1
|
Yun EJ, Yu S, Kim DH, Park NJ, Liu JJ, Jin YS, Kim KH. Identification of the enantiomeric nature of 2-keto-3-deoxy-galactonate in the catabolic pathway of 3,6-anhydro-L-galactose. Appl Microbiol Biotechnol 2023; 107:7427-7438. [PMID: 37812254 DOI: 10.1007/s00253-023-12807-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/28/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023]
Abstract
A novel metabolic pathway of 3,6-anhydro-L-galactose (L-AHG), the main sugar component in red macroalgae, was first discovered in the marine bacterium Vibrio sp. EJY3. L-AHG is converted to 2-keto-3-deoxy-galactonate (KDGal) in two metabolic steps. Here, we identified the enantiomeric nature of KDGal in the L-AHG catabolic pathway via stereospecific enzymatic reactions accompanying the biosynthesis of enantiopure L-KDGal and D-KDGal. Enantiopure L-KDGal and D-KDGal were synthesized by enzymatic reactions derived from the fungal galacturonate and bacterial oxidative galactose pathways, respectively. KDGal, which is involved in the L-AHG pathway, was also prepared. The results obtained from the reactions with an L-KDGal aldolase, specifically acting on L-KDGal, showed that KDGal in the L-AHG pathway exists in an L-enantiomeric form. Notably, we demonstrated the utilization of L-KDGal by Escherichia coli for the first time. E. coli cannot utilize L-KDGal as the sole carbon source. However, when a mixture of L-KDGal and D-galacturonate was used, E. coli utilized both. Our study suggests a stereoselective method to determine the absolute configuration of a compound. In addition, our results can be used to explore the novel L-KDGal catabolic pathway in E. coli and to construct an engineered microbial platform that assimilates L-AHG or L-KDGal as substrates. KEY POINTS: • Stereospecific enzyme reactions were used to identify enantiomeric nature of KDGal • KDGal in the L-AHG catabolic pathway exists in an L-enantiomeric form • E. coli can utilize L-KDGal as a carbon source when supplied with D-galacturonate.
Collapse
Affiliation(s)
- Eun Ju Yun
- Department of Biotechnology, Graduate School, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Sora Yu
- Department of Biotechnology, Graduate School, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Dong Hyun Kim
- Department of Biotechnology, Graduate School, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Na Jung Park
- Department of Biotechnology, Graduate School, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Jing-Jing Liu
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
2
|
Righetti GIC, Truscello A, Li J, Sebastiano R, Citterio A, Gambarotti C. Sustainable synthesis of zwitterionic galactaric acid monoamides as monomers of hydroxylated polyamides. J Carbohydr Chem 2022. [DOI: 10.1080/07328303.2022.2105861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Grazia Isa. C. Righetti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Ada Truscello
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Jiemeng Li
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Roberto Sebastiano
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Attilio Citterio
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Cristian Gambarotti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| |
Collapse
|
3
|
Cheng J, Li J, Zheng L. Achievements and Perspectives in 1,4-Butanediol Production from Engineered Microorganisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10480-10485. [PMID: 34478293 DOI: 10.1021/acs.jafc.1c03769] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
1,4-Butanediol (1,4-BDO), a significant commodity chemical, is currently manufactured exclusively from a host of energy-intensive processes, accompanied by severe environmental issues, such as the greenhouse effect and air pollution. As a result of the ever-increasing global market demands and increasing applications of 1,4-BDO, attention has turned to the sustainable bioproduction of 1,4-BDO, and several bio-based approaches for 1,4-BDO production have been successfully established in engineered Escherichia coli, including de novo biosynthesis and biocatalysis. Recent achievements in enhancing the accumulation of 1,4-BDO have been achieved by metabolic engineering strategies, such as improving precursor supply, enhancing activities of critical enzymes, and fewer byproduct synthesis. Here, we summarize the primary advances of the biological pathway for 1,4-BDO synthesis and put forward the future development prospect of bio-based 1,4-BDO production.
Collapse
Affiliation(s)
- Jie Cheng
- College of Ocean and Earth Sciences, State Key Laboratory of Marine Environmental Science,Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Juan Li
- College of Ocean and Earth Sciences, State Key Laboratory of Marine Environmental Science,Xiamen University, Xiamen, Fujian 361102, People's Republic of China
- Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, Guangdong 510520, People's Republic of China
| | - Linggang Zheng
- College of Ocean and Earth Sciences, State Key Laboratory of Marine Environmental Science,Xiamen University, Xiamen, Fujian 361102, People's Republic of China
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, People's Republic of China
| |
Collapse
|
4
|
Tsevelkhorloo M, Kim SH, Kang DK, Lee CR, Hong SK. NADP +-Dependent Dehydrogenase SCO3486 and Cycloisomerase SCO3480: Key Enzymes for 3,6-Anhydro-L-Galactose Catabolism in Streptomyces coelicolor A3(2). J Microbiol Biotechnol 2021; 31:756-763. [PMID: 33820885 PMCID: PMC9706016 DOI: 10.4014/jmb.2103.03030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/30/2021] [Accepted: 04/05/2021] [Indexed: 12/15/2022]
Abstract
Agarose is a linear polysaccharide composed of D-galactose and 3,6-anhydro-L-galactose (AHG). It is a major component of the red algal cell wall and is gaining attention as an abundant marine biomass. However, the inability to ferment AHG is considered an obstacle in the large-scale use of agarose and could be addressed by understanding AHG catabolism in agarolytic microorganisms. Since AHG catabolism was uniquely confirmed in Vibrio sp. EJY3, a gram-negative marine bacterial species, we investigated AHG metabolism in Streptomyces coelicolor A3(2), an agarolytic gram-positive soil bacterium. Based on genomic data, the SCO3486 protein (492 amino acids) and the SCO3480 protein (361 amino acids) of S. coelicolor A3(2) showed identity with H2IFE7.1 (40% identity) encoding AHG dehydrogenase and H2IFX0.1 (42% identity) encoding 3,6-anhydro-L-galactonate cycloisomerase, respectively, which are involved in the initial catabolism of AHG in Vibrio sp. EJY3. Thin layer chromatography and mass spectrometry of the bioconversion products catalyzed by recombinant SCO3486 and SCO3480 proteins, revealed that SCO3486 is an AHG dehydrogenase that oxidizes AHG to 3,6-anhydro-L-galactonate, and SCO3480 is a 3,6-anhydro-L-galactonate cycloisomerase that converts 3,6-anhydro-L-galactonate to 2-keto-3-deoxygalactonate. SCO3486 showed maximum activity at pH 6.0 at 50°C, increased activity in the presence of iron ions, and activity against various aldehyde substrates, which is quite distinct from AHG-specific H2IFE7.1 in Vibrio sp. EJY3. Therefore, the catabolic pathway of AHG seems to be similar in most agar-degrading microorganisms, but the enzymes involved appear to be very diverse.
Collapse
Affiliation(s)
- Maral Tsevelkhorloo
- Department of Biosciences and Bioinformatics, Myongji University, Yongin 17058, Republic of Korea
| | - Sang Hoon Kim
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Dae-Kyung Kang
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Chang-Ro Lee
- Department of Biosciences and Bioinformatics, Myongji University, Yongin 17058, Republic of Korea
| | - Soon-Kwang Hong
- Department of Biosciences and Bioinformatics, Myongji University, Yongin 17058, Republic of Korea,Corresponding author Phone: 82-31-330-6198 Fax: 82-31-335-8249 E-mail:
| |
Collapse
|
5
|
Meyer T, Thiour-Mauprivez C, Wisniewski-Dyé F, Kerzaon I, Comte G, Vial L, Lavire C. Ecological Conditions and Molecular Determinants Involved in Agrobacterium Lifestyle in Tumors. FRONTIERS IN PLANT SCIENCE 2019; 10:978. [PMID: 31417593 PMCID: PMC6683767 DOI: 10.3389/fpls.2019.00978] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/11/2019] [Indexed: 05/07/2023]
Abstract
The study of pathogenic agents in their natural niches allows for a better understanding of disease persistence and dissemination. Bacteria belonging to the Agrobacterium genus are soil-borne and can colonize the rhizosphere. These bacteria are also well known as phytopathogens as they can cause tumors (crown gall disease) by transferring a DNA region (T-DNA) into a wide range of plants. Most reviews on Agrobacterium are focused on virulence determinants, T-DNA integration, bacterial and plant factors influencing the efficiency of genetic transformation. Recent research papers have focused on the plant tumor environment on the one hand, and genetic traits potentially involved in bacterium-plant interactions on the other hand. The present review gathers current knowledge about the special conditions encountered in the tumor environment along with the Agrobacterium genetic determinants putatively involved in bacterial persistence inside a tumor. By integrating recent metabolomic and transcriptomic studies, we describe how tumors develop and how Agrobacterium can maintain itself in this nutrient-rich but stressful and competitive environment.
Collapse
Affiliation(s)
- Thibault Meyer
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Lyon, France
| | - Clémence Thiour-Mauprivez
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Lyon, France
- Biocapteurs-Analyses-Environment, Universite de Perpignan Via Domitia, Perpignan, France
- Laboratoire de Biodiversite et Biotechnologies Microbiennes, USR 3579 Sorbonne Universites (UPMC) Paris 6 et CNRS Observatoire Oceanologique, Paris, France
| | | | - Isabelle Kerzaon
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Lyon, France
| | - Gilles Comte
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Lyon, France
| | - Ludovic Vial
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Lyon, France
| | - Céline Lavire
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Lyon, France
| |
Collapse
|
6
|
Kuivanen J, Biz A, Richard P. Microbial hexuronate catabolism in biotechnology. AMB Express 2019; 9:16. [PMID: 30701402 PMCID: PMC6353982 DOI: 10.1186/s13568-019-0737-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/23/2019] [Indexed: 01/11/2023] Open
Abstract
The most abundant hexuronate in plant biomass is D-galacturonate. D-Galacturonate is the main constituent of pectin. Pectin-rich biomass is abundantly available as sugar beet pulp or citrus processing waste and is currently mainly used as cattle feed. Other naturally occurring hexuronates are D-glucuronate, L-guluronate, D-mannuronate and L-iduronate. D-Glucuronate is a constituent of the plant cell wall polysaccharide glucuronoxylan and of the algal polysaccharide ulvan. Ulvan also contains L-iduronate. L-Guluronate and D-mannuronate are the monomers of alginate. These raw materials have the potential to be used as raw material in biotechnology-based production of fuels or chemicals. In this communication, we will review the microbial pathways related to these hexuronates and their potential use in biotechnology.
Collapse
|
7
|
How Bioinformatic Tools Guide Experiments To Resolve the Chaos of Apparently Unlimited Metabolic Variation. J Bacteriol 2018; 201:JB.00628-18. [PMID: 30373753 DOI: 10.1128/jb.00628-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/23/2018] [Indexed: 11/20/2022] Open
Abstract
Hexuronic acids, oxidation products of common sugars, are widespread in eukaryotic cells. Galacturonic acid is the main carbohydrate component of pectin found in plant cell walls and glucuronic acid is a component of proteoglycans in animals. However, despite their importance as carbohydrate substrates, metabolism of hexuronic acids has long remained a poorly studied corner of the bacterial metabolic map. In the current issue of Journal of Bacteriology, Bouvier and coworkers present a detailed analysis of genes involved in hexuronate utilization in various proteobacteria and report the verification of their bioinformatics predictions by carefully designed experiments (J. T. Bouvier et al., J Bacteriol 201:e00431-18, 2019, https://doi.org/10.1128/JB.00431-18). This study provides a solid basis for understanding hexuronate metabolism and its regulation in other bacterial phyla.
Collapse
|
8
|
Novel Metabolic Pathways and Regulons for Hexuronate Utilization in Proteobacteria. J Bacteriol 2018; 201:JB.00431-18. [PMID: 30249705 DOI: 10.1128/jb.00431-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/19/2018] [Indexed: 02/07/2023] Open
Abstract
We used comparative genomics to reconstruct d-galacturonic and d-glucuronic acid catabolic pathways and associated transcriptional regulons involving the tripartite ATP-independent periplasmic (TRAP) family transporters that bind hexuronates in proteobacteria. The reconstructed catabolic network involves novel transcription factors, catabolic enzymes, and transporters for utilization of both hexuronates and aldarates (d-glucarate and meso-galactarate). The reconstructed regulons for a novel GntR family transcription factor, GguR, include the majority of hexuronate/aldarate utilization genes in 47 species from the Burkholderiaceae, Comamonadaceae, Halomonadaceae, and Pseudomonadaceae families. GudR, GulR, and UdhR are additional local regulators of some hexuronate/aldarate utilization genes in some of the above-mentioned organisms. The predicted DNA binding motifs of GguR and GudR regulators from Ralstonia pickettii and Polaromonas were validated by in vitro binding assays. Genes from the GulR- and GguR-controlled loci were differentially expressed in R. pickettii grown on hexuronates and aldarates. By a combination of bioinformatics and experimental techniques we identified a novel variant of the oxidative pathway for hexuronate utilization, including two previously uncharacterized subfamilies of lactone hydrolases (UxuL and UxuF). The genomic context of respective genes and reconstruction of associated pathways suggest that both enzymes catalyze the conversion of d-galactaro- and d-glucaro-1,5-lactones to the ring-opened aldarates. The activities of the purified recombinant enzymes, UxuL and UxuF, from four proteobacterial species were directly confirmed and kinetically characterized. The inferred novel aldarate-specific transporter from the tripartite tricarboxylate transporter (TTT) family transporter TctC was confirmed to bind d-glucarate in vitro This study expands our knowledge of bacterial carbohydrate catabolic pathways by identifying novel families of catabolic enzymes, transcriptional regulators, and transporters.IMPORTANCE Hexuronate catabolic pathways and their transcriptional networks are highly variable among different bacteria. We identified novel transcriptional regulators that control the hexuronate and aldarate utilization genes in four families of proteobacteria. By regulon reconstruction and genome context analysis we identified several novel components of the common hexuronate/aldarate utilization pathways, including novel uptake transporters and catabolic enzymes. Two novel families of lactonases involved in the oxidative pathway of hexuronate catabolism were characterized. Novel transcriptional regulons were validated via in vitro binding assays and gene expression studies with Polaromonas and Ralstonia species. The reconstructed catabolic pathways are interconnected with each other metabolically and coregulated via the GguR regulons in proteobacteria.
Collapse
|
9
|
Pellock SJ, Walton WG, Biernat KA, Torres-Rivera D, Creekmore BC, Xu Y, Liu J, Tripathy A, Stewart LJ, Redinbo MR. Three structurally and functionally distinct β-glucuronidases from the human gut microbe Bacteroides uniformis. J Biol Chem 2018; 293:18559-18573. [PMID: 30301767 DOI: 10.1074/jbc.ra118.005414] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/04/2018] [Indexed: 12/16/2022] Open
Abstract
The glycoside hydrolases encoded by the human gut microbiome play an integral role in processing a variety of exogenous and endogenous glycoconjugates. Here we present three structurally and functionally distinct β-glucuronidase (GUS) glycoside hydrolases from a single human gut commensal microbe, Bacteroides uniformis We show using nine crystal structures, biochemical, and biophysical data that whereas these three proteins share similar overall folds, they exhibit different structural features that create three structurally and functionally unique enzyme active sites. Notably, quaternary structure plays an important role in creating distinct active site features that are hard to predict via structural modeling methods. The enzymes display differential processing capabilities toward glucuronic acid-containing polysaccharides and SN-38-glucuronide, a metabolite of the cancer drug irinotecan. We also demonstrate that GUS-specific and nonselective inhibitors exhibit varying potencies toward each enzyme. Together, these data highlight the diversity of GUS enzymes within a single Bacteroides gut commensal and advance our understanding of how structural details impact the specific roles microbial enzymes play in processing drug-glucuronide and glycan substrates.
Collapse
Affiliation(s)
| | | | | | | | | | - Yongmei Xu
- Chemical Biology and Medicinal Chemistry, and
| | - Jian Liu
- Chemical Biology and Medicinal Chemistry, and
| | | | - Lance J Stewart
- the Department of Biochemistry, Institute for Protein Design, University of Washington, Seattle, Washington 98195
| | - Matthew R Redinbo
- From the Departments of Chemistry, .,Biochemistry and Biophysics, and.,the Departments of Microbiology and Immunology, and Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 and
| |
Collapse
|
10
|
Easton NM, Aboushawareb SAE, Bearne SL. A continuous assay for l-talarate/galactarate dehydratase using circular dichroism. Anal Biochem 2017; 544:80-86. [PMID: 29248502 DOI: 10.1016/j.ab.2017.12.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/30/2017] [Accepted: 12/11/2017] [Indexed: 10/18/2022]
Abstract
l-Talarate/galactarate dehydratase (TGD) is a member of the enolase superfamily of enzymes and catalyzes the dehydration of either meso-galactarate or l-talarate to form 5-keto-4-deoxy-d-glucarate (5-KDG). To facilitate study of this enzyme and other galactarate dehydratases, a continuous circular dichroism-based assay has been developed. Using recombinant enzyme from Salmonella typhimurium (StTGD), the rates of StTGD-catalyzed conversion of m-galactarate to 5-KDG were determined by following the change in ellipticity at 323 nm. The apparent molar ellipticity ([θ]323) for the 5-KDG formed was determined to be 202 ± 2 deg cm2 dmol-1, which was used to convert observed rates (Δθ/Δt) into concentration-dependent rates (Δc/Δt). The kinetic parameters Km, kcat, and kcat/Km were 0.38 ± 0.05 mM, 4.8 ± 0.1 s-1, and 1.3 (±0.2) × 104 M-1s-1, respectively. These values are in excellent agreement with those published previously [Yew, W.S. et al. (2007) Biochemistry46, 9564-9577] using a coupled assay system. To demonstrate the utility of the assay, the inhibition constant (Ki = 10.7 ± 0.4 mM) was determined for the competitive inhibitor tartronate. The continuous CD-based assay offers a practical and efficient alternative method to the coupled assay that requires access to 5-KDG aldolase, and to the labor-intensive, fixed-time assays.
Collapse
Affiliation(s)
- Nicole M Easton
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Sarah A E Aboushawareb
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Stephen L Bearne
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada; Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.
| |
Collapse
|
11
|
Roth T, Beer B, Pick A, Sieber V. Thermostabilization of the uronate dehydrogenase from Agrobacterium tumefaciens by semi-rational design. AMB Express 2017; 7:103. [PMID: 28545260 PMCID: PMC5442039 DOI: 10.1186/s13568-017-0405-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/17/2017] [Indexed: 11/12/2022] Open
Abstract
Aldaric acids represent biobased 'top value-added chemicals' that have the potential to substitute petroleum-derived chemicals. Until today they are mostly produced from corresponding aldoses using strong chemical oxidizing agents. An environmentally friendly and more selective process could be achieved by using natural resources such as seaweed or pectin as raw material. These contain large amounts of uronic acids as major constituents such as glucuronic acid and galacturonic acid which can be converted into the corresponding aldaric acids via an enzyme-based oxidation using uronate dehydrogenase (Udh). The Udh from Agrobacterium tumefaciens (UdhAt) features the highest catalytic efficiency of all characterized Udhs using glucuronic acid as substrate (829 s-1 mM-1). Unfortunately, it suffers from poor thermostability. To overcome this limitation, we created more thermostable variants using semi-rational design. The amino acids for substitution were chosen according to the B factor in combination with four additional knowledge-based criteria. The triple variant A41P/H101Y/H236K showed higher kinetic and thermodynamic stability with a T 5015 value of 62.2 °C (3.2 °C improvement) and a ∆∆GU of 2.3 kJ/mol compared to wild type. Interestingly, it was only obtained when including a neutral mutation in the combination.
Collapse
Affiliation(s)
- Teresa Roth
- Chair of Chemistry of Biogenic Resources, Straubing Centre of Science, Technical University of Munich, Schulgasse 16, 94315 Straubing, Germany
- Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Barbara Beer
- Chair of Chemistry of Biogenic Resources, Straubing Centre of Science, Technical University of Munich, Schulgasse 16, 94315 Straubing, Germany
| | - André Pick
- Chair of Chemistry of Biogenic Resources, Straubing Centre of Science, Technical University of Munich, Schulgasse 16, 94315 Straubing, Germany
| | - Volker Sieber
- Chair of Chemistry of Biogenic Resources, Straubing Centre of Science, Technical University of Munich, Schulgasse 16, 94315 Straubing, Germany
- TUM Catalysis Research Center, Ernst-Otto-Fischer-Straße 1, 85748 Garching, Germany
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Bio, Electro and Chemocatalysis BioCat, Straubing Branch, Schulgasse 11a, 94315 Straubing, Germany
| |
Collapse
|
12
|
McClintock MK, Wang J, Zhang K. Application of Nonphosphorylative Metabolism as an Alternative for Utilization of Lignocellulosic Biomass. Front Microbiol 2017; 8:2310. [PMID: 29218038 PMCID: PMC5703739 DOI: 10.3389/fmicb.2017.02310] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/08/2017] [Indexed: 01/28/2023] Open
Abstract
Production of chemicals via fermentation has been evolving over the past 30 years in search of economically viable systems. Thus far, there have been few industrially relevant chemicals that have seen commercialization, examples being lactic acid and ethanol. Currently, many of these fermentation processes still compete with food sources. In order to reduce this competition fermentation of alternative feedstocks, such as lignocellulosic biomass must to be utilized. Hemicellulosic sugars can be employed effectively for the production of chemicals by incorporating nonphosphorylative metabolism. This review covers nonphosphorylative metabolism, the pathways and enzymes involved, as well as the products that have been produced using nonphosphorylative metabolism.
Collapse
Affiliation(s)
- Maria K McClintock
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, United States
| | - Jilong Wang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, United States
| | - Kechun Zhang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
13
|
In vitro metabolic engineering for the production of α-ketoglutarate. Metab Eng 2017; 40:5-13. [PMID: 28238759 DOI: 10.1016/j.ymben.2017.02.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/16/2017] [Accepted: 02/21/2017] [Indexed: 11/23/2022]
Abstract
α-Ketoglutarate (aKG) represents a central intermediate of cell metabolism. It is used for medical treatments and as a chemical building block. Enzymatic cascade reactions have the potential to sustainably synthesize this natural product. Here we report a systems biocatalysis approach for an in vitro reaction set-up to produce aKG from glucuronate using the oxidative pathway of uronic acids. Because of two dehydrations, a decarboxylation, and reaction conditions favoring oxidation, the pathway is driven thermodynamically towards complete product formation. The five enzymes (including one for cofactor recycling) were first investigated individually to define optimal reaction conditions for the cascade reaction. Then, the kinetic parameters were determined under these conditions and the inhibitory effects of substrate, intermediates, and product were evaluated. As cofactor supply is critical for the cascade reaction, various set-ups were tested: increasing concentrations of the recycling enzyme, different initial NAD+ concentrations, as well as the use of a bubble reactor for faster oxygen diffusion. Finally, we were able to convert 10gL-1 glucuronate with 92% yield of aKG within 5h. The maximum productivity of 2.8gL-1 h-1 is the second highest reported in the biotechnological synthesis of aKG.
Collapse
|
14
|
Kuivanen J, Sugai-Guérios MH, Arvas M, Richard P. A novel pathway for fungal D-glucuronate catabolism contains an L-idonate forming 2-keto-L-gulonate reductase. Sci Rep 2016; 6:26329. [PMID: 27189775 PMCID: PMC4870679 DOI: 10.1038/srep26329] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 04/29/2016] [Indexed: 11/09/2022] Open
Abstract
For the catabolism of D-glucuronate, different pathways are used by different life forms. The pathways in bacteria and animals are established, however, a fungal pathway has not been described. In this communication, we describe an enzyme that is essential for D-glucuronate catabolism in the filamentous fungus Aspergillus niger. The enzyme has an NADH dependent 2-keto-L-gulonate reductase activity forming L-idonate. The deletion of the corresponding gene, the gluC, results in a phenotype of no growth on D-glucuronate. The open reading frame of the A. niger 2-keto-L-gulonate reductase was expressed as an active protein in the yeast Saccharomyces cerevisiae. A histidine tagged protein was purified and it was demonstrated that the enzyme converts 2-keto-L-gulonate to L-idonate and, in the reverse direction, L-idonate to 2-keto-L-gulonate using the NAD(H) as cofactors. Such an L-idonate forming 2-keto-L-gulonate dehydrogenase has not been described previously. In addition, the finding indicates that the catabolic D-glucuronate pathway in A. niger differs fundamentally from the other known D-glucuronate pathways.
Collapse
Affiliation(s)
- Joosu Kuivanen
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, 02044-VTT, Finland
| | - Maura H Sugai-Guérios
- Departamento de Engenharia Química e Engenharia de Alimentos, Universidade Federal de Santa Catarina, Cx.P. 476 Centro Tecnológico, Florianópolis 88040-900, Santa Catarina, Brazil
| | - Mikko Arvas
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, 02044-VTT, Finland
| | - Peter Richard
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, 02044-VTT, Finland
| |
Collapse
|
15
|
Andberg M, Aro-Kärkkäinen N, Carlson P, Oja M, Bozonnet S, Toivari M, Hakulinen N, O'Donohue M, Penttilä M, Koivula A. Characterization and mutagenesis of two novel iron-sulphur cluster pentonate dehydratases. Appl Microbiol Biotechnol 2016; 100:7549-63. [PMID: 27102126 DOI: 10.1007/s00253-016-7530-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/15/2016] [Accepted: 03/29/2016] [Indexed: 10/21/2022]
Abstract
We describe here the identification and characterization of two novel enzymes belonging to the IlvD/EDD protein family, the D-xylonate dehydratase from Caulobacter crescentus, Cc XyDHT, (EC 4.2.1.82), and the L-arabonate dehydratase from Rhizobium leguminosarum bv. trifolii, Rl ArDHT (EC 4.2.1.25), that produce the corresponding 2-keto-3-deoxy-sugar acids. There is only a very limited amount of characterization data available on pentonate dehydratases, even though the enzymes from these oxidative pathways have potential applications with plant biomass pentose sugars. The two bacterial enzymes share 41 % amino acid sequence identity and were expressed and purified from Escherichia coli as homotetrameric proteins. Both dehydratases were shown to accept pentonate and hexonate sugar acids as their substrates and require Mg(2+) for their activity. Cc XyDHT displayed the highest activity on D-xylonate and D-gluconate, while Rl ArDHT functioned best on D-fuconate, L-arabonate and D-galactonate. The configuration of the OH groups at C2 and C3 position of the sugar acid were shown to be critical, and the C4 configuration also contributed substantially to the substrate recognition. The two enzymes were also shown to contain an iron-sulphur [Fe-S] cluster. Our phylogenetic analysis and mutagenesis studies demonstrated that the three conserved cysteine residues in the aldonic acid dehydratase group of IlvD/EDD family members, those of C60, C128 and C201 in Cc XyDHT, and of C59, C127 and C200 in Rl ArDHT, are needed for coordination of the [Fe-S] cluster. The iron-sulphur cluster was shown to be crucial for the catalytic activity (kcat) but not for the substrate binding (Km) of the two pentonate dehydratases.
Collapse
Affiliation(s)
- Martina Andberg
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, VTT, FI-02044, Espoo, Finland.
| | - Niina Aro-Kärkkäinen
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, VTT, FI-02044, Espoo, Finland
| | - Paul Carlson
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, VTT, FI-02044, Espoo, Finland
| | - Merja Oja
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, VTT, FI-02044, Espoo, Finland
| | - Sophie Bozonnet
- INSA, UPS, INP; LISBP, Université de Toulouse, 135 Avenue de Rangueil, F-31077, Toulouse, France.,INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, F-31400, Toulouse, France.,CNRS, UMR5504, F-31400, Toulouse, France
| | - Mervi Toivari
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, VTT, FI-02044, Espoo, Finland
| | - Nina Hakulinen
- Department of Chemistry, University of Eastern Finland, PO Box 111, FI-80101, Joensuu, Finland
| | - Michael O'Donohue
- INSA, UPS, INP; LISBP, Université de Toulouse, 135 Avenue de Rangueil, F-31077, Toulouse, France.,INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, F-31400, Toulouse, France.,CNRS, UMR5504, F-31400, Toulouse, France
| | - Merja Penttilä
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, VTT, FI-02044, Espoo, Finland
| | - Anu Koivula
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, VTT, FI-02044, Espoo, Finland
| |
Collapse
|
16
|
Lee SB, Kim JA, Lim HS. Metabolic pathway of 3,6-anhydro-D-galactose in carrageenan-degrading microorganisms. Appl Microbiol Biotechnol 2016; 100:4109-21. [DOI: 10.1007/s00253-016-7346-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/18/2016] [Accepted: 01/22/2016] [Indexed: 10/22/2022]
|
17
|
Engineering nonphosphorylative metabolism to generate lignocellulose-derived products. Nat Chem Biol 2016; 12:247-53. [DOI: 10.1038/nchembio.2020] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 12/15/2015] [Indexed: 11/09/2022]
|
18
|
Vetting MW, Bouvier JT, Gerlt JA, Almo SC. Purification, crystallization and structural elucidation of D-galactaro-1,4-lactone cycloisomerase from Agrobacterium tumefaciens involved in pectin degradation. Acta Crystallogr F Struct Biol Commun 2016; 72:36-41. [PMID: 26750482 PMCID: PMC4708048 DOI: 10.1107/s2053230x15023286] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/03/2015] [Indexed: 11/10/2022] Open
Abstract
Pectin is found in the cell wall of plants and is often discarded as waste. A number of research groups are interested in redirecting this biomass waste stream for the production of fuel and bulk chemicals. The primary monomeric subunit of this polysaccharide is D-galacturonate, a six-carbon acid sugar that is degraded in a five-step pathway to central metabolic intermediates by some bacteria, including Agrobacterium tumefaciens. In the third step of the pathway, D-galactaro-1,4-lactone is converted to 2-keto-3-deoxy-L-threo-hexarate by a member of the mandelate racemase subgroup of the enolase superfamily with a novel activity for the superfamily. The 1.6 Å resolution structure of this enzyme was determined, revealing an overall modified (β/α)7β TIM-barrel domain, a hallmark of the superfamily. D-Galactaro-1,4-lactone was manually docked into the active site located at the interface between the N-terminal lid domain and the C-terminal barrel domain. On the basis of the position of the lactone in the active site, Lys166 is predicted to be the active-site base responsible for abstraction of the α proton. His296 on the opposite side of the active site is predicted to be the general acid that donates a proton to the β carbon as the lactone ring opens. The lactone ring appears to be oriented within the active site by stacking interactions with Trp298.
Collapse
Affiliation(s)
- Matthew W. Vetting
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jason T. Bouvier
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - John A. Gerlt
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
19
|
Involvement of Agrobacterium tumefaciens Galacturonate Tripartite ATP-Independent Periplasmic (TRAP) Transporter GaaPQM in Virulence Gene Expression. Appl Environ Microbiol 2015; 82:1136-1146. [PMID: 26637603 DOI: 10.1128/aem.02891-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/01/2015] [Indexed: 11/20/2022] Open
Abstract
Monosaccharides capable of serving as nutrients for the soil bacterium Agrobacterium tumefaciens are also inducers of the vir regulon present in the tumor-inducing (Ti) plasmid of this plant pathogen. One such monosaccharide is galacturonate, the predominant monomer of pectin found in plant cell walls. This ligand is recognized by the periplasmic sugar binding protein ChvE, which interacts with the VirA histidine kinase that controls vir gene expression. Although ChvE is also a member of the ChvE-MmsAB ABC transporter involved in the utilization of many neutral sugars, it is not involved in galacturonate utilization. In this study, a putative tripartite ATP-independent periplasmic (TRAP) transporter, GaaPQM, is shown to be essential for the utilization of galacturonic acid; we show that residue R169 in the predicted sugar binding site of the GaaP is required for activity. The gene upstream of gaaPQM (gaaR) encodes a member of the GntR family of regulators. GaaR is shown to repress the expression of gaaPQM, and the repression is relieved in the presence of the substrate for GaaPQM. Moreover, GaaR is shown to bind putative promoter regions in the sequences required for galacturonic acid utilization. Finally, A. tumefaciens strains carrying a deletion of gaaPQM are more sensitive to galacturonate as an inducer of vir gene expression, while the overexpression of gaaPQM results in strains being less sensitive to this vir inducer. This supports a model in which transporter activity is crucial in ensuring that vir gene expression occurs only at sites of high ligand concentration, such as those at a plant wound site.
Collapse
|
20
|
Cho SJ, Kim JA, Lee SB. Identification and characterization of 3,6-anhydro-L-galactonate cycloisomerase belonging to theenolase superfamily. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-015-0359-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Mehtiö T, Toivari M, Wiebe MG, Harlin A, Penttilä M, Koivula A. Production and applications of carbohydrate-derived sugar acids as generic biobased chemicals. Crit Rev Biotechnol 2015; 36:904-16. [DOI: 10.3109/07388551.2015.1060189] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Tuomas Mehtiö
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Mervi Toivari
- VTT Technical Research Centre of Finland, Espoo, Finland
| | | | - Ali Harlin
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Merja Penttilä
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Anu Koivula
- VTT Technical Research Centre of Finland, Espoo, Finland
| |
Collapse
|
22
|
Taberman H, Andberg M, Parkkinen T, Jänis J, Penttilä M, Hakulinen N, Koivula A, Rouvinen J. Structure and function of a decarboxylating Agrobacterium tumefaciens keto-deoxy-d-galactarate dehydratase. Biochemistry 2014; 53:8052-60. [PMID: 25454257 DOI: 10.1021/bi501290k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Agrobacterium tumefaciens (At) strain C58 contains an oxidative enzyme pathway that can function on both d-glucuronic and d-galacturonic acid. The corresponding gene coding for At keto-deoxy-d-galactarate (KDG) dehydratase is located in the same gene cluster as those coding for uronate dehydrogenase (At Udh) and galactarolactone cycloisomerase (At Gci) which we have previously characterized. Here, we present the kinetic characterization and crystal structure of At KDG dehydratase, which catalyzes the next step, the decarboxylating hydrolyase reaction of KDG to produce α-ketoglutaric semialdehyde (α-KGSA) and carbon dioxide. The crystal structures of At KDG dehydratase and its complexes with pyruvate and 2-oxoadipic acid, two substrate analogues, were determined to 1.7 Å, 1.5 Å, and 2.1 Å resolution, respectively. Furthermore, mass spectrometry was used to confirm reaction end-products. The results lead us to propose a structure-based mechanism for At KDG dehydratase, suggesting that while the enzyme belongs to the Class I aldolase protein family, it does not follow a typical retro-aldol condensation mechanism.
Collapse
Affiliation(s)
- Helena Taberman
- Department of Chemistry, University of Eastern Finland , FI-80101 Joensuu, Finland
| | | | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Yun EJ, Lee S, Kim HT, Pelton JG, Kim S, Ko HJ, Choi IG, Kim KH. The novel catabolic pathway of 3,6-anhydro-L-galactose, the main component of red macroalgae, in a marine bacterium. Environ Microbiol 2014; 17:1677-88. [DOI: 10.1111/1462-2920.12607] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 08/18/2014] [Accepted: 08/19/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Eun Ju Yun
- Department of Biotechnology; Korea University Graduate School; Seoul 136-713 Korea
| | - Saeyoung Lee
- Department of Biotechnology; Korea University Graduate School; Seoul 136-713 Korea
| | - Hee Taek Kim
- Department of Biotechnology; Korea University Graduate School; Seoul 136-713 Korea
| | - Jeffrey G. Pelton
- Physical Biosciences Division; Lawrence Berkeley National Laboratory; Berkeley CA 94720 USA
| | - Sooah Kim
- Department of Biotechnology; Korea University Graduate School; Seoul 136-713 Korea
| | - Hyeok-Jin Ko
- Department of Biotechnology; Korea University Graduate School; Seoul 136-713 Korea
| | - In-Geol Choi
- Department of Biotechnology; Korea University Graduate School; Seoul 136-713 Korea
| | - Kyoung Heon Kim
- Department of Biotechnology; Korea University Graduate School; Seoul 136-713 Korea
| |
Collapse
|
25
|
Wichelecki DJ, Vendiola JAF, Jones AM, Al-Obaidi N, Almo SC, Gerlt JA. Investigating the physiological roles of low-efficiency D-mannonate and D-gluconate dehydratases in the enolase superfamily: pathways for the catabolism of L-gulonate and L-idonate. Biochemistry 2014; 53:5692-9. [PMID: 25145794 PMCID: PMC4159206 DOI: 10.1021/bi500837w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
sequence/function space in the d-mannonate dehydratase
subgroup (ManD) of the enolase superfamily was investigated to determine
how enzymatic function diverges as sequence identity decreases [Wichelecki,
D. J., et al. (2014) Biochemistry53, 2722–2731]. That study revealed that members of the ManD
subgroup vary in substrate specificity and catalytic efficiency: high-efficiency
(kcat/KM =
103–104 M–1 s–1) for dehydration of d-mannonate, low-efficiency (kcat/KM = 10–102 M–1 s–1) for dehydration
of d-mannonate and/or d-gluconate, and no activity.
Characterization of high-efficiency members revealed that these are
ManDs in the d-glucuronate catabolic pathway {analogues of
UxuA [Wichelecki, D. J., et al. (2014) Biochemistry 53, 4087–4089]}. However, the genomes of organisms that encode
low-efficiency members of the ManDs subgroup encode UxuAs; therefore,
these must have divergent physiological functions. In this study,
we investigated the physiological functions of three low-efficiency
members of the ManD subgroup and identified a novel physiologically
relevant pathway for l-gulonate catabolism in Chromohalobacter
salexigens DSM3043 as well as cryptic pathways for l-gulonate catabolism in Escherichia coli CFT073
and l-idonate catabolism in Salmonella enterica subsp. enterica serovar Enteritidis str. P125109. However, we could not identify physiological roles
for the low-efficiency members of the ManD subgroup, allowing the
suggestion that these pathways may be either evolutionary relics or
the starting points for new metabolic potential.
Collapse
Affiliation(s)
- Daniel J Wichelecki
- Departments of Biochemistry and Chemistry and Institute for Genomic Biology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | | | | | | | | | | |
Collapse
|
26
|
Bouvier JT, Groninger-Poe FP, Vetting M, Almo SC, Gerlt JA. Galactaro δ-lactone isomerase: lactone isomerization by a member of the amidohydrolase superfamily. Biochemistry 2014; 53:614-6. [PMID: 24450804 PMCID: PMC3977579 DOI: 10.1021/bi5000492] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Agrobacterium tumefaciens strain C58 can utilize d-galacturonate as a sole source of carbon via a pathway in
which the first step is oxidation of d-galacturonate to d-galactaro-1,5-lactone. We have identified a novel enzyme, d-galactarolactone isomerase (GLI), that catalyzes the isomerizaton
of d-galactaro-1,5-lactone to d-galactaro-1,4-lactone.
GLI, a member of the functionally diverse amidohydrolase superfamily,
is a homologue of LigI that catalyzes the hydrolysis of 2-pyrone-4,6-dicarboxylate
in lignin degradation. The ability of GLI to catalyze lactone isomerization
instead of hydrolysis can be explained by the absence of the general
basic catalysis used by 2-pyrone-4,6-dicarboxylate lactonase.
Collapse
Affiliation(s)
- Jason T Bouvier
- Department of Biochemistry, ‡Department of Chemistry, and §Institute for Genomic Biology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | | | | | | | | |
Collapse
|
27
|
Taberman H, Andberg M, Parkkinen T, Richard P, Hakulinen N, Koivula A, Rouvinen J. Purification, crystallization and preliminary X-ray diffraction analysis of a novel keto-deoxy-D-galactarate (KDG) dehydratase from Agrobacterium tumefaciens. Acta Crystallogr F Struct Biol Commun 2014; 70:49-52. [PMID: 24419616 PMCID: PMC3943101 DOI: 10.1107/s2053230x13031361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 11/15/2013] [Indexed: 11/11/2022] Open
Abstract
D-galacturonic acid is the main component of pectin. It could be used to produce affordable renewable fuels, chemicals and materials through biotechnical conversion. Keto-deoxy-D-galactarate (KDG) dehydratase is an enzyme in the oxidative pathway of D-galacturonic acid in Agrobacterium tumefaciens (At). It converts 3-deoxy-2-keto-L-threo-hexarate to α-ketoglutaric semialdehyde. At KDG dehydratase was crystallized by the hanging-drop vapour-diffusion method. The crystals belonged to the monoclinic space group C2, with unit-cell parameters a = 169.1, b = 117.8, c = 74.3 Å, β = 112.4° and an asymmetric unit of four monomers. X-ray diffraction data were collected to 1.9 Å resolution using synchrotron radiation. The three-dimensional structure of At KDG dehydratase will provide valuable information on the function of the enzyme and will allow it to be engineered for biorefinery-based applications.
Collapse
Affiliation(s)
- Helena Taberman
- Department of Chemistry, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| | - Martina Andberg
- VTT Technical Research Centre of Finland, PO Box 1000, 02044 VTT, Finland
| | - Tarja Parkkinen
- Department of Chemistry, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| | - Peter Richard
- VTT Technical Research Centre of Finland, PO Box 1000, 02044 VTT, Finland
| | - Nina Hakulinen
- Department of Chemistry, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| | - Anu Koivula
- VTT Technical Research Centre of Finland, PO Box 1000, 02044 VTT, Finland
| | - Juha Rouvinen
- Department of Chemistry, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| |
Collapse
|
28
|
Categorisation of sugar acid dehydratases in Aspergillus niger. Fungal Genet Biol 2013; 64:67-72. [PMID: 24382357 DOI: 10.1016/j.fgb.2013.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 12/18/2013] [Accepted: 12/19/2013] [Indexed: 11/24/2022]
Abstract
In the genome of Aspergillus niger five genes were identified coding for proteins with homologies to sugar acid dehydratases. The open reading frames were expressed in Saccharomyces cerevisiae and the activities tested with a library of sugar acids. Four genes were identified to code for proteins with activities with sugar acids: an l-galactonate dehydratase (gaaB), two d-galactonate dehydratases (dgdA, dgdB) and an l-rhamnonate dehydratase (lraC). The specificities of the proteins were characterised. The l-galactonate dehydratase had highest activity with l-fuconate, however it is unclear whether the enzyme is involved in l-fuconate catabolism. None of the proteins showed activity with galactaric acid or galactarolactone.
Collapse
|