12/11/2022]
Abstract
Eukaryotic cells have complicated membrane systems. The outermost plasma membrane contains various substructures, such as invaginations and protrusions, which are involved in endocytosis and cell migration. Moreover, the intracellular membrane compartments, such as autophagosomes and endosomes, are essential for cellular viability. The Bin-Amphiphysin-Rvs167 (BAR) domain superfamily proteins are important players in membrane remodeling through their structurally determined membrane binding surfaces. A variety of BAR domain superfamily proteins exist, and each family member appears to be involved in the formation of certain subcellular structures or intracellular membrane compartments. Most of the BAR domain superfamily proteins contain SH3 domains, which bind to the membrane scission molecule, dynamin, as well as the actin regulatory WASP/WAVE proteins and several signal transduction molecules, providing possible links between the membrane and the cytoskeleton or other machineries. In this review, we summarize the current information about each BAR superfamily protein with an SH3 domain(s). The involvement of BAR domain superfamily proteins in various diseases is also discussed.
Collapse
|