1
|
Zhao S, Zhang H, Jin H, Cai X, Zhang R, Jin Z, Yang W, Yu P, Zhang L, Liu Z. Design, synthesis and biological activities of benzo[d]imidazo[1,2-a]imidazole derivatives as TRPM2-specfic inhibitors. Eur J Med Chem 2021; 225:113750. [PMID: 34416664 DOI: 10.1016/j.ejmech.2021.113750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/26/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
Transient receptor potential melastatin 2 (TRPM2) channel is associated with ischemia/reperfusion injury, inflammation, cancer and neurodegenerative diseases. However, the lack of specific inhibitors impedes the development of TRPM2 targeted therapeutic agents. To develop a selective TRPM2 inhibitor, three-dimensional similarity-based screening strategy was employed using the energy-minimized conformation of non-selective TRPM2 inhibitor 2-APB as the query structure, which resulted in the discovery of a novel tricyclic TRPM2 inhibitor Z-4 with benzo[d]imidazo[1,2-a]imidazole skeleton. A series of Z-4 derivatives were subsequently synthesized and evaluated using calcium imaging and electrophysiology approaches. Among them, preferred compounds ZA10 and ZA18 inhibited the TRPM2 channel with micromolar half-maximal inhibitory concentration values and exhibited TRPM2 selectivity over the TRPM8 channel, TRPV1 channel, InsP3 receptor and Orai channel. The analysis of structure-activity relationship provides valuable insights for further development of selective TRPM2 inhibitors. Neuroprotection assay showed that ZA10 and ZA18 could effectively reduce the mortality of SH-SY5Y cells induced by H2O2. These findings enrich the structure types of existing TRPM2 inhibitors and might provide a new tool for the study of TRPM2 function in Reactive oxygen species (ROS) -related diseases.
Collapse
Affiliation(s)
- Siqi Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Han Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Xiaobo Cai
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, PR China
| | - Rongxue Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Zefang Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Wei Yang
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, PR China
| | - Peilin Yu
- Department of Toxicology, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China.
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China.
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China.
| |
Collapse
|
2
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 293] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
3
|
Yu P, Cai X, Liang Y, Wang M, Yang W. Roles of NAD + and Its Metabolites Regulated Calcium Channels in Cancer. Molecules 2020; 25:molecules25204826. [PMID: 33092205 PMCID: PMC7587972 DOI: 10.3390/molecules25204826] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/11/2020] [Accepted: 10/16/2020] [Indexed: 02/08/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential cofactor for redox enzymes, but also moonlights as a regulator for ion channels, the same as its metabolites. Ca2+ homeostasis is dysregulated in cancer cells and affects processes such as tumorigenesis, angiogenesis, autophagy, progression, and metastasis. Herein, we summarize the regulation of the most common calcium channels (TRPM2, TPCs, RyRs, and TRPML1) by NAD+ and its metabolites, with a particular focus on their roles in cancers. Although the mechanisms of NAD+ metabolites in these pathological processes are yet to be clearly elucidated, these ion channels are emerging as potential candidates of alternative targets for anticancer therapy.
Collapse
Affiliation(s)
- Peilin Yu
- Department of Toxicology, and Department of Medical Oncology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; (P.Y.); (Y.L.)
| | - Xiaobo Cai
- Department of Biophysics, and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China;
| | - Yan Liang
- Department of Toxicology, and Department of Medical Oncology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; (P.Y.); (Y.L.)
| | - Mingxiang Wang
- BrioPryme Biologics, Inc., Hangzhou 310058, Zhejiang, China;
| | - Wei Yang
- Department of Biophysics, and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China;
- Correspondence: ; Tel.: +86-571-8820-8713
| |
Collapse
|
4
|
Wu Y, Lu Y, Zou F, Fan X, Li X, Zhang H, Chen H, Sun X, Liu Y. PTEN participates in airway remodeling of asthma by regulating CD38/Ca 2+/CREB signaling. Aging (Albany NY) 2020; 12:16326-16340. [PMID: 32889801 PMCID: PMC7485701 DOI: 10.18632/aging.103664] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022]
Abstract
Both phosphatase and tensin homologue deleted on chromosome ten (PTEN) and cluster of differentiation 38 (CD38) have been suggested to be key regulators of the pathogenesis of asthma. However, the precise role and molecular mechanisms by which PTEN and CD38 are involved in airway remodeling throughout asthma pathogenesis remains poorly understood. This study aimed to elucidate the role of PTEN and CD38 in airway remodeling of asthma. Exposure to tumor necrosis factor-α (TNF-α) in airway smooth muscle (ASM) cells markedly decreased PTEN expression, and increased expression of CD38. Overexpression of PTEN suppressed the expression of CD38 and downregulated proliferation and migration induced by TNF-α stimulation, which was partially reversed by CD38 overexpression. PTEN/CD38 axis regulated Ca2+ levels and cyclic AMP response-element binding protein (CREB) phosphorylation in TNF-α-stimulated ASM cells. The in vitro knockdown of CD38 or overexpression of PTEN remarkably restricted airway remodeling and decreased Ca2+ concentrations and CREB phosphorylation in asthmatic mice. CD38 overexpression abolished the inhibitory effects of PTEN overexpression on airway remodeling. These findings demonstrate that PTEN inhibits airway remodeling of asthma through the downregulation of CD38-mediated Ca2+/CREB signaling, highlighting a key role of PTEN/CD38/Ca2+/CREB signaling in the molecular pathogenesis of asthma.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, Shaanxi Province, PR China
| | - Yiyi Lu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, Shaanxi Province, PR China
| | - Fan Zou
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, Shaanxi Province, PR China
| | - Xinping Fan
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, Shaanxi Province, PR China
| | - Xudong Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, Shaanxi Province, PR China
| | - Hongni Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, Shaanxi Province, PR China
| | - Haijuan Chen
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, Shaanxi Province, PR China
| | - Xiuzhen Sun
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, Shaanxi Province, PR China
| | - Yun Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, Shaanxi Province, PR China
| |
Collapse
|
5
|
Shuto S. Cyclic ADP-Carbocyclic-Ribose and -4-Thioribose, as Stable Mimics of Cyclic ADP-Ribose, a Ca 2+-Mobilizing Second Messenger. Chem Pharm Bull (Tokyo) 2018; 66:155-161. [PMID: 29386466 DOI: 10.1248/cpb.c17-00668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyclic ADP-ribose (cADPR), a general mediator involved in Ca2+ signaling, has the characteristic 18-membered ring consisting of an adenine, two riboses and a pyrophosphate, in which the two primary hydroxy groups of the riboses are linked by a pyrophosphate unit. This review focuses on chemical synthetic studies of cADPR analogues of biological importance. Although cADPR analogues can be synthesized by enzymatic and chemo-enzymatic methods using ADP-ribosyl cyclase, the analogues obtained by these methods are limited due to the substrate-specificity of the enzymes. Consequently, chemical synthetic methods providing a greater variety of cADPR analogues are required. Although early chemical synthetic studies demonstrated that construction of the large 18-membered ring structure is difficult, the construction was achieved using the phenylthiophosphate-type substrates by treating with AgNO3 or I2. This is now a general method for synthesizing these types of biologically important cyclic nucleotides. Using this method as the key step, the chemically and biologically stable cADPR mimic, cADP-carbocyclic-ribose (cADPcR) and -4-thioribose (cADPtR), were synthesized.
Collapse
Affiliation(s)
- Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Hokkaido University
| |
Collapse
|
6
|
Wang X, Zhang X, Zhang K, Hu J, Liu Z, Jin H, Zhang L, Zhang L. Calcium-Mobilizing Behaviors of Neutral Cyclic ADP-Ribose Mimics that Integrate Modifications to the Nucleobase, Northern Ribose and Pyrophosphate. Chembiochem 2018; 19:1444-1451. [PMID: 29633462 DOI: 10.1002/cbic.201800133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Indexed: 11/11/2022]
Abstract
Cyclic adenosine diphosphate ribose (cADPR) is an endogenous Ca2+ mobilizer involved in diverse cellular processes. Mimics of cADPR play a crucial role in investigating the molecular mechanism(s) of cADPR-mediated signaling. Here, compound 3, a mimic of cADPR in which a neutral triazole moiety and an ether linkage were introduced to substitute the pyrophosphate and "northern" ribose components, respectively, was synthesized for the first time. The pharmacological activities in Jurkat cells indicated that this mimic is capable of penetrating plasma membrane and inciting Ca2+ release from the endoplasmic reticulum (ER) through the action of ryanodine receptors (RyRs) and triggering Ca2+ influx. Furthermore, a uridine moiety was introduced in place of adenine and the new cADPR mimics 4 and 5 were synthesized. The results of biological investigation showed that these mimics also targeted RyRs and retained moderate Ca2+ agonistic activities. The results indicated that the neutral cADPR mimics had the same targets for inducing Ca2+ signaling.
Collapse
Affiliation(s)
- Xuan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiaoyan Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Kehui Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jianxing Hu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
7
|
Takano S, Tsuzuki T, Murayama T, Kameda T, Kumaki Y, Sakurai T, Fukuda H, Watanabe M, Arisawa M, Shuto S. Synthesis of 8-Substituted Analogues of Cyclic ADP-4-Thioribose and Their Unexpected Identification as Ca 2+-Mobilizing Full Agonists. J Med Chem 2017. [PMID: 28636353 DOI: 10.1021/acs.jmedchem.7b00540] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of 8-substituted analogues of cyclic ADP-4-thioribose (cADPtR, 3), which is a stable equivalent of Ca2+-mobilizing second messenger cyclic ADP-ribose (cADPR, 1), were designed as potential pharmacological tools for studies on cADPR-modulated Ca2+ signaling pathways. These 8-amino analogue (8-NH2-cADPtR, 4), 8-azido analogue (8-N3-cADPtR, 5), and 8-chloro analogue (8-Cl-cADPtR, 6) were efficiently synthesized, where the stereoselective N1-β-thioribosyladenine ring closure reaction via an α/β-equilibrium of the 1-aminothioribose derivative and construction of the characteristic 18-membered pyrophosphate ring by Ag+-promoted activation of a phenyl phosphorothioate type substrate were the two key steps. Although 8-NH2-cADPR (2) is a well-known potent antagonist against cADPR-inducing Ca2+-release, the 4-thioribose congener 8-NH2-cADPtR turned out unexpectedly to be a full agonist in sea urchin egg homogenate evaluation system. This important finding suggested that the ring-oxygen in the N1-ribose of cADPR analogues is essential for the antagonistic activity in the Ca2+-signaling pathway, which can contribute to clarify the structure-agonist/antagonist activity relationship.
Collapse
Affiliation(s)
| | | | - Takashi Murayama
- Department of Pharmacology, Juntendo University School of Medicine , Bunkyo-ku, Tokyo 113-8421, Japan
| | - Tomoshi Kameda
- Computational Biology Research Center, National Institute of Advanced Industrial Science and Technology (AIST) , Aomi, Koutou-ku, Tokyo 135-0064, Japan
| | - Yasuhiro Kumaki
- Faculty of Sciences, Hokkaido University , Kita-11, Nishi-8, Kita-ku, Sapporo 060-0812, Japan
| | - Takashi Sakurai
- Department of Pharmacology, Juntendo University School of Medicine , Bunkyo-ku, Tokyo 113-8421, Japan
| | | | | | | | | |
Collapse
|
8
|
Peng QY, Zou Y, Zhang LN, Ai ML, Liu W, Ai YH. Blocking Cyclic Adenosine Diphosphate Ribose-mediated Calcium Overload Attenuates Sepsis-induced Acute Lung Injury in Rats. Chin Med J (Engl) 2017; 129:1725-30. [PMID: 27411462 PMCID: PMC4960964 DOI: 10.4103/0366-6999.185854] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background: Acute lung injury (ALI) is a common complication of sepsis that is associated with high mortality. Intracellular Ca2+ overload plays an important role in the pathophysiology of sepsis-induced ALI, and cyclic adenosine diphosphate ribose (cADPR) is an important regulator of intracellular Ca2+ mobilization. The cluster of differentiation 38 (CD38)/cADPR pathway has been found to play roles in multiple inflammatory processes but its role in sepsis-induced ALI is still unknown. This study aimed to investigate whether the CD38/cADPR signaling pathway is activated in sepsis-induced ALI and whether blocking cADPR-mediated calcium overload attenuates ALI. Methods: Septic rat models were established by cecal ligation and puncture (CLP). Rats were divided into the sham group, the CLP group, and the CLP+ 8-bromo-cyclic adenosine diphosphate ribose (8-Br-cADPR) group. Nicotinamide adenine dinucleotide (NAD+), cADPR, CD38, and intracellular Ca2+ levels in the lung tissues were measured at 6, 12, 24, and 48 h after CLP surgery. Lung histologic injury, tumor necrosis factor (TNF)-α, malondialdehyde (MDA) levels, and superoxide dismutase (SOD) activities were measured. Results: NAD+, cADPR, CD38, and intracellular Ca2+ levels in the lungs of septic rats increased significantly at 24 h after CLP surgery. Treatment with 8-Br-cADPR, a specific inhibitor of cADPR, significantly reduced intracellular Ca2+ levels (P = 0.007), attenuated lung histological injury (P = 0.023), reduced TNF-α and MDA levels (P < 0.001 and P = 0.002, respectively) and recovered SOD activity (P = 0.031) in the lungs of septic rats. Conclusions: The CD38/cADPR pathway is activated in the lungs of septic rats, and blocking cADPR-mediated calcium overload with 8-Br-cADPR protects against sepsis-induced ALI.
Collapse
Affiliation(s)
- Qian-Yi Peng
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yu Zou
- Department of Anesthesia, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Li-Na Zhang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Mei-Lin Ai
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wei Liu
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yu-Hang Ai
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
9
|
Zhang K, Sun W, Huang L, Zhu K, Pei F, Zhu L, Wang Q, Lu Y, Zhang H, Jin H, Zhang LH, Zhang L, Yue J. Identifying Glyceraldehyde 3-Phosphate Dehydrogenase as a Cyclic Adenosine Diphosphoribose Binding Protein by Photoaffinity Protein-Ligand Labeling Approach. J Am Chem Soc 2016; 139:156-170. [PMID: 27936653 DOI: 10.1021/jacs.6b08088] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cyclic adenosine diphosphoribose (cADPR), an endogenous nucleotide derived from nicotinamide adenine dinucleotide (NAD+), mobilizes Ca2+ release from endoplasmic reticulum (ER) via ryanodine receptors (RyRs), yet the bridging protein(s) between cADPR and RyRs remain(s) unknown. Here we synthesized a novel photoaffinity labeling (PAL) cADPR agonist, PAL-cIDPRE, and subsequently applied it to purify its binding proteins in human Jurkat T cells. We identified glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as one of the cADPR binding protein(s), characterized the binding affinity between cADPR and GAPDH in vitro by surface plasmon resonance (SPR) assay, and mapped cADPR's binding sites in GAPDH. We further demonstrated that cADPR induces the transient interaction between GAPDH and RyRs in vivo and that GAPDH knockdown abolished cADPR-induced Ca2+ release. However, GAPDH did not catalyze cADPR into any other known or novel compound(s). In summary, our data clearly indicate that GAPDH is the long-sought-after cADPR binding protein and is required for cADPR-mediated Ca2+ mobilization from ER via RyRs.
Collapse
Affiliation(s)
- Kehui Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China.,Department of Biomedical Sciences, City University of Hong Kong , Hong Kong, China
| | - Wei Sun
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong, China.,Department of Biology and Shenzhen Key Laboratory of Cell Microenvironment, South University of Science and Technology of China , Shenzhen 518052, China
| | - Lihong Huang
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong, China
| | - Kaiyuan Zhu
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong, China
| | - Fen Pei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Longchao Zhu
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong, China
| | - Qian Wang
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong, China
| | - Yingying Lu
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong, China
| | - Hongmin Zhang
- Department of Biology and Shenzhen Key Laboratory of Cell Microenvironment, South University of Science and Technology of China , Shenzhen 518052, China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Li-He Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Jianbo Yue
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong, China
| |
Collapse
|
10
|
Yu P, Li J, Jiang J, Zhao Z, Hui Z, Zhang J, Zheng Y, Ling D, Wang L, Jiang LH, Luo J, Zhu X, Yang W. A dual role of transient receptor potential melastatin 2 channel in cytotoxicity induced by silica nanoparticles. Sci Rep 2015; 5:18171. [PMID: 26656285 PMCID: PMC4676061 DOI: 10.1038/srep18171] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 11/13/2015] [Indexed: 01/09/2023] Open
Abstract
Silica nanoparticles (NPs) have remarkable applications. However, accumulating evidence suggests NPs can cause cellular toxicity by inducing ROS production and increasing intracellular Ca(2+) ([Ca(2+)]i), but the underlying molecular mechanism is largely unknown. Transient receptor potential melastatin 2 (TRPM2) channel is known to be a cellular redox potential sensor that provides an important pathway for increasing the [Ca(2+)]i under oxidative stress. In this study, we examined the role of TRPM2 channel in silica NPs-induced oxidative stress and cell death. By quantitation of cell viability, ROS production, [Ca(2+)]i, and protein identification, we showed that TRPM2 channel is required for ROS production and Ca(2+) increase induced by silica NPs through regulating NADPH oxidase activity in HEK293 cells. Strikingly, HEK293 cells expressing low levels of TRPM2 were more susceptible to silica NPs than those expressing high levels of TRPM2. Macrophages from young mice showed significantly lower TRPM2 expression than those from senescent mice and had significantly lower viability after silica NPs exposure than those from senescent ones. Taken together, these findings demonstrate for the first time that TRPM2 channel acts as an oxidative stress sensor that plays a dual role in silica NPs-induced cytotoxicity by differentially regulating the NADPH oxidase activity and ROS generation.
Collapse
Affiliation(s)
- Peilin Yu
- Department of Toxicology, School of Public Health, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Jin Li
- Department of Toxicology, School of Public Health, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Jialin Jiang
- Department of Toxicology, School of Public Health, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Zunquan Zhao
- Department of Toxicology, School of Public Health, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Zhaoyuan Hui
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P. R. China
| | - Jun Zhang
- Department of Toxicology, School of Public Health, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Yifan Zheng
- Department of Toxicology, School of Public Health, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Daishun Ling
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Lie Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P. R. China
| | - Lin-Hua Jiang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
- Department of Physiology and Neurobiology and Key Laboratory of Brain Research of Henan Province, Xinxiang Medical University, Xinxiang 453003, P. R. China
| | - Jianhong Luo
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P. R. China
| | - Xinqiang Zhu
- Department of Toxicology, School of Public Health, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Wei Yang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P. R. China
| |
Collapse
|
11
|
Peng QY, Ai ML, Zhang LN, Zou Y, Ma XH, Ai YH. Blocking NAD(+)/CD38/cADPR/Ca(2+) pathway in sepsis prevents organ damage. J Surg Res 2015; 201:480-9. [PMID: 27020835 DOI: 10.1016/j.jss.2015.11.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/15/2015] [Accepted: 11/20/2015] [Indexed: 12/28/2022]
Abstract
BACKGROUND Although the nicotinamide adenine dinucleotide (NAD(+))/CD38/cyclic ADP ribose (cADPR)/Ca(2+) signaling pathway has been shown to regulate intracellular calcium homeostasis and functions in multiple inflammatory processes, its role in sepsis remains unknown. The aim of this study was to determine whether the NAD(+)/CD38/cADPR/Ca(2+) signaling pathway is activated during sepsis and whether an inhibitor of this pathway, 8-Br-cADPR, protects the organs from sepsis-induced damage. MATERIALS AND METHODS Male Sprague-Dawley rats were subjected to cecal ligation and puncture (CLP) or sham laparotomies. NAD(+), cADPR, CD38, and intracellular Ca(2+) levels were measured in the hearts, livers, and kidneys of septic rats at 0, 6, 12, 24, and 48 h after CLP surgery. Rats were also divided into sham, CLP, and CLP+8-Br-cADPR groups, and the hearts, livers, and kidneys were hematoxylin-eosin-stained and assayed for malondialdehyde and superoxide dismutase activities. RESULTS NAD(+), cADPR, CD38, and intracellular Ca(2+) levels increased in the hearts, livers, and kidneys of septic rats as early as 6-24 h after CLP surgery. Treatment with 8-Br-cADPR inhibited sepsis-induced intracellular Ca(2+) mobilization, attenuated tissue injury, reduced malondialdehyde levels, and increased superoxide dismutase activity in septic rats. CONCLUSIONS The NAD(+)/CD38/cADPR/Ca(2+) signaling pathway was activated during sepsis in the CLP rat model. Blocking this pathway with 8-Br-cADPR protected hearts, livers, and kidneys from sepsis-induced damage.
Collapse
Affiliation(s)
- Qian-Yi Peng
- Department of Critical Care Medicine, Xiang-Ya Hospital, Central South University, Changsha, Hunan Province, China
| | - Mei-Lin Ai
- Department of Critical Care Medicine, Xiang-Ya Hospital, Central South University, Changsha, Hunan Province, China
| | - Li-Na Zhang
- Department of Critical Care Medicine, Xiang-Ya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yu Zou
- Department of Anesthesia, Xiang-Ya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xin-Hua Ma
- Department of Critical Care Medicine, Xiang-Ya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yu-Hang Ai
- Department of Critical Care Medicine, Xiang-Ya Hospital, Central South University, Changsha, Hunan Province, China.
| |
Collapse
|
12
|
Sato T, Tsuzuki T, Takano S, Kato K, Fukuda H, Arisawa M, Shuto S. Construction of a chiral quaternary carbon center by a radical cyclization/ring-enlargement reaction: synthesis of 4α-azidoethyl carbocyclic ribose, a key unit for the synthesis of cyclic ADP-ribose derivatives of biological importance. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.05.084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Takano S, Tsuzuki T, Murayama T, Sakurai T, Fukuda H, Arisawa M, Shuto S. Synthesis of 7-Deaza-cyclic Adenosine-5'-diphosphate-carbocyclic-ribose and Its 7-Bromo Derivative as Intracellular Ca(2+)-Mobilizing Agents. J Org Chem 2015; 80:6619-27. [PMID: 26075947 DOI: 10.1021/acs.joc.5b00723] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cyclic ADP-carbocyclic-ribose (cADPcR, 3) is a biologically and chemically stable equivalent of cyclic ADP-ribose (cADPR, 1), a Ca(2+)-mobilizing second messenger. We became interested in the biological activity of the 7-deaza analogues of cADPcR, i.e., 7-deaza-cADPcR (7) and its 7-bromo derivative, i.e., 7-deaza-7-Br-cADPcR (8), because 7-deazaadenosine is an efficient bioisostere of adenosine. The synthesis of 7 and 8 required us to construct the key N1-carbocyclic-ribosyl-7-deazaadenosine structure. Therefore, we developed a general method for preparing N1-substituted 7-deazaadenosines by condensing a 2,3-disubstituted pyrrole nucleoside with amines. Using this method, we prepared the N1-carbocyclic ribosyl 7-deazaadenosine derivative 10a, from which we then synthesized the target 7-deaza-cADPcR (7) via an Ag(+)-promoted intramolecular condensation to construct the 18-membered pyrophosphate ring structure. The corresponding 7-bromo derivative 8, which was the first analogue of cADPR with a substitution at the 7-position, was similarly synthesized. Biological evaluation for Ca(2+)-mobilizing activity in the sea urchin egg homogenate system indicated that 7-deaza-cADPcR (7) and 7-deaza-7-Br-cADPcR (8) acted as a full agonist and a partial agonist, respectively.
Collapse
Affiliation(s)
| | | | - Takashi Murayama
- §Department of Pharmacology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Takashi Sakurai
- §Department of Pharmacology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | | | | | | |
Collapse
|
14
|
Zhang L, Yue J, Zhang LH. Cyclic adenosine 5'-diphosphoribose (cADPR) mimics used as molecular probes in cell signaling. CHEM REC 2015; 15:511-23. [PMID: 25707449 DOI: 10.1002/tcr.201402072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Indexed: 11/12/2022]
Abstract
Cyclic adenosine 5'-diphosphate ribose (cADPR) is a second messenger in the Ca(2+) signaling pathway. To elucidate its molecular mechanism in calcium release, a series of cADPR analogues with modification on ribose, nucleobase, and pyrophosphate have been investigated. Among them, the analogue with the modification of the northern ribose by ether linkage substitution (cIDPRE) exhibits membrane-permeate Ca(2+) agonistic activity in intact HeLa cells, human T cells, mouse cardiac myocytes and neurosecretory PC12 cell lines; thus, cIDPRE and coumarin-caged cIDPRE are valuable probes to investigate the cADPR-mediated Ca(2+) signal pathway.
Collapse
Affiliation(s)
- Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China.
| | | | | |
Collapse
|
15
|
TRPM2 channel deficiency prevents delayed cytosolic Zn2+ accumulation and CA1 pyramidal neuronal death after transient global ischemia. Cell Death Dis 2014; 5:e1541. [PMID: 25429618 PMCID: PMC4260752 DOI: 10.1038/cddis.2014.494] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 10/02/2014] [Accepted: 10/16/2014] [Indexed: 11/09/2022]
Abstract
Transient ischemia is a leading cause of cognitive dysfunction. Postischemic ROS generation and an increase in the cytosolic Zn2+ level ([Zn2+]c) are critical in delayed CA1 pyramidal neuronal death, but the underlying mechanisms are not fully understood. Here we investigated the role of ROS-sensitive TRPM2 (transient receptor potential melastatin-related 2) channel. Using in vivo and in vitro models of ischemia–reperfusion, we showed that genetic knockout of TRPM2 strongly prohibited the delayed increase in the [Zn2+]c, ROS generation, CA1 pyramidal neuronal death and postischemic memory impairment. Time-lapse imaging revealed that TRPM2 deficiency had no effect on the ischemia-induced increase in the [Zn2+]c but abolished the cytosolic Zn2+ accumulation during reperfusion as well as ROS-elicited increases in the [Zn2+]c. These results provide the first evidence to show a critical role for TRPM2 channel activation during reperfusion in the delayed increase in the [Zn2+]c and CA1 pyramidal neuronal death and identify TRPM2 as a key molecule signaling ROS generation to postischemic brain injury.
Collapse
|
16
|
Galione A, Chuang KT, Funnell TM, Davis LC, Morgan AJ, Ruas M, Parrington J, Churchill GC. Synthesis of caged NAADP. Cold Spring Harb Protoc 2014; 2014:pdb.prot076943. [PMID: 25275103 DOI: 10.1101/pdb.prot076943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Caged derivatives of Ca²⁺-mobilizing messengers, such as nicotinic acid adenine dinucleotide phosphate (NAADP), are particularly useful for establishing the effects of these messengers on Ca²⁺ signaling. Caged NAADP is no longer commercially available but can be synthesized in house, as described here. In brief, a stable precursor of the caging reagent is made and converted to an unstable reactive reagent immediately before addition to the compound to be caged.
Collapse
Affiliation(s)
- Antony Galione
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| | - Kai-Ting Chuang
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| | - Tim M Funnell
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| | - Lianne C Davis
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| | - Anthony J Morgan
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| | - Margarida Ruas
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| | - John Parrington
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| | - Grant C Churchill
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| |
Collapse
|
17
|
Tsuzuki T, Takano S, Sakaguchi N, Kudoh T, Murayama T, Sakurai T, Hashii M, Higashida H, Weber K, Guse AH, Kameda T, Hirokawa T, Kumaki Y, Arisawa M, Potter BVL, Shuto S. Design, Synthesis, and Chemical and Biological Properties of Cyclic ADP-4-Thioribose as a Stable Equivalent of Cyclic ADP-Ribose. MESSENGER (LOS ANGELES, CALIF. : PRINT) 2014; 3:35-51. [PMID: 27200225 PMCID: PMC4869844 DOI: 10.1166/msr.2014.1035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Here we describe the successful synthesis of cyclic ADP-4-thioribose (cADPtR, 3), designed as a stable mimic of cyclic ADP-ribose (cADPR, 1), a Ca2+-mobilizing second messenger, in which the key N1-β-thioribosyladenosine structure was stereoselectively constructed by condensation between the imidazole nucleoside derivative 8 and the 4-thioribosylamine 7 via equilibrium in 7 between the α-anomer (7α) and the β-anomer (7β) during the reaction course. cADPtR is, unlike cADPR, chemically and biologically stable, while it effectively mobilizes intracellular Ca2+ like cADPR in various biological systems, such as sea urchin homogenate, NG108-15 neuronal cells, and Jurkat T-lymphocytes. Thus, cADPtR is a stable equivalent of cADPR, which can be useful as a biological tool for investigating cADPR-mediated Ca2+-mobilizing pathways.
Collapse
Affiliation(s)
- Takayoshi Tsuzuki
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Satoshi Takano
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Natsumi Sakaguchi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Takashi Kudoh
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Takashi Murayama
- Department of Pharmacology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Takashi Sakurai
- Department of Pharmacology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Minako Hashii
- Department of Biophysical Genetics, Takaramachi, Kanazawa University Graduate School of Medicine, Kanazawa 920-8640, Japan
| | - Haruhiro Higashida
- Department of Biophysical Genetics, Takaramachi, Kanazawa University Graduate School of Medicine, Kanazawa 920-8640, Japan
| | - Karin Weber
- The Calcium Signalling Group, University Medical Center Hamburg-Eppendorf, Center of Experimental Medicine, Department of Biochemistry and Signal Transduction, Martinistr. 52, 20246 Hamburg, Germany
| | - Andreas H. Guse
- The Calcium Signalling Group, University Medical Center Hamburg-Eppendorf, Center of Experimental Medicine, Department of Biochemistry and Signal Transduction, Martinistr. 52, 20246 Hamburg, Germany
| | - Tomoshi Kameda
- Computational Biology Research Center, National Institute of Advanced Industrial Science and Technology, Aomi, Koutou-ku, Tokyo 135-0064, Japan
| | - Takatsugu Hirokawa
- Computational Biology Research Center, National Institute of Advanced Industrial Science and Technology, Aomi, Koutou-ku, Tokyo 135-0064, Japan
| | - Yasuhiro Kumaki
- Faculty of Sciences, Hokkaido University, Kita-11, Nishi-8, Kita-ku, Sapporo 060-0812, Japan
| | - Mitsuhiro Arisawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Barry V. L. Potter
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
- Center for Research and Education on Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
18
|
Swarbrick JM, Graeff R, Garnham C, Thomas MP, Galione A, Potter BVL. 'Click cyclic ADP-ribose': a neutral second messenger mimic. Chem Commun (Camb) 2014; 50:2458-61. [PMID: 24452494 PMCID: PMC4047616 DOI: 10.1039/c3cc49249d] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/08/2014] [Indexed: 11/21/2022]
Abstract
Analogues of the potent Ca(2+) releasing second messenger cyclic ADP-ribose (cADPR) with a 1,2,3-triazole pyrophosphate bioisostere were synthesised by click-mediated macrocyclisation. The ability to activate Ca(2+) release was surprisingly retained, and hydrolysis of cADPR by CD38 could also be inhibited, illustrating the potential of this approach to design drug-like signalling pathway modulators.
Collapse
Affiliation(s)
- Joanna M. Swarbrick
- Wolfson Laboratory of Medicinal Chemistry , Dept. of Pharmacy and Pharmacology , University of Bath , Bath , BA2 7AY , UK . ; Fax: +44-(0)1225-386114 ; Tel: +44-(0)1225-386639
| | - Richard Graeff
- Department of Physiology , University of Hong Kong , Hong Kong , China
| | - Clive Garnham
- Department of Pharmacology , University of Oxford , Mansfield Road , Oxford OX1 3QT , UK
| | - Mark P. Thomas
- Wolfson Laboratory of Medicinal Chemistry , Dept. of Pharmacy and Pharmacology , University of Bath , Bath , BA2 7AY , UK . ; Fax: +44-(0)1225-386114 ; Tel: +44-(0)1225-386639
| | - Antony Galione
- Department of Pharmacology , University of Oxford , Mansfield Road , Oxford OX1 3QT , UK
| | | |
Collapse
|
19
|
Tang X, Zhang J, Sun J, Wang Y, Wu J, Zhang L. Caged nucleotides/nucleosides and their photochemical biology. Org Biomol Chem 2013; 11:7814-24. [PMID: 24132515 DOI: 10.1039/c3ob41735b] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nucleotides and nucleosides are not only key units of DNA/RNA that store genetic information, but are also the regulators of many biological events of our lives. By caging the key functional groups or key residues of nucleotides with photosensitive moieties, it will be possible to trigger biological events of target nucleotides with spatiotemporal resolution and amplitude upon light activation or photomodulate polymerase reactions with the caged nucleotide analogues for next-generation sequencing (NGS) and bioorthogonal labeling. This review highlights three different caging strategies for nucleotides and demonstrates the photochemical biology of these caged nucleotides.
Collapse
Affiliation(s)
- Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, the School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Rd., Beijing 100191, China.
| | | | | | | | | | | |
Collapse
|
20
|
Lu Y, Hao BX, Graeff R, Wong CWM, Wu WT, Yue J. Two pore channel 2 (TPC2) inhibits autophagosomal-lysosomal fusion by alkalinizing lysosomal pH. J Biol Chem 2013; 288:24247-63. [PMID: 23836916 PMCID: PMC3745369 DOI: 10.1074/jbc.m113.484253] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Autophagy is an evolutionarily conserved lysosomal degradation pathway, yet the underlying mechanisms remain poorly understood. Nicotinic acid adenine dinucleotide phosphate (NAADP), one of the most potent Ca2+ mobilizing messengers, elicits Ca2+ release from lysosomes via the two pore channel 2 (TPC2) in many cell types. Here we found that overexpression of TPC2 in HeLa or mouse embryonic stem cells inhibited autophagosomal-lysosomal fusion, thereby resulting in the accumulation of autophagosomes. Treatment of TPC2 expressing cells with a cell permeant-NAADP agonist, NAADP-AM, further induced autophagosome accumulation. On the other hand, TPC2 knockdown or treatment of cells with Ned-19, a NAADP antagonist, markedly decreased the accumulation of autophagosomes. TPC2-induced accumulation of autophagosomes was also markedly blocked by ATG5 knockdown. Interestingly, inhibiting mTOR activity failed to increase TPC2-induced autophagosome accumulation. Instead, we found that overexpression of TPC2 alkalinized lysosomal pH, and lysosomal re-acidification abolished TPC2-induced autophagosome accumulation. In addition, TPC2 overexpression had no effect on general endosomal-lysosomal degradation but prevented the recruitment of Rab-7 to autophagosomes. Taken together, our data demonstrate that TPC2/NAADP/Ca2+ signaling alkalinizes lysosomal pH to specifically inhibit the later stage of basal autophagy progression.
Collapse
Affiliation(s)
- Yingying Lu
- Department of Physiology, University of Hong Kong, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
21
|
Tsuzuki T, Sakaguchi N, Kudoh T, Takano S, Uehara M, Murayama T, Sakurai T, Hashii M, Higashida H, Weber K, Guse AH, Kameda T, Hirokawa T, Kumaki Y, Potter BVL, Fukuda H, Arisawa M, Shuto S. Design and Synthesis of Cyclic ADP-4-Thioribose as a Stable Equivalent of Cyclic ADP-Ribose, a Calcium Ion-Mobilizing Second Messenger. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201302098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
Zhang ZH, Lu YY, Yue J. Two pore channel 2 differentially modulates neural differentiation of mouse embryonic stem cells. PLoS One 2013; 8:e66077. [PMID: 23776607 PMCID: PMC3680454 DOI: 10.1371/journal.pone.0066077] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/01/2013] [Indexed: 12/15/2022] Open
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is an endogenous Ca2+ mobilizing nucleotide presented in various species. NAADP mobilizes Ca2+ from acidic organelles through two pore channel 2 (TPC2) in many cell types and it has been previously shown that NAADP can potently induce neuronal differentiation in PC12 cells. Here we examined the role of TPC2 signaling in the neural differentiation of mouse embryonic stem (ES) cells. We found that the expression of TPC2 was markedly decreased during the initial ES cell entry into neural progenitors, and the levels of TPC2 gradually rebounded during the late stages of neurogenesis. Correspondingly, TPC2 knockdown accelerated mouse ES cell differentiation into neural progenitors but inhibited these neural progenitors from committing to neurons. Overexpression of TPC2, on the other hand, inhibited mouse ES cell from entering the early neural lineage. Interestingly, TPC2 knockdown had no effect on the differentiation of astrocytes and oligodendrocytes of mouse ES cells. Taken together, our data indicate that TPC2 signaling plays a temporal and differential role in modulating the neural lineage entry of mouse ES cells, in that TPC2 signaling inhibits ES cell entry to early neural progenitors, but is required for late neuronal differentiation.
Collapse
Affiliation(s)
- Zhe-Hao Zhang
- Department of Physiology, University of Hong Kong, Hong Kong, China
| | - Ying-Ying Lu
- Department of Physiology, University of Hong Kong, Hong Kong, China
| | - Jianbo Yue
- Department of Physiology, University of Hong Kong, Hong Kong, China
- * E-mail:
| |
Collapse
|
23
|
Tsuzuki T, Sakaguchi N, Kudoh T, Takano S, Uehara M, Murayama T, Sakurai T, Hashii M, Higashida H, Weber K, Guse AH, Kameda T, Hirokawa T, Kumaki Y, Potter BVL, Fukuda H, Arisawa M, Shuto S. Design and synthesis of cyclic ADP-4-thioribose as a stable equivalent of cyclic ADP-ribose, a calcium ion-mobilizing second messenger. Angew Chem Int Ed Engl 2013; 52:6633-7. [PMID: 23670921 PMCID: PMC3738939 DOI: 10.1002/anie.201302098] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Indexed: 11/23/2022]
Affiliation(s)
- Takayoshi Tsuzuki
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Masumoto K, Tsukimoto M, Kojima S. Role of TRPM2 and TRPV1 cation channels in cellular responses to radiation-induced DNA damage. Biochim Biophys Acta Gen Subj 2013; 1830:3382-90. [PMID: 23458684 DOI: 10.1016/j.bbagen.2013.02.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/12/2013] [Accepted: 02/20/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND Radiation exposure causes DNA damage, and DNA repair systems are essential to rescue damaged cells. Although DNA damage or oxidative stress activates transient receptor potential melastatin 2 (TRPM2) and vanilloid 1 (TRPV1) cation channels, it has not been established whether these TRP channels are involved in cellular responses to radiation-induced DNA damage. Here, we investigated the contribution of TRPM2 and TRPV1 channels to γ-irradiation- and UVB-induced DNA damage responses in human lung cancer A549 cells. METHODS A549 cells were irradiated with γ-rays (2.0Gy) or UVB (5-10mJ/cm(2)). γH2AX foci, ATM activation, 53BP1 accumulation and EGFR expression were evaluated by immunofluorescence staining. Extracellular ATP concentration was measured by luciferin-luciferase assay. Knockdown of TRPM2 and TRPV1 expression was done by siRNA transfection. RESULTS γ-Irradiation-induced γH2AX focus formation, ATM activation, 53BP1 accumulation and EGFR nuclear translocation, which are all associated with DNA repair, were suppressed by knockdown of TRPM2 and TRPV1 channels in A549 cells. Release of ATP, which mediates DNA damage response-associated activation of P2Y receptors, was suppressed by pre-treatment with catalase or knockdown of TRPM2 channel, but not TRPV1 channel. Similarly, UVB-induced γH2AX focus formation was suppressed in TRPM2- and TRPV1-knockdown cells, while UVB-induced ATP release was blocked in TRPM2- but not TRPV1-knockdown cells. CONCLUSION Our results suggest that the activation of TRPM2 channel, which mediates ATP release, and TRPV1 channel plays significant roles in the cellular responses to DNA damage induced by γ-irradiation and UVB irradiation. GENERAL SIGNIFICANCE Our results provide a new insight into the function of TRP channels from the viewpoint of radiation biology.
Collapse
Affiliation(s)
- Kanako Masumoto
- Department of Radiation Biosciences, Tokyo University of Science, Noda-shi, Chiba, Japan
| | | | | |
Collapse
|
25
|
Abstract
Transient potential receptor melastatin-2 (TRPM2) is a non-selective Ca2+-permeable cation channel of the TRPM channel subfamily and is mainly activated by intracellular adenosine diphosphate ribose (ADPR). Here we synthesized a 1-(2-nitrophenyl)ethyl caged ADPR (NPE-ADPR) and found that uncaging of NPE-ADPR efficiently stimulated Ca2+, Mg2+, and Zn2+ influx in a concentration-dependent manner in intact human Jurkat T-lymphocytes. The cation influx was inhibited by inhibitors or knockdown of TRPM2. Likewise, uncaging of NPE-ADPR markedly induced cation entry in HEK 293 cells that overexpress TRPM2. As expected, high temperature increased the ability of the photolyzed NPE-ADPR to induce cation entry, whereas acidic pH inhibited. Moreover, the absence of extracellular Ca2+ significantly inhibited Mg2+ and Zn2+ influx after uncaging NPE-ADPR. On the other hand, the absence of extracellular Na+ or Mg2+ had no effect on photolyzed NPE-ADPR induced Ca2+ entry. Taken together, our results indicated that NPE-ADPR is a cell permeable ADPR analogue that is useful for studying TRPM2-mediated cation entry in intact cells.
Collapse
|
26
|
Wei WJ, Sun HY, Ting KY, Zhang LH, Lee HC, Li GR, Yue J. Inhibition of cardiomyocytes differentiation of mouse embryonic stem cells by CD38/cADPR/Ca2+ signaling pathway. J Biol Chem 2012; 287:35599-35611. [PMID: 22908234 PMCID: PMC3471724 DOI: 10.1074/jbc.m112.392530] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cyclic adenosine diphosphoribose (cADPR) is an endogenous Ca2+ mobilizing messenger that is formed by ADP-ribosyl cyclases from nicotinamide adenine dinucleotide (NAD). The main ADP-ribosyl cyclase in mammals is CD38, a multi-functional enzyme and a type II membrane protein. Here we explored the role of CD38-cADPR-Ca2+ in the cardiomyogenesis of mouse embryonic stem (ES) cells. We found that the mouse ES cells are responsive to cADPR and possess the key components of the cADPR signaling pathway. In vitro cardiomyocyte (CM) differentiation of mouse ES cells was initiated by embryoid body (EB) formation. Interestingly, beating cells appeared earlier and were more abundant in CD38 knockdown EBs than in control EBs. Real-time RT-PCR and Western blot analyses further showed that the expression of several cardiac markers, including GATA4, MEF2C, NKX2.5, and α-MLC, were increased markedly in CD38 knockdown EBs than those in control EBs. Similarly, FACS analysis showed that more cardiac Troponin T-positive CMs existed in CD38 knockdown or 8-Br-cADPR, a cADPR antagonist, treated EBs compared with that in control EBs. On the other hand, overexpression of CD38 in mouse ES cells significantly inhibited CM differentiation. Moreover, CD38 knockdown ES cell-derived CMs possess the functional properties characteristic of normal ES cell-derived CMs. Last, we showed that the CD38-cADPR pathway negatively modulated the FGF4-Erks1/2 cascade during CM differentiation of ES cells, and transiently inhibition of Erk1/2 blocked the enhanced effects of CD38 knockdown on the differentiation of CM from ES cells. Taken together, our data indicate that the CD38-cADPR-Ca2+ signaling pathway antagonizes the CM differentiation of mouse ES cells.
Collapse
Affiliation(s)
- Wen-Jie Wei
- Department of Physiology, The University of Hong Kong, Hong Kong, China
| | - Hai-Ying Sun
- Department of Physiology, The University of Hong Kong, Hong Kong, China
| | - Kai Yiu Ting
- Department of Physiology, The University of Hong Kong, Hong Kong, China
| | - Li-He Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hon-Cheung Lee
- Department of Physiology, The University of Hong Kong, Hong Kong, China
| | - Gui-Rong Li
- Department of Physiology, The University of Hong Kong, Hong Kong, China
| | - Jianbo Yue
- Department of Physiology, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|