1
|
Dalla Barba F, Soardi M, Mouhib L, Risato G, Akyürek EE, Lucon-Xiccato T, Scano M, Benetollo A, Sacchetto R, Richard I, Argenton F, Bertolucci C, Carotti M, Sandonà D. Modeling Sarcoglycanopathy in Danio rerio. Int J Mol Sci 2023; 24:12707. [PMID: 37628888 PMCID: PMC10454440 DOI: 10.3390/ijms241612707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Sarcoglycanopathies, also known as limb girdle muscular dystrophy 3-6, are rare muscular dystrophies characterized, although heterogeneous, by high disability, with patients often wheelchair-bound by late adolescence and frequently developing respiratory and cardiac problems. These diseases are currently incurable, emphasizing the importance of effective treatment strategies and the necessity of animal models for drug screening and therapeutic verification. Using the CRISPR/Cas9 genome editing technique, we generated and characterized δ-sarcoglycan and β-sarcoglycan knockout zebrafish lines, which presented a progressive disease phenotype that worsened from a mild larval stage to distinct myopathic features in adulthood. By subjecting the knockout larvae to a viscous swimming medium, we were able to anticipate disease onset. The δ-SG knockout line was further exploited to demonstrate that a δ-SG missense mutant is a substrate for endoplasmic reticulum-associated degradation (ERAD), indicating premature degradation due to protein folding defects. In conclusion, our study underscores the utility of zebrafish in modeling sarcoglycanopathies through either gene knockout or future knock-in techniques. These novel zebrafish lines will not only enhance our understanding of the disease's pathogenic mechanisms, but will also serve as powerful tools for phenotype-based drug screening, ultimately contributing to the development of a cure for sarcoglycanopathies.
Collapse
Affiliation(s)
- Francesco Dalla Barba
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy; (F.D.B.)
| | - Michela Soardi
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy; (F.D.B.)
| | - Leila Mouhib
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy; (F.D.B.)
- Randall Center for Cell and Molecular Biophysics, King’s College London, London WC2R 2LS, UK
| | - Giovanni Risato
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy
- Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padova, Via Giustiniani, 2, 35128 Padova, Italy
| | - Eylem Emek Akyürek
- Department of Comparative Biomedicine and Food Science, University of Padova, Agripolis, Legnaro, 35020 Padova, Italy
| | - Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Martina Scano
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy; (F.D.B.)
| | - Alberto Benetollo
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy; (F.D.B.)
| | - Roberta Sacchetto
- Department of Comparative Biomedicine and Food Science, University of Padova, Agripolis, Legnaro, 35020 Padova, Italy
| | - Isabelle Richard
- Genethon, F-91002 Evry, France
- INSERM, U951, INTEGRARE Research Unit, F-91002 Evry, France
| | - Francesco Argenton
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Marcello Carotti
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy; (F.D.B.)
| | - Dorianna Sandonà
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy; (F.D.B.)
| |
Collapse
|
2
|
Voisard P, Diofano F, Glazier AA, Rottbauer W, Just S. CRISPR/Cas9-Mediated Constitutive Loss of VCP (Valosin-Containing Protein) Impairs Proteostasis and Leads to Defective Striated Muscle Structure and Function In Vivo. Int J Mol Sci 2022; 23:ijms23126722. [PMID: 35743185 PMCID: PMC9223409 DOI: 10.3390/ijms23126722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Valosin-containing protein (VCP) acts as a key regulator of cellular protein homeostasis by coordinating protein turnover and quality control. Mutations in VCP lead to (cardio-)myopathy and neurodegenerative diseases such as inclusion body myopathy with Paget’s disease of the bone and frontotemporal dementia (IBMPFD) or amyotrophic lateral sclerosis (ALS). To date, due to embryonic lethality, no constitutive VCP knockout animal model exists. Here, we generated a constitutive CRISPR/Cas9-induced vcp knockout zebrafish model. Similar to the phenotype of vcp morphant knockdown zebrafish embryos, we found that vcp-null embryos displayed significantly impaired cardiac and skeletal muscle function. By ultrastructural analysis of skeletal muscle cells and cardiomyocytes, we observed severely disrupted myofibrillar organization and accumulation of inclusion bodies as well as mitochondrial degeneration. vcp knockout was associated with a significant accumulation of ubiquitinated proteins, suggesting impaired proteasomal function. Additionally, markers of unfolded protein response (UPR)/ER-stress and autophagy-related mTOR signaling were elevated in vcp-deficient embryos, demonstrating impaired proteostasis in VCP-null zebrafish. In conclusion, our findings demonstrate the successful generation of a stable constitutive vcp knockout zebrafish line that will enable characterization of the detailed mechanistic underpinnings of vcp loss, particularly the impact of disturbed protein homeostasis on organ development and function in vivo.
Collapse
Affiliation(s)
- Philipp Voisard
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (P.V.); (F.D.); (A.A.G.)
| | - Federica Diofano
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (P.V.); (F.D.); (A.A.G.)
| | - Amelia A. Glazier
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (P.V.); (F.D.); (A.A.G.)
| | - Wolfgang Rottbauer
- Department of Internal Medicine II, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany;
| | - Steffen Just
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (P.V.); (F.D.); (A.A.G.)
- Correspondence: ; Tel.: +49-731-500-45118; Fax: +49-731-500-45159
| |
Collapse
|
3
|
Hasan AM, Jyoti MMS, Rana MR, Rezanujjaman M, Tokumoto T. Purification and Identification of the 20S Proteasome Complex from Zebrafish. Zebrafish 2022; 19:18-23. [PMID: 35171713 DOI: 10.1089/zeb.2021.0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The proteasome is a large polymeric protease complex responsible for degradation of intracellular proteins and generation of peptides. In this study, we purified a native 20S proteasome protein complex from zebrafish (Danio rerio) from the whole body. The cytosolic fraction of zebrafish hydrolyzed Suc-Leu-Leu-Val-Tyr-MCA (Suc-LLVY-MCA), a well-known substrate for the proteasome, in the presence of sodium dodecyl sulfate. From the cytosolic fraction, the 20S proteasome was purified using five column chromatography steps: DEAE cellulose, Q-Sepharose, Sephacryl S-300 gel, hydroxylapatite, and phenyl Sepharose. Electrophoresis and Western blot analyses showed that zebrafish 20S proteasome subunits have molecular masses ranging from 22 to 33 kDa. The subunit composition of the purified 20S proteasome was identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis after two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) separation. Fourteen kinds of 20S subunits were found. As a special characteristic of zebrafish, two proteins of the α1 subunit were identified. In addition, the results suggested that the α8 subunit is in the 20S complex instead of the α4 subunit. In this study, we demonstrated the subunit composition of the 20S proteasome complex present in zebrafish cells.
Collapse
Affiliation(s)
- Ali Md Hasan
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation, Shizuoka University, Shizuoka, Japan
| | - Md Maisum Sarwar Jyoti
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation, Shizuoka University, Shizuoka, Japan
| | - Md Rubel Rana
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation, Shizuoka University, Shizuoka, Japan
| | - Md Rezanujjaman
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation, Shizuoka University, Shizuoka, Japan
| | - Toshinobu Tokumoto
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
4
|
Giong HK, Subramanian M, Yu K, Lee JS. Non-Rodent Genetic Animal Models for Studying Tauopathy: Review of Drosophila, Zebrafish, and C. elegans Models. Int J Mol Sci 2021; 22:8465. [PMID: 34445171 PMCID: PMC8395099 DOI: 10.3390/ijms22168465] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022] Open
Abstract
Tauopathy refers to a group of progressive neurodegenerative diseases, including frontotemporal lobar degeneration and Alzheimer's disease, which correlate with the malfunction of microtubule-associated protein Tau (MAPT) due to abnormal hyperphosphorylation, leading to the formation of intracellular aggregates in the brain. Despite extensive efforts to understand tauopathy and develop an efficient therapy, our knowledge is still far from complete. To find a solution for this group of devastating diseases, several animal models that mimic diverse disease phenotypes of tauopathy have been developed. Rodents are the dominating tauopathy models because of their similarity to humans and established disease lines, as well as experimental approaches. However, powerful genetic animal models using Drosophila, zebrafish, and C. elegans have also been developed for modeling tauopathy and have contributed to understanding the pathophysiology of tauopathy. The success of these models stems from the short lifespans, versatile genetic tools, real-time in-vivo imaging, low maintenance costs, and the capability for high-throughput screening. In this review, we summarize the main findings on mechanisms of tauopathy and discuss the current tauopathy models of these non-rodent genetic animals, highlighting their key advantages and limitations in tauopathy research.
Collapse
Affiliation(s)
- Hoi-Khoanh Giong
- Disease Target Structure Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.-K.G.); (M.S.)
- KRIBB School, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- Dementia DTC R&D Convergence Program, KIST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul 02792, Korea
| | - Manivannan Subramanian
- Disease Target Structure Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.-K.G.); (M.S.)
- Dementia DTC R&D Convergence Program, KIST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul 02792, Korea
| | - Kweon Yu
- Disease Target Structure Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.-K.G.); (M.S.)
- KRIBB School, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- Dementia DTC R&D Convergence Program, KIST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul 02792, Korea
| | - Jeong-Soo Lee
- Disease Target Structure Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.-K.G.); (M.S.)
- KRIBB School, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- Dementia DTC R&D Convergence Program, KIST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul 02792, Korea
| |
Collapse
|
5
|
Higgins R, Kabbaj MH, Sherwin D, Howell LA, Hatcher A, Tomko RJ, Wang Y. The Cdc48 Complex Alleviates the Cytotoxicity of Misfolded Proteins by Regulating Ubiquitin Homeostasis. Cell Rep 2021; 32:107898. [PMID: 32668237 DOI: 10.1016/j.celrep.2020.107898] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 05/04/2020] [Accepted: 06/22/2020] [Indexed: 10/23/2022] Open
Abstract
The accumulation of misfolded proteins is associated with multiple neurodegenerative disorders, but it remains poorly defined how this accumulation causes cytotoxicity. Here, we demonstrate that the Cdc48/p97 segregase machinery drives the clearance of ubiquitinated model misfolded protein Huntingtin (Htt103QP) and limits its aggregation. Nuclear ubiquitin ligase San1 acts upstream of Cdc48 to ubiquitinate Htt103QP. Unexpectedly, deletion of SAN1 and/or its cytosolic counterpart UBR1 rescues the toxicity associated with Cdc48 deficiency, suggesting that ubiquitin depletion, rather than compromised proteolysis of misfolded proteins, causes the growth defect in cells with Cdc48 deficiency. Indeed, Cdc48 deficiency leads to elevated protein ubiquitination levels and decreased free ubiquitin, which depends on San1/Ubr1. Furthermore, enhancing free ubiquitin levels rescues the toxicity in various Cdc48 pathway mutants and restores normal turnover of a known Cdc48-independent substrate. Our work highlights a previously unappreciated function for Cdc48 in ensuring the regeneration of monoubiquitin that is critical for normal cellular function.
Collapse
Affiliation(s)
- Ryan Higgins
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Marie-Helene Kabbaj
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Delaney Sherwin
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Lauren A Howell
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Alexa Hatcher
- College of Nursing, Florida State University, 600 West College Avenue, Tallahassee, FL 32306, USA
| | - Robert J Tomko
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Yanchang Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA.
| |
Collapse
|
6
|
A compendium and comparative epigenomics analysis of cis-regulatory elements in the pig genome. Nat Commun 2021; 12:2217. [PMID: 33850120 PMCID: PMC8044108 DOI: 10.1038/s41467-021-22448-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/15/2021] [Indexed: 02/01/2023] Open
Abstract
Although major advances in genomics have initiated an exciting new era of research, a lack of information regarding cis-regulatory elements has limited the genetic improvement or manipulation of pigs as a meat source and biomedical model. Here, we systematically characterize cis-regulatory elements and their functions in 12 diverse tissues from four pig breeds by adopting similar strategies as the ENCODE and Roadmap Epigenomics projects, which include RNA-seq, ATAC-seq, and ChIP-seq. In total, we generate 199 datasets and identify more than 220,000 cis-regulatory elements in the pig genome. Surprisingly, we find higher conservation of cis-regulatory elements between human and pig genomes than those between human and mouse genomes. Furthermore, the differences of topologically associating domains between the pig and human genomes are associated with morphological evolution of the head and face. Beyond generating a major new benchmark resource for pig epigenetics, our study provides basic comparative epigenetic data relevant to using pigs as models in human biomedical research.
Collapse
|
7
|
Anton A, Mazeaud C, Freppel W, Gilbert C, Tremblay N, Sow AA, Roy M, Rodrigue-Gervais IG, Chatel-Chaix L. Valosin-containing protein ATPase activity regulates the morphogenesis of Zika virus replication organelles and virus-induced cell death. Cell Microbiol 2021; 23:e13302. [PMID: 33432690 DOI: 10.1111/cmi.13302] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 12/01/2020] [Accepted: 12/15/2020] [Indexed: 12/31/2022]
Abstract
With no available therapies, infections with Zika virus (ZIKV) constitute a major public health concern as they can lead to congenital microcephaly. In order to generate an intracellular environment favourable to viral replication, ZIKV induces endomembrane remodelling and the morphogenesis of replication factories via enigmatic mechanisms. In this study, we identified the AAA+ type ATPase valosin-containing protein (VCP) as a cellular interaction partner of ZIKV non-structural protein 4B (NS4B). Importantly, its pharmacological inhibition as well as the expression of a VCP dominant-negative mutant impaired ZIKV replication. In infected cells, VCP is relocalised to large ultrastructures containing both NS4B and NS3, which are reminiscent of dengue virus convoluted membranes. Moreover, short treatment with the VCP inhibitors NMS-873 or CB-5083 drastically decreased the abundance and size of ZIKV-induced convoluted membranes. Furthermore, NMS-873 treatment inhibited ZIKV-induced mitochondria elongation previously reported to be physically and functionally linked to convoluted membranes in case of the closely related dengue virus. Finally, VCP inhibition resulted in enhanced apoptosis of ZIKV-infected cells strongly suggesting that convoluted membranes limit virus-induced cytopathic effects. Altogether, this study identifies VCP as a host factor required for ZIKV life cycle and more precisely, for the maintenance of viral replication factories. Our data further support a model in which convoluted membranes regulate ZIKV life cycle by impacting on mitochondrial functions and ZIKV-induced death signals in order to create a cytoplasmic environment favourable to viral replication.
Collapse
Affiliation(s)
- Anaïs Anton
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Clément Mazeaud
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Wesley Freppel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Claudia Gilbert
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Nicolas Tremblay
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Aïssatou Aïcha Sow
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Marie Roy
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Ian Gaël Rodrigue-Gervais
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Laurent Chatel-Chaix
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada.,Center of Excellence in Research on Orphan Diseases-Courtois Foundation (CERMO-FC), Montreal, Québec, Canada.,Réseau Intersectoriel de Recherche en Santé de l'Université du Québec (RISUQ), Québec, Canada
| |
Collapse
|
8
|
Gierisch ME, Giovannucci TA, Dantuma NP. Reporter-Based Screens for the Ubiquitin/Proteasome System. Front Chem 2020; 8:64. [PMID: 32117887 PMCID: PMC7026131 DOI: 10.3389/fchem.2020.00064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/20/2020] [Indexed: 01/14/2023] Open
Abstract
Instant and adequate handling of misfolded or otherwise aberrant proteins is of paramount importance for maintaining protein homeostasis in cells. The ubiquitin/proteasome system (UPS) is a central player in protein quality control as it operates in a seek-and-destroy mode, thereby facilitating elimination of faulty proteins. While proteasome inhibition is in clinical use for the treatment of hematopoietic malignancies, stimulation of the UPS has been proposed as a potential therapeutic strategy for various neurodegenerative disorders. High-throughput screens using genetic approaches or compound libraries are powerful tools to identify therapeutic intervention points and novel drugs. Unlike assays that measure specific activities of components of the UPS, reporter substrates provide us with a more holistic view of the general functional status of the UPS in cells. As such, reporter substrates can reveal new ways to obstruct or stimulate this critical proteolytic pathway. Here, we discuss various reporter substrates for the UPS and their application in the identification of key players and the pursuit for novel therapeutics.
Collapse
Affiliation(s)
- Maria E Gierisch
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Nico P Dantuma
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
VCP expression decrease as a biomarker of preclinical and early clinical stages of Parkinson's disease. Sci Rep 2020; 10:827. [PMID: 31964996 PMCID: PMC6972783 DOI: 10.1038/s41598-020-57938-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 01/03/2020] [Indexed: 12/22/2022] Open
Abstract
Valosin-containing human protein (VCP) or p97 performs enzyme functions associated with the maintenance of protein homeostasis and control of protein quality. Disruption of its normal functioning might be associated with the development of Parkinson’s disease (PD). Tissues of mice with toxin-induced presymptomatic and early symptomatic stages of PD, as well as 52 treated and untreated patients with newly diagnosed PD and nine patients with a “predicted” form of PD, were investigated. Significant changes in Vcp gene expression were observed in almost all studied mouse tissues. A significant decrease in VCP expression specific for PD was also detected at both the late preclinical and the early clinical stages of PD in untreated patients. Thus, a decrease in VCP expression is important for changes in the function of the nervous system at early stages of PD. Analysis of changes in VCP expression in all patients with PD and in Vcp in the peripheral blood of mice used as models of PD revealed significant decreases in expression specific for PD. These data suggest that a decrease in the relative levels of VCP mRNA might serve as a biomarker for the development of pathology at the early clinical and preclinical stages of human PD.
Collapse
|
10
|
Jankowska-Döllken M, Sanchez CP, Cyrklaff M, Lanzer M. Overexpression of the HECT ubiquitin ligase PfUT prolongs the intraerythrocytic cycle and reduces invasion efficiency of Plasmodium falciparum. Sci Rep 2019; 9:18333. [PMID: 31797898 PMCID: PMC6893019 DOI: 10.1038/s41598-019-54854-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/18/2019] [Indexed: 11/22/2022] Open
Abstract
The glms ribozyme system has been used as an amenable tool to conditionally control expression of genes of interest. It is generally assumed that insertion of the ribozyme sequence does not affect expression of the targeted gene in the absence of the inducer glucosamine-6-phosphate, although experimental support for this assumption is scarce. Here, we report the unexpected finding that integration of the glms ribozyme sequence in the 3′ untranslated region of a gene encoding a HECT E3 ubiquitin ligase, termed Plasmodium falciparum ubiquitin transferase (PfUT), increased steady state RNA and protein levels 2.5-fold in the human malaria parasite P. falciparum. Overexpression of pfut resulted in an S/M phase-associated lengthening of the parasite’s intraerythrocytic developmental cycle and a reduced merozoite invasion efficiency. The addition of glucosamine partially restored the wild type phenotype. Our study suggests a role of PfUT in controlling cell cycle progression and merozoite invasion. Our study further raises awareness regarding unexpected effects on gene expression when inserting the glms ribozyme sequence into a gene locus.
Collapse
Affiliation(s)
- Monika Jankowska-Döllken
- Center of Infectious Diseases, Parasitology, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Cecilia P Sanchez
- Center of Infectious Diseases, Parasitology, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Marek Cyrklaff
- Center of Infectious Diseases, Parasitology, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Michael Lanzer
- Center of Infectious Diseases, Parasitology, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
| |
Collapse
|
11
|
Sharma R, Gupta RS. Novel Molecular Synapomorphies Demarcate Different Main Groups/Subgroups of Plasmodium and Piroplasmida Species Clarifying Their Evolutionary Relationships. Genes (Basel) 2019; 10:genes10070490. [PMID: 31261747 PMCID: PMC6678196 DOI: 10.3390/genes10070490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 12/19/2022] Open
Abstract
The class Hematozoa encompasses several clinically important genera, including Plasmodium, whose members cause the major life-threating disease malaria. Hence, a good understanding of the interrelationships of organisms from this class and reliable means for distinguishing them are of much importance. This study reports comprehensive phylogenetic and comparative analyses on protein sequences on the genomes of 28 hematozoa species to understand their interrelationships. In addition to phylogenetic trees based on two large datasets of protein sequences, detailed comparative analyses were carried out on the genomes of hematozoa species to identify novel molecular synapomorphies consisting of conserved signature indels (CSIs) in protein sequences. These studies have identified 79 CSIs that are exclusively present in specific groups of Hematozoa/Plasmodium species, also supported by phylogenetic analysis, providing reliable means for the identification of these species groups and understanding their interrelationships. Of these CSIs, six CSIs are specifically shared by all hematozoa species, two CSIs serve to distinguish members of the order Piroplasmida, five CSIs are uniquely found in all Piroplasmida species except B. microti and two CSIs are specific for the genus Theileria. Additionally, we also describe 23 CSIs that are exclusively present in all genome-sequenced Plasmodium species and two, nine, ten and eight CSIs which are specific for members of the Plasmodium subgenera Haemamoeba, Laverania, Vinckeia and Plasmodium (excluding P. ovale and P. malariae), respectively. Additionally, our work has identified several CSIs that support species relationships which are not evident from phylogenetic analysis. Of these CSIs, one CSI supports the ancestral nature of the avian-Plasmodium species in comparison to the mammalian-infecting groups of Plasmodium species, four CSIs strongly support a specific relationship of species between the subgenera Plasmodium and Vinckeia and three CSIs each that reliably group P. malariae with members of the subgenus Plasmodium and P. ovale within the subgenus Vinckeia, respectively. These results provide a reliable framework for understanding the evolutionary relationships among the Plasmodium/Piroplasmida species. Further, in view of the exclusivity of the described molecular markers for the indicated groups of hematozoa species, particularly large numbers of unique characteristics that are specific for all Plasmodium species, they provide important molecular tools for biochemical/genetic studies and for developing novel diagnostics and therapeutics for these organisms.
Collapse
Affiliation(s)
- Rahul Sharma
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.
| |
Collapse
|
12
|
Kustermann M, Manta L, Paone C, Kustermann J, Lausser L, Wiesner C, Eichinger L, Clemen CS, Schröder R, Kestler HA, Sandri M, Rottbauer W, Just S. Loss of the novel Vcp (valosin containing protein) interactor Washc4 interferes with autophagy-mediated proteostasis in striated muscle and leads to myopathy in vivo. Autophagy 2018; 14:1911-1927. [PMID: 30010465 PMCID: PMC6152520 DOI: 10.1080/15548627.2018.1491491] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
VCP/p97 (valosin containing protein) is a key regulator of cellular proteostasis. It orchestrates protein turnover and quality control in vivo, processes fundamental for proper cell function. In humans, mutations in VCP lead to severe myo- and neuro-degenerative disorders such as inclusion body myopathy with Paget disease of the bone and frontotemporal dementia (IBMPFD), amyotrophic lateral sclerosis (ALS) or and hereditary spastic paraplegia (HSP). We analyzed here the in vivo role of Vcp and its novel interactor Washc4/Swip (WASH complex subunit 4) in the vertebrate model zebrafish (Danio rerio). We found that targeted inactivation of either Vcp or Washc4, led to progressive impairment of cardiac and skeletal muscle function, structure and cytoarchitecture without interfering with the differentiation of both organ systems. Notably, loss of Vcp resulted in compromised protein degradation via the proteasome and the macroautophagy/autophagy machinery, whereas Washc4 deficiency did not affect the function of the ubiquitin-proteasome system (UPS) but caused ER stress and interfered with autophagy function in vivo. In summary, our findings provide novel insights into the in vivo functions of Vcp and its novel interactor Washc4 and their particular and distinct roles during proteostasis in striated muscle cells.
Collapse
Affiliation(s)
- Monika Kustermann
- a Molecular Cardiology, Department of Internal Medicine II , University of Ulm , Ulm , Germany
| | - Linda Manta
- a Molecular Cardiology, Department of Internal Medicine II , University of Ulm , Ulm , Germany
| | - Christoph Paone
- a Molecular Cardiology, Department of Internal Medicine II , University of Ulm , Ulm , Germany
| | - Jochen Kustermann
- b Institute of Molecular Genetics and Cell Biology, Department of Biology , University of Ulm , Ulm , Germany
| | - Ludwig Lausser
- c Institute of Medical Systems Biology , University of Ulm , Ulm , Germany
| | - Cora Wiesner
- a Molecular Cardiology, Department of Internal Medicine II , University of Ulm , Ulm , Germany
| | - Ludwig Eichinger
- d Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty , University of Cologne , Cologne , Germany
| | - Christoph S Clemen
- d Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty , University of Cologne , Cologne , Germany.,e Department of Neurology, Heimer Institute for Muscle Research , University Hospital Bergmannsheil, Ruhr-University Bochum , Bochum , Germany
| | - Rolf Schröder
- f Institute of Neuropathology , University Hospital Erlangen , Erlangen , Germany
| | - Hans A Kestler
- c Institute of Medical Systems Biology , University of Ulm , Ulm , Germany
| | - Marco Sandri
- g Department of Biomedical Science, Venetian Institute of Molecular Medicine (VIMM) , University of Padova , Padova , Italy
| | - Wolfgang Rottbauer
- h Department of Internal Medicine II , University of Ulm , Ulm , Germany
| | - Steffen Just
- a Molecular Cardiology, Department of Internal Medicine II , University of Ulm , Ulm , Germany
| |
Collapse
|
13
|
Huber RJ, Mathavarajah S. Cln5 is secreted and functions as a glycoside hydrolase in Dictyostelium. Cell Signal 2018; 42:236-248. [PMID: 29128403 DOI: 10.1016/j.cellsig.2017.11.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/24/2017] [Accepted: 11/04/2017] [Indexed: 12/15/2022]
Abstract
Ceroid lipofuscinosis neuronal 5 (CLN5) is a member of a family of proteins that are linked to neuronal ceroid lipofuscinosis (NCL). This devastating neurological disorder, known commonly as Batten disease, affects all ages and ethnicities and is currently incurable. The precise function of CLN5, like many of the NCL proteins, remains to be elucidated. In this study, we report the localization, molecular function, and interactome of Cln5, the CLN5 homolog in the social amoeba Dictyostelium discoideum. Residues that are glycosylated in human CLN5 are conserved in the Dictyostelium homolog as are residues that are mutated in patients with CLN5 disease. Dictyostelium Cln5 contains a putative signal peptide for secretion and we show that the protein is secreted during growth and starvation. We also reveal that both Dictyostelium Cln5 and human CLN5 are glycoside hydrolases, providing the first evidence in any system linking a molecular function to CLN5. Finally, immunoprecipitation coupled with mass spectrometry identified 61 proteins that interact with Cln5 in Dictyostelium. Of the 61 proteins, 67% localize to the extracellular space, 28% to intracellular vesicles, and 20% to lysosomes. A GO term enrichment analysis revealed that a majority of the interacting proteins are involved in metabolism, catabolism, proteolysis, and hydrolysis, and include other NCL-like proteins (e.g., Tpp1/Cln2, cathepsin D/Cln10, cathepsin F/Cln13) as well as proteins linked to Cln3 function in Dictyostelium (e.g., AprA, CfaD, CadA). In total, this work reveals a CLN5 homolog in Dictyostelium and further establishes this organism as a complementary model system for studying the functions of proteins linked to NCL in humans.
Collapse
Affiliation(s)
- Robert J Huber
- Trent University, Department of Biology, 1600 West Bank Drive, Peterborough, Ontario K9L 0G2, Canada.
| | - Sabateeshan Mathavarajah
- Trent University, Department of Biology, 1600 West Bank Drive, Peterborough, Ontario K9L 0G2, Canada.
| |
Collapse
|
14
|
Soyano K, Mushirobira Y. The Mechanism of Low-Temperature Tolerance in Fish. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1081:149-164. [DOI: 10.1007/978-981-13-1244-1_9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Rosnoblet C, Bègue H, Blanchard C, Pichereaux C, Besson-Bard A, Aimé S, Wendehenne D. Functional characterization of the chaperon-like protein Cdc48 in cryptogein-induced immune response in tobacco. PLANT, CELL & ENVIRONMENT 2017; 40:491-508. [PMID: 26662183 DOI: 10.1111/pce.12686] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/20/2015] [Accepted: 11/27/2015] [Indexed: 05/06/2023]
Abstract
Cdc48, a molecular chaperone conserved in different kingdoms, is a member of the AAA+ family contributing to numerous processes in mammals including proteins quality control and degradation, vesicular trafficking, autophagy and immunity. The functions of Cdc48 plant orthologues are less understood. We previously reported that Cdc48 is regulated by S-nitrosylation in tobacco cells undergoing an immune response triggered by cryptogein, an elicitin produced by the oomycete Phytophthora cryptogea. Here, we inv estigated the function of NtCdc48 in cryptogein signalling and induced hypersensitive-like cell death. NtCdc48 was found to accumulate in elicited cells at both the protein and transcript levels. Interestingly, only a small proportion of the overall NtCdc48 population appeared to be S-nitrosylated. Using gel filtration in native conditions, we confirmed that NtCdc48 was present in its hexameric active form. An immunoprecipitation-based strategy following my mass spectrometry analysis led to the identification of about a hundred NtCdc48 partners and underlined its contribution in cellular processes including targeting of ubiquitylated proteins for proteasome-dependent degradation, subcellular trafficking and redox regulation. Finally, the analysis of cryptogein-induced events in NtCdc48-overexpressing cells highlighted a correlation between NtCdc48 expression and hypersensitive cell death. Altogether, this study identified NtCdc48 as a component of cryptogein signalling and plant immunity.
Collapse
Affiliation(s)
- Claire Rosnoblet
- Pôle Mécanisme et Gestion des Interactions Plantes-Microorganismes - ERL CNRS 6300, Université de Bourgogne Franche-Comté, UMR 1347 Agroécologie, 17 rue Sully, BP 86510, 21065, Dijon cédex, France
| | - Hervé Bègue
- Pôle Mécanisme et Gestion des Interactions Plantes-Microorganismes - ERL CNRS 6300, Université de Bourgogne Franche-Comté, UMR 1347 Agroécologie, 17 rue Sully, BP 86510, 21065, Dijon cédex, France
| | - Cécile Blanchard
- Pôle Mécanisme et Gestion des Interactions Plantes-Microorganismes - ERL CNRS 6300, Université de Bourgogne Franche-Comté, UMR 1347 Agroécologie, 17 rue Sully, BP 86510, 21065, Dijon cédex, France
| | - Carole Pichereaux
- Fédération de Recherche 3450, Agrobiosciences, Interactions et Biodiversité, CNRS, 31326, Castanet-Tolosan, France
- Institut de Pharmacologie et de Biologie Structurale - CNRS, Université de Toulouse, 205 route de Narbonne,, 31077, Toulouse, France
| | - Angélique Besson-Bard
- Pôle Mécanisme et Gestion des Interactions Plantes-Microorganismes - ERL CNRS 6300, Université de Bourgogne Franche-Comté, UMR 1347 Agroécologie, 17 rue Sully, BP 86510, 21065, Dijon cédex, France
| | - Sébastien Aimé
- INRA, UMR 1347 Agroécologie, Pôle Mécanisme et Gestion des Interactions Plantes-Microorganismes - ERL CNRS 6300, 17 rue Sully, BP 86510, 21065, Dijon cédex, France
| | - David Wendehenne
- Pôle Mécanisme et Gestion des Interactions Plantes-Microorganismes - ERL CNRS 6300, Université de Bourgogne Franche-Comté, UMR 1347 Agroécologie, 17 rue Sully, BP 86510, 21065, Dijon cédex, France
| |
Collapse
|
16
|
Binelli A, Del Giacco L, Santo N, Bini L, Magni S, Parolini M, Madaschi L, Ghilardi A, Maggioni D, Ascagni M, Armini A, Prosperi L, Landi C, La Porta C, Della Torre C. Carbon nanopowder acts as a Trojan-horse for benzo(α)pyrene in Danio rerio embryos. Nanotoxicology 2017; 11:371-381. [DOI: 10.1080/17435390.2017.1306130] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- A. Binelli
- Department of Biosciences, University of Milan, Milan, Italy
| | - L. Del Giacco
- Department of Biosciences, University of Milan, Milan, Italy
| | - N. Santo
- Department of Biosciences, University of Milan, Milan, Italy
| | - L. Bini
- Department of Life Science, University of Siena, Siena, Italy
| | - S. Magni
- Department of Biosciences, University of Milan, Milan, Italy
| | - M. Parolini
- Department of Biosciences, University of Milan, Milan, Italy
| | - L. Madaschi
- Department of Biosciences, University of Milan, Milan, Italy
| | - A. Ghilardi
- Department of Biosciences, University of Milan, Milan, Italy
| | - D. Maggioni
- Department of Chemistry, University of Milan, Milan, Italy
| | - M. Ascagni
- Department of Biosciences, University of Milan, Milan, Italy
| | - A. Armini
- Department of Life Science, University of Siena, Siena, Italy
| | - L. Prosperi
- Department of Biosciences, University of Milan, Milan, Italy
| | - C. Landi
- Department of Life Science, University of Siena, Siena, Italy
| | - C. La Porta
- Department of Biosciences, University of Milan, Milan, Italy
| | - C. Della Torre
- Department of Biosciences, University of Milan, Milan, Italy
| |
Collapse
|
17
|
Bègue H, Jeandroz S, Blanchard C, Wendehenne D, Rosnoblet C. Structure and functions of the chaperone-like p97/CDC48 in plants. Biochim Biophys Acta Gen Subj 2016; 1861:3053-3060. [PMID: 27717811 DOI: 10.1016/j.bbagen.2016.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/29/2016] [Accepted: 10/01/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND The chaperone-like p97 is a member of the AAA+ ATPase enzyme family that contributes to numerous cellular activities. P97 has been broadly studied in mammals (VCP/p97) and yeasts (CDC48: Cell Division Cycle 48/p97) and numerous investigations highlighted that this protein is post-translationally regulated, is structured in homohexamer and interacts with partners and cofactors that direct it to distinct cellular signalization pathway including protein quality control and degradation, cell cycle regulation, genome stability, vesicular trafficking, autophagy and immunity. SCOPE OF REVIEW p97 is also conserved in plants (CDC48) but its functions are less understood. In the present review we intended to present the state of the art of the structure, regulation and functions of CDC48 in plants. MAJOR CONCLUSIONS Evidence accumulated underline that CDC48 plays a crucial role in development, cell cycle regulation and protein turnover in plants. Furthermore, its involvement in plant immunity has recently emerged and first interacting partners have been identified, shedding light on its putative cellular activities. GENERAL SIGNIFICANCE Identification of emerging functions of CDC48 in plants opens new roads of research in immunity and provides new insights into the mechanisms of protein quality control.
Collapse
Affiliation(s)
- Hervé Bègue
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Sylvain Jeandroz
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Cécile Blanchard
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - David Wendehenne
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Claire Rosnoblet
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| |
Collapse
|
18
|
Zhou S, Okekeogbu I, Sangireddy S, Ye Z, Li H, Bhatti S, Hui D, McDonald DW, Yang Y, Giri S, Howe KJ, Fish T, Thannhauser TW. Proteome Modification in Tomato Plants upon Long-Term Aluminum Treatment. J Proteome Res 2016; 15:1670-84. [DOI: 10.1021/acs.jproteome.6b00128] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Suping Zhou
- Department
of Agricultural and Environmental Sciences, College of Agriculture,
Human and Natural Sciences, Tennessee State University, 3500 John
A Merritt Blvd, Nashville, Tennessee 37209, United States
| | - Ikenna Okekeogbu
- Department
of Agricultural and Environmental Sciences, College of Agriculture,
Human and Natural Sciences, Tennessee State University, 3500 John
A Merritt Blvd, Nashville, Tennessee 37209, United States
| | - Sasikiran Sangireddy
- Department
of Agricultural and Environmental Sciences, College of Agriculture,
Human and Natural Sciences, Tennessee State University, 3500 John
A Merritt Blvd, Nashville, Tennessee 37209, United States
| | - Zhujia Ye
- Department
of Agricultural and Environmental Sciences, College of Agriculture,
Human and Natural Sciences, Tennessee State University, 3500 John
A Merritt Blvd, Nashville, Tennessee 37209, United States
| | - Hui Li
- Department
of Agricultural and Environmental Sciences, College of Agriculture,
Human and Natural Sciences, Tennessee State University, 3500 John
A Merritt Blvd, Nashville, Tennessee 37209, United States
| | - Sarabjit Bhatti
- Department
of Agricultural and Environmental Sciences, College of Agriculture,
Human and Natural Sciences, Tennessee State University, 3500 John
A Merritt Blvd, Nashville, Tennessee 37209, United States
| | - Dafeng Hui
- Department
of Agricultural and Environmental Sciences, College of Agriculture,
Human and Natural Sciences, Tennessee State University, 3500 John
A Merritt Blvd, Nashville, Tennessee 37209, United States
| | - Daniel W. McDonald
- Phenotype Screening Corporation, 4028 Papermill Road, Knoxville, Tennessee 37909, United States
| | - Yong Yang
- RW Holley
Center for Agriculture and Health, Plant, Soil and Nutrition Research Unit, USDA-ARS, Tower Rd, Ithaca, New York 14853, United States
| | - Shree Giri
- RW Holley
Center for Agriculture and Health, Plant, Soil and Nutrition Research Unit, USDA-ARS, Tower Rd, Ithaca, New York 14853, United States
| | - Kevin J. Howe
- RW Holley
Center for Agriculture and Health, Plant, Soil and Nutrition Research Unit, USDA-ARS, Tower Rd, Ithaca, New York 14853, United States
| | - Tara Fish
- RW Holley
Center for Agriculture and Health, Plant, Soil and Nutrition Research Unit, USDA-ARS, Tower Rd, Ithaca, New York 14853, United States
| | - Theodore W. Thannhauser
- RW Holley
Center for Agriculture and Health, Plant, Soil and Nutrition Research Unit, USDA-ARS, Tower Rd, Ithaca, New York 14853, United States
| |
Collapse
|
19
|
Lu Y, Lee BH, King RW, Finley D, Kirschner MW. Substrate degradation by the proteasome: a single-molecule kinetic analysis. Science 2015; 348:1250834. [PMID: 25859050 DOI: 10.1126/science.1250834] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To address how the configuration of conjugated ubiquitins determines the recognition of substrates by the proteasome, we analyzed the degradation kinetics of substrates with chemically defined ubiquitin configurations. Contrary to the view that a tetraubiquitin chain is the minimal signal for efficient degradation, we find that distributing the ubiquitins as diubiquitin chains provides a more efficient signal. To understand how the proteasome actually discriminates among ubiquitin configurations, we developed single-molecule assays that distinguished intermediate steps of degradation kinetically. The level of ubiquitin on a substrate drives proteasome-substrate interaction, whereas the chain structure of ubiquitin affects translocation into the axial channel on the proteasome. Together these two features largely determine the susceptibility of substrates for proteasomal degradation.
Collapse
Affiliation(s)
- Ying Lu
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Byung-hoon Lee
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Randall W King
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Marc W Kirschner
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Chapman E, Maksim N, de la Cruz F, La Clair JJ. Inhibitors of the AAA+ chaperone p97. Molecules 2015; 20:3027-49. [PMID: 25685910 PMCID: PMC4576884 DOI: 10.3390/molecules20023027] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/03/2015] [Indexed: 12/22/2022] Open
Abstract
It is remarkable that a pathway as ubiquitous as protein quality control can be targeted to treat cancer. Bortezomib, an inhibitor of the proteasome, was first approved by the US Food and Drug Administration (FDA) more than 10 years ago to treat refractory myeloma and later extended to lymphoma. Its use has increased the survival rate of myeloma patients by as much as three years. This success was followed with the recent accelerated approval of the natural product derived proteasome inhibitor carfilzomib (Kyprolis®), which is used to treat patients with bortezomib-resistant multiple myeloma. The success of these two drugs has validated protein quality control as a viable target to fight select cancers, but begs the question why are proteasome inhibitors limited to lymphoma and myeloma? More recently, these limitations have encouraged the search for additional targets within the protein quality control system that might offer heightened cancer cell specificity, enhanced clinical utility, a lower rate of resistance, reduced toxicity, and mitigated side effects. One promising target is p97, an ATPase associated with various cellular activities (AAA+) chaperone. p97 figures prominently in protein quality control as well as serving a variety of other cellular functions associated with cancer. More than a decade ago, it was determined that up-regulation of p97 in many forms of cancer correlates with a poor clinical outcome. Since these initial discoveries, a mechanistic explanation for this observation has been partially illuminated, but details are lacking. Understandably, given this clinical correlation, myriad roles within the cell, and its importance in protein quality control, p97 has emerged as a potential therapeutic target. This review provides an overview of efforts towards the discovery of small molecule inhibitors of p97, offering a synopsis of efforts that parallel the excellent reviews that currently exist on p97 structure, function, and physiology.
Collapse
Affiliation(s)
- Eli Chapman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA.
| | - Nick Maksim
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA.
| | - Fabian de la Cruz
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA.
| | - James J La Clair
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA.
| |
Collapse
|
21
|
Franz A, Ackermann L, Hoppe T. Create and preserve: proteostasis in development and aging is governed by Cdc48/p97/VCP. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:205-15. [PMID: 23583830 DOI: 10.1016/j.bbamcr.2013.03.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/08/2013] [Accepted: 03/25/2013] [Indexed: 12/24/2022]
Abstract
The AAA-ATPase Cdc48 (also called p97 or VCP) acts as a key regulator in proteolytic pathways, coordinating recruitment and targeting of substrate proteins to the 26S proteasome or lysosomal degradation. However, in contrast to the well-known function in ubiquitin-dependent cellular processes, the physiological relevance of Cdc48 in organismic development and maintenance of protein homeostasis is less understood. Therefore, studies on multicellular model organisms help to decipher how Cdc48-dependent proteolysis is regulated in time and space to meet developmental requirements. Given the importance of developmental regulation and tissue maintenance, defects in Cdc48 activity have been linked to several human pathologies including protein aggregation diseases. Thus, addressing the underlying disease mechanisms not only contributes to our understanding on the organism-wide function of Cdc48 but also facilitates the design of specific medical therapies. In this review, we will portray the role of Cdc48 in the context of multicellular organisms, pointing out its importance for developmental processes, tissue surveillance, and disease prevention. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.
Collapse
Affiliation(s)
- André Franz
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Zülpicher Straße 47a, 50674 Cologne, Germany
| | | | | |
Collapse
|