1
|
Feldman L. Hypoxia within the glioblastoma tumor microenvironment: a master saboteur of novel treatments. Front Immunol 2024; 15:1384249. [PMID: 38994360 PMCID: PMC11238147 DOI: 10.3389/fimmu.2024.1384249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/10/2024] [Indexed: 07/13/2024] Open
Abstract
Glioblastoma (GBM) tumors are the most aggressive primary brain tumors in adults that, despite maximum treatment, carry a dismal prognosis. GBM tumors exhibit tissue hypoxia, which promotes tumor aggressiveness and maintenance of glioma stem cells and creates an overall immunosuppressive landscape. This article reviews how hypoxic conditions overlap with inflammatory responses, favoring the proliferation of immunosuppressive cells and inhibiting cytotoxic T cell development. Immunotherapies, including vaccines, immune checkpoint inhibitors, and CAR-T cell therapy, represent promising avenues for GBM treatment. However, challenges such as tumor heterogeneity, immunosuppressive TME, and BBB restrictiveness hinder their effectiveness. Strategies to address these challenges, including combination therapies and targeting hypoxia, are actively being explored to improve outcomes for GBM patients. Targeting hypoxia in combination with immunotherapy represents a potential strategy to enhance treatment efficacy.
Collapse
Affiliation(s)
- Lisa Feldman
- Division of Neurosurgery, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
2
|
Hamad A, Yusubalieva GM, Baklaushev VP, Chumakov PM, Lipatova AV. Recent Developments in Glioblastoma Therapy: Oncolytic Viruses and Emerging Future Strategies. Viruses 2023; 15:547. [PMID: 36851761 PMCID: PMC9958853 DOI: 10.3390/v15020547] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/24/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Glioblastoma is the most aggressive form of malignant brain tumor. Standard treatment protocols and traditional immunotherapy are poorly effective as they do not significantly increase the long-term survival of glioblastoma patients. Oncolytic viruses (OVs) may be an effective alternative approach. Combining OVs with some modern treatment options may also provide significant benefits for glioblastoma patients. Here we review virotherapy for glioblastomas and describe several OVs and their combination with other therapies. The personalized use of OVs and their combination with other treatment options would become a significant area of research aiming to develop the most effective treatment regimens for glioblastomas.
Collapse
Affiliation(s)
- Azzam Hamad
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Gaukhar M. Yusubalieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
| | - Vladimir P. Baklaushev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
| | - Peter M. Chumakov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasiya V. Lipatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
3
|
Sun L, Wen S, Li Q, Lai X, Chen R, Zhang Z, Cao J, Sun S. Theaflavin-3,3'-di-gallate represses prostate cancer by activating the PKCδ/aSMase signaling pathway through a 67 kDa laminin receptor. Food Funct 2022; 13:4421-4431. [PMID: 35302141 DOI: 10.1039/d1fo04198c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Prostate cancer is a major cause of morbidity and mortality in men. Theaflavin-3,3'-digallate (TF-3) is an important functional ingredient of black tea. We aimed to evaluate the cytotoxic effects of TF-3 on prostate cancer and to identify the underlying molecular mechanism. In this study, we explored the effects of TF-3 on prostate cancer in PC-3 cells and in NOD/SCID mice with prostate cancer. The results demonstrated that TF-3 inhibited prostate cancer cell proliferation by regulating the PKCδ/aSMase signaling pathway. The anti-prostate cancer effect of TF-3 was attributed to the expression of the 67 kDa laminin receptor (67LR), which is overexpressed in various cancers, playing a vital role in the growth and metastasis of tumor cells. Stable knockdown of 67LR could efficiently inhibit TF-3 induced apoptosis and cell cycle arrest in PC-3 cells, through interacting with the PKCδ/aSMase signaling pathway. In vivo studies also confirmed the above findings that TF-3 effectively inhibited tumor growth in terms of tumor volume. TF-3 treatment can significantly inhibit tumor growth and up-regulate the phosphorylation of PKCδ and the expression of aSMase in tumor xenografts developed by subcutaneously implanting PC-3 cells and 67LR-overexpressing PC-3 cells in mice. However, in tumor xenografts formed by subcutaneously implanting 67LR-knockdown PC-3 cells, TF-3 has no significant effect on PKCδ/aSMase pathway regulation and tumor growth inhibition.
Collapse
Affiliation(s)
- Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Shuai Wen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Qiuhua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Xingfei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Ruohong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Zhenbiao Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Junxi Cao
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| |
Collapse
|
4
|
Protein Kinase C subtype δ interacts with Venezuelan equine encephalitis virus capsid protein and regulates viral RNA binding through modulation of capsid phosphorylation. PLoS Pathog 2020; 16:e1008282. [PMID: 32150585 PMCID: PMC7082041 DOI: 10.1371/journal.ppat.1008282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 03/19/2020] [Accepted: 12/13/2019] [Indexed: 12/31/2022] Open
Abstract
Protein phosphorylation plays an important role during the life cycle of many viruses. Venezuelan equine encephalitis virus (VEEV) capsid protein has recently been shown to be phosphorylated at four residues. Here those studies are extended to determine the kinase responsible for phosphorylation and the importance of capsid phosphorylation during the viral life cycle. Phosphorylation site prediction software suggests that Protein Kinase C (PKC) is responsible for phosphorylation of VEEV capsid. VEEV capsid co-immunoprecipitated with PKCδ, but not other PKC isoforms and siRNA knockdown of PKCδ caused a decrease in viral replication. Furthermore, knockdown of PKCδ by siRNA decreased capsid phosphorylation. A virus with capsid phosphorylation sites mutated to alanine (VEEV CPD) displayed a lower genomic copy to pfu ratio than the parental virus; suggesting more efficient viral assembly and more infectious particles being released. RNA:capsid binding was significantly increased in the mutant virus, confirming these results. Finally, VEEV CPD is attenuated in a mouse model of infection, with mice showing increased survival and decreased clinical signs as compared to mice infected with the parental virus. Collectively our data support a model in which PKCδ mediated capsid phosphorylation regulates viral RNA binding and assembly, significantly impacting viral pathogenesis.
Collapse
|
5
|
Slepchenko KG, Holub JM, Li YV. Intracellular zinc increase affects phosphorylation state and subcellular localization of protein kinase C delta (δ). Cell Signal 2018; 44:148-157. [DOI: 10.1016/j.cellsig.2018.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/14/2018] [Indexed: 10/18/2022]
|
6
|
Zhao H, Guo XK, Bi Y, Zhu Y, Feng WH. PKCδ is required for porcine reproductive and respiratory syndrome virus replication. Virology 2014; 468-470:96-103. [PMID: 25155198 DOI: 10.1016/j.virol.2014.07.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 06/17/2014] [Accepted: 07/21/2014] [Indexed: 01/27/2023]
Abstract
Protein kinase C (PKC) that transduces signals to modulate a wide range of cellular functions has been shown to regulate a number of viral infections. Herein, we showed that inhibition of PKC with the PKC inhibitor GF109203X significantly impaired porcine reproductive and respiratory syndrome virus (PRRSV) replication. Inhibition of PKC led to virus yield reduction, which was associated with decreased viral RNA synthesis and lowered virus protein expression. And this inhibitory effect by PKC inhibitor was shown to occur at the early stage of PRRSV infection. Subsequently, we found that PRRSV infection activated PKCδ in PAMs and knockdown of PKCδ by small interfering RNA (siRNA) suppressed PRRSV replication, suggesting that novel PKCδ may play an important factor in PRRSV replication. Taken together, these data imply that PKC is involved in PRRSV infection and beneficial to PRRSV replication, extending our understanding of PRRSV replication.
Collapse
Affiliation(s)
- Haiyan Zhao
- State Key Laboratories of Agrobiotechnology, China; Department of Microbiology and Immunology, College of Biological Science, China Agricultural University, Beijing 100193, China
| | - Xue-Kun Guo
- State Key Laboratories of Agrobiotechnology, China; Department of Microbiology and Immunology, College of Biological Science, China Agricultural University, Beijing 100193, China
| | - Yanmin Bi
- State Key Laboratories of Agrobiotechnology, China; Department of Microbiology and Immunology, College of Biological Science, China Agricultural University, Beijing 100193, China
| | - Yihui Zhu
- College of Biological Science, Hunan Normal University, Changsha 410006, China
| | - Wen-Hai Feng
- State Key Laboratories of Agrobiotechnology, China; Department of Microbiology and Immunology, College of Biological Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
7
|
Kedei N, Chen JQ, Herrmann MA, Telek A, Goldsmith PK, Petersen ME, Keck GE, Blumberg PM. Molecular systems pharmacology: isoelectric focusing signature of protein kinase Cδ provides an integrated measure of its modulation in response to ligands. J Med Chem 2014; 57:5356-69. [PMID: 24906106 PMCID: PMC4216220 DOI: 10.1021/jm500417b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Protein
kinase C (PKC), a validated therapeutic target for cancer
chemotherapy, provides a paradigm for assessing structure–activity
relations, where ligand binding has multiple consequences for a target.
For PKC, ligand binding controls not only PKC activation and multiple
phosphorylations but also subcellular localization, affecting subsequent
signaling. Using a capillary isoelectric focusing immunoassay system,
we could visualize a high resolution isoelectric focusing signature
of PKCδ upon stimulation by ligands of the phorbol ester and
bryostatin classes. Derivatives that possessed different physicochemical
characteristics and induced different patterns of biological response
generated different signatures. Consistent with different patterns
of PKCδ localization as one factor linked to these different
signatures, we found different signatures for activated PKCδ
from the nuclear and non-nuclear fractions. We conclude that the capillary
isoelectric focusing immunoassay system may provide a window into
the integrated consequences of ligand binding and thus afford a powerful
platform for compound development.
Collapse
Affiliation(s)
- Noemi Kedei
- Laboratory of Cancer Biology and Genetics, ‡Collaborative Protein Technology Resource, Laboratory of Cell Biology, and §Office of Science and Technology Partnerships, Center for Cancer Research, National Cancer Institute , Bethesda, Maryland 20892, United States
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Protein kinase C (PKC) is a family of phospholipid-dependent serine/threonine kinases, which can be further classified into three PKC isozymes subfamilies: conventional or classic, novel or nonclassic, and atypical. PKC isozymes are known to be involved in cell proliferation, survival, invasion, migration, apoptosis, angiogenesis, and drug resistance. Because of their key roles in cell signaling, PKC isozymes also have the potential to be promising therapeutic targets for several diseases, such as cardiovascular diseases, immune and inflammatory diseases, neurological diseases, metabolic disorders, and multiple types of cancer. This review primarily focuses on the activation, mechanism, and function of PKC isozymes during cancer development and progression.
Collapse
|
9
|
Xia L, Wang TD, Shen SM, Zhao M, Sun H, He Y, Xie L, Wu ZX, Han SF, Wang LS, Chen GQ. Phosphoproteomics study on the activated PKCδ-induced cell death. J Proteome Res 2013; 12:4280-301. [PMID: 23879269 DOI: 10.1021/pr400089v] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The proteolytic activation of protein kinase Cδ (PKCδ) generates a catalytic fragment called PKCδ-CF, which induces cell death. However, the mechanisms underlying PKCδ-CF-mediated cell death are largely unknown. On the basis of an engineering leukemic cell line with inducible expression of PKCδ-CF, here we employ SILAC-based quantitative phosphoproteomics to systematically and dynamically investigate the overall phosphorylation events during cell death triggered by PKCδ-CF expression. Totally, 3000 phosphorylation sites were analyzed. Considering the fact that early responses to PKCδ-CF expression initiate cell death, we sought to identify pathways possibly related directly with PKCδ by further analyzing the data set of phosphorylation events that occur in the initiation stage of cell death. Interacting analysis of this data set indicates that PKCδ-CF triggers complicated networks to initiate cell death, and motif analysis and biochemistry verification reveal that several kinases in the downstream of PKCδ conduct these networks. By analysis of the specific sequence motif of kinase-substrate, we also find 59 candidate substrates of PKCδ from the up-regulated phosphopeptides, of which 12 were randomly selected for in vitro kinase assay and 9 were consequently verified as substrates of PKCδ. To our greatest understanding, this study provides the most systematic analysis of phosphorylation events initiated by the cleaved activated PKCδ, which would vastly extend the profound understanding of PKCδ-directed signal pathways in cell death. The MS data have been deposited to the ProteomeXchange with identifier PXD000225.
Collapse
Affiliation(s)
- Li Xia
- The Department of Pathophysiology and Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM) , Shanghai, P.R. China , 200025
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Gentilin E, Tagliati F, Filieri C, Molè D, Minoia M, Rosaria Ambrosio M, Degli Uberti EC, Zatelli MC. miR-26a plays an important role in cell cycle regulation in ACTH-secreting pituitary adenomas by modulating protein kinase Cδ. Endocrinology 2013; 154:1690-700. [PMID: 23525216 PMCID: PMC3695590 DOI: 10.1210/en.2012-2070] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The functional aftermath of microRNA (miRNA) dysregulation in ACTH-secreting pituitary adenomas has not been demonstrated. miRNAs represent diagnostic and prognostic biomarkers as well as putative therapeutic targets; their investigation may shed light on the mechanisms that underpin pituitary adenoma development and progression. Drugs interacting with such pathways may help in achieving disease control also in the settings of ACTH-secreting pituitary adenomas. We investigated the expression of 10 miRNAs among those that were found as most dysregulated in human pituitary adenoma tissues in the settings of a murine ACTH-secreting pituitary adenoma cell line, AtT20/D16v-F2. The selected miRNAs to be submitted to further investigation in AtT20/D16v-F2 cells represent an expression panel including 5 up-regulated and 5 down-regulated miRNAs. Among these, we selected the most dysregulated mouse miRNA and searched for miRNA targets and their biological function. We found that AtT20/D16v-F2 cells have a specific miRNA expression profile and that miR-26a is the most dysregulated miRNA. The latter is overexpressed in human pituitary adenomas and can control viable cell number in the in vitro model without involving caspase 3/7-mediated apoptosis. We demonstrated that protein kinase Cδ (PRKCD) is a direct target of miR-26a and that miR26a inhibition delays the cell cycle in G1 phase. This effect involves down-regulation of cyclin E and cyclin A expression via PRKCD modulation. miR-26a and related pathways, such as PRKCD, play an important role in cell cycle control of ACTH pituitary cells, opening new therapeutic possibilities for the treatment of persistent/recurrent Cushing's disease.
Collapse
Affiliation(s)
- Erica Gentilin
- Section of Endocrinology, Department of Medical Sciences, University of Ferrara, Via Savonarola 9, 44100 Ferrara, Italy
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Dysregulated Alternative Splicing Pattern of PKCδ during Differentiation of Human Preadipocytes Represents Distinct Differences between Lean and Obese Adipocytes. ISRN OBESITY 2013; 2013:161345. [PMID: 24533217 PMCID: PMC3901959 DOI: 10.1155/2013/161345] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/05/2013] [Indexed: 11/17/2022]
Abstract
Obesity and its comorbidities affect millions of people. Here, we demonstrate that human preadipocytes are susceptible to programmed cell death (apoptosis) while mature adipocytes are resistant to apoptosis. The molecular mechanisms underlying the phenotype of apoptosis-resistant adipocytes are lesser known. To study the role of apoptosis and define molecular differences in the developmental process of adipogenesis, human preadipocytes were differentiated in vitro to mature adipocytes. Many genes in the apoptosis pathway are alternatively spliced. Our data demonstrates that during differentiation PKC δ , Bclx, and Caspase9 switch to their prosurvival splice variants along with an increase in Bcl2 expression when the cells terminally differentiate into mature adipocytes. Next we determined the expression pattern of these genes in obesity. Our data indicated high expression of PKC δ VIII in adipose tissue of obese patient in different depots. We demonstrate a shift in the in vitro expression of these splice variants in differentiating preadipocytes derived from obese patients along with a decrease in adipogenesis markers. Hence, the programmed splicing of antiapoptotic proteins is a pivotal switch in differentiation that commits adipocytes to a prosurvival pathway. The expression pattern of these genes is dysregulated in obesity and may contribute to adipose tissue dysfunction.
Collapse
|
12
|
Stelter L, Tseng JC, Torosjan A, Levin B, Longo VA, Pillarsetty N, Zanzonico P, Meruelo D, Larson SM. Tumor-specific targeting with modified Sindbis viral vectors: evaluation with optical imaging and positron emission tomography in vivo. Mol Imaging Biol 2013; 15:166-74. [PMID: 22847302 PMCID: PMC4429791 DOI: 10.1007/s11307-012-0585-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSE Sindbis virus (SINV) infect tumor cells specifically and systemically throughout the body. Sindbis vectors are capable of expressing high levels of transduced suicide genes and thus efficiently produce enzymes for prodrug conversion in infected tumor cells. The ability to monitor suicide gene expression levels and viral load in patients, after administration of the vectors, would significantly enhance this tumor-specific therapeutic option. PROCEDURES The tumor specificity of SINV is mediated by the 67-kDa laminin receptor (LR). We probed different cancer cell lines for their LR expression and, to determine the specific role of LR-expression in the infection cycle, used different molecular imaging strategies, such as bioluminescence, fluorescence molecular tomography, and positron emission tomography, to evaluate SINV-mediated infection in vitro and in vivo. RESULTS All cancer cell lines showed a marked expression of LR. The infection rates of the SINV particles, however, differed significantly among the cell lines. CONCLUSION We used novel molecular imaging techniques to visualize vector delivery to different neoplatic cells. SINV infection rates proofed to be not solely dependent on cellular LR expression. Further studies need to evaluate the herein discussed ways of cellular infection and viral replication.
Collapse
Affiliation(s)
- Lars Stelter
- Nuclear Medicine Service, Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Protein kinase cδ in apoptosis: a brief overview. Arch Immunol Ther Exp (Warsz) 2012; 60:361-72. [PMID: 22918451 DOI: 10.1007/s00005-012-0188-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Accepted: 08/06/2012] [Indexed: 12/21/2022]
Abstract
Protein kinase C-delta (PKCδ), a member of the lipid-regulated serine/threonine PKC family, has been implicated in a wide range of important cellular processes. In the past decade, the critical role of PKCδ in the regulation of both intrinsic and extrinsic apoptosis pathways has been widely explored. In most cases, over-expression or activation of PKCδ results in the induction of apoptosis. The phosphorylations and multiple cell organelle translocations of PKCδ initiate apoptosis by targeting multiple downstream effectors. During apoptosis, PKCδ is proteolytically cleaved by caspase-3 to generate a constitutively activated catalytic fragment, which amplifies apoptosis cascades in nucleus and mitochondria. However, PKCδ also exerts its anti-apoptotic and pro-survival roles in some cases. Therefore, the complicated role of PKCδ in apoptosis appears to be stimulus and cell type dependent. This review is mainly focused on how PKCδ gets activated in diverse ways in response to apoptotic signals and how PKCδ targets different downstream regulators to sponsor or restrain apoptosis induction.
Collapse
|
14
|
Cao Y, Zhao Z, Eckert RL, Reece EA. The essential role of protein kinase Cδ in diabetes-induced neural tube defects. J Matern Fetal Neonatal Med 2012; 25:2020-4. [PMID: 22463764 DOI: 10.3109/14767058.2012.677963] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Maternal diabetes causes neural tube defects (NTDs) in the embryos via activating protein kinase Cs (PKCs), which regulate programmed cell death (apoptosis). The aims of this study are to investigate the role of proapoptotic PKCδ in NTD formation and the underlying mechanisms. METHODS PKCδ heterozygous (pkcδ(+/-)) female mice were diabetic (DM) induced by intravenous injection of streptozotocin. Occurrence of NTDs was evaluated at embryonic day 11.5 and compared between wild type (WT) and PKCδ homozygous (pkcδ(-/-)) embryos. Changes in oxidative and endoplasmic reticulum (ER) stress-associated factors and stress-response c-Jun N-terminal kinases (JNKs) were assessed using Western blot assay. RESULTS Compared to DM/WT, the DM/PKCδ(-/-) embryos had significantly lower NTD rate and lower levels of oxidative and ER stress factors and JNK activation. These values were similar to those in the non-diabetic control group. CONCLUSION PKCδ plays a critical role in diabetes-induced NTDs, potentially through increasing oxidative and ER stress and JNK-associated stress-response pathways.
Collapse
Affiliation(s)
- Yuanning Cao
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
15
|
Green tea polyphenol EGCG induces lipid-raft clustering and apoptotic cell death by activating protein kinase Cδ and acid sphingomyelinase through a 67 kDa laminin receptor in multiple myeloma cells. Biochem J 2012; 443:525-34. [DOI: 10.1042/bj20111837] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
EGCG [(−)-epigallocatechin-3-O-gallate], the major polyphenol of green tea, has cancer chemopreventive and chemotherapeutic activities. EGCG selectively inhibits cell growth and induces apoptosis in cancer cells without adversely affecting normal cells; however, the underlying molecular mechanism in vivo is unclear. In the present study, we show that EGCG-induced apoptotic activity is attributed to a lipid-raft clustering mediated through 67LR (67 kDa laminin receptor) that is significantly elevated in MM (multiple myeloma) cells relative to normal peripheral blood mononuclear cells, and that aSMase (acid sphingomyelinase) is critical for the lipid-raft clustering and the apoptotic cell death induced by EGCG. We also found that EGCG induces aSMase translocation to the plasma membrane and PKCδ (protein kinase Cδ) phosphorylation at Ser664, which was necessary for aSMase/ceramide signalling via 67LR. Additionally, orally administered EGCG activated PKCδ and aSMase in a murine MM xenograft model. These results elucidate a novel cell-death pathway triggered by EGCG for the specific killing of MM cells.
Collapse
|
16
|
Apostolatos H, Apostolatos A, Vickers T, Watson JE, Song S, Vale F, Cooper DR, Sanchez-Ramos J, Patel NA. Vitamin A metabolite, all-trans-retinoic acid, mediates alternative splicing of protein kinase C deltaVIII (PKCdeltaVIII) isoform via splicing factor SC35. J Biol Chem 2010; 285:25987-95. [PMID: 20547768 DOI: 10.1074/jbc.m110.100735] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vitamin A metabolite, all-trans-retinoic acid (RA), induces cell growth, differentiation, and apoptosis and has an emerging role in gene regulation and alternative splicing events. Protein kinase Cdelta (PKCdelta), a serine/threonine kinase, has a role in cell proliferation, differentiation, and apoptosis. We reported an alternatively spliced variant of human PKCdelta, PKCdeltaVIII that functions as a pro-survival protein (1). RA regulates the splicing and expression of PKCdeltaVIII via utilization of a downstream 5' splice site of exon 10 on PKCdelta pre-mRNA. Here, we further elucidate the molecular mechanisms involved in RA regulation of alternative splicing of PKCdeltaVIII mRNA. Overexpression and knockdown of the splicing factor SC35 (i.e. SRp30b) indicated that it is involved in PKCdeltaVIII alternative splicing. To identify the cis-elements involved in 5' splice site selection we cloned a minigene, which included PKCdelta exon 10 and its flanking introns in the pSPL3 splicing vector. Alternative 5' splice site utilization in the minigene was promoted by RA. Further, co-transfection of SC35 with PKCdelta minigene promoted selection of 5' splice site II. Mutation of the SC35 binding site in the PKCdelta minigene abolished RA-mediated utilization of 5' splice splice II. RNA binding assays demonstrated that the enhancer element downstream of PKCdelta exon 10 is a SC35 cis-element. We conclude that SC35 is pivotal in RA-mediated PKCdelta pre-mRNA alternative splicing. This study demonstrates how a nutrient, vitamin A, via its metabolite RA, regulates alternative splicing and thereby gene expression of the pro-survival protein PKCdeltaVIII.
Collapse
|
17
|
Alternative splicing in stem cell self-renewal and diferentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 695:92-104. [PMID: 21222201 DOI: 10.1007/978-1-4419-7037-4_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This chapter provides a review of recent advances in understanding the importance of alternative pre-messenger RNA splicing in stem cell biology. The majority of transcribed pre-mRNAs undergo RNA splicing where introns are excised and exons are juxtaposed to form mature messenger RNA sequences. This regulated, selective removal of whole or portions of exons by alternative splicing provides avenues for control of RNA abundance and proteome diversity. We discuss several examples of key alternative splicing events in stem cell biology and provide an overview of recently developed microarray and sequencing technologies that enable systematic and genome-wide assessment of the extent of alternative splicing during stem cell differentiation.
Collapse
|
18
|
Modulation of p53 by mitogen-activated protein kinase pathways and protein kinase C δ during avian reovirus S1133-induced apoptosis. Virology 2009; 385:323-34. [DOI: 10.1016/j.virol.2008.12.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 12/12/2008] [Accepted: 12/17/2008] [Indexed: 01/08/2023]
|
19
|
Muscella A, Urso L, Calabriso N, Vetrugno C, Rochira A, Storelli C, Marsigliante S. Anti-apoptotic effects of protein kinase C-delta and c-fos in cisplatin-treated thyroid cells. Br J Pharmacol 2009; 156:751-63. [PMID: 19254279 DOI: 10.1111/j.1476-5381.2008.00049.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE We showed previously that cisplatin inititates a signalling pathway mediated by PKC-delta/extracellular signal-regulated kinase (ERK), important for maintaining viability in PC Cl3 thyroid cells. The studies described herein examined whether c-fos was associated with cisplatin resistance and the signalling link between c-fos and PKC-delta/ERK. EXPERIMENTAL APPROACH Cells were treated with various pharmacological inhibitors of PKCs and ERK, or were depleted of c-fos, PKC-delta, PKC-epsilon and caspase-3 by small interfering RNA (siRNA), then incubated with cisplatin and cytotoxicity assessed. KEY RESULTS Cisplatin provokes the induction of c-fos and the activation of conventional PKC-beta, and novel PKC-delta and -epsilon. The cisplatin-provoked c-fos induction was decreased by Gö6976, a PKC-beta inhibitor; by siRNA for PKC-delta- but not that for PKC-epsilon or by PD98059, a mitogen-activated protein kinase/ERK kinase inhibitor. Expression of c-fos was abolished by GF109203X, an inhibitor of all PKC isoforms, or by PD98059 plus Gö6976 or by PKC-delta-siRNA plus Gö6976. When c-fos expression was blocked by siRNA, cisplatin cytotoxicity was strongly enhanced with increased caspase-3 activation. In PKC-delta-depleted cells treated with cisplatin, caspase-3 activation was increased and cell viability decreased. In these PKC-delta-depleted cells, PD98059 did not affect caspase-3 activation. CONCLUSIONS AND IMPLICATIONS In PC Cl3 cells, in the cell signalling pathways that lead to cisplatin resistance, PKC-delta controls ERK activity and, together with PKC-beta, also the induction of c-fos. Hence, the protective role of c-fos in thyroid cells has the potential to provide new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Antonella Muscella
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), Università del Salento, Lecce, Italy
| | | | | | | | | | | | | |
Collapse
|
20
|
Kim S, Hwang J, Lee WH, Hwang DY, Suk K. Role of protein kinase Cdelta in paraquat-induced glial cell death. J Neurosci Res 2008; 86:2062-70. [PMID: 18335519 DOI: 10.1002/jnr.21643] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Paraquat (1,1'-dimethyl-4,4'-bipyridinium) is structurally similar to the neurotoxin 1-methyl-4-phenyl-4-phenylpyridium ion (MPP+), the active metabolite of the parkinsonism-inducing agent 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which can induce the parkinsonism property in rodents, nonhuman primates, and human. In contrast to the neurotoxic effects of paraquat, little is known about its effects on glial cells. Here, we examined the mechanisms of paraquat toxicity in glial cells in culture. Paraquat treatment also reduced the viability of C6 glial cells in primary astrocyte cultures, and cell death was mostly apoptotic in nature. PKCdelta played a central role in the paraquat-induced glial cell death: (1) the PKCdelta-specific inhibitor rottlerin blocked paraquat-induced glial cell death; (2) paraquat induced tyrosine and threonine phosphorylation of PKCdelta; and (3) transfection of the dominant-negative mutant of PKCdelta attenuated paraquat toxicity. PKCdelta was also involved in the generation of reactive oxygen species (ROS), which mediated the paraquat toxicity. The nicotinamide adenine dinucleotide phosphate (reduced form) oxidase (NADPH oxidase) inhibitor diphenyleneiodonium blocked the paraquat-induced ROS production and subsequent cell death, indicating the involvement of NADPH oxidase in the cytotoxic action of paraquat in glia. PKCdelta was also important in glial cell death induced by MPP+ but not in that induced by rotenone. Last, Rac1 appeared to antagonize paraquat toxicity in glia. These results indicate a gliotoxic effect of paraquat and an opposing role of PKCdelta and Rac1 in paraquat-induced glial cell death.
Collapse
Affiliation(s)
- Sangseop Kim
- Department of Pharmacology, Brain Science and Engineering Institute, CMRI, Kyungpook National University School of Medicine, Daegu, Korea
| | | | | | | | | |
Collapse
|
21
|
Lomonaco SL, Kahana S, Blass M, Brody Y, Okhrimenko H, Xiang C, Finniss S, Blumberg PM, Lee HK, Brodie C. Phosphorylation of protein kinase Cdelta on distinct tyrosine residues induces sustained activation of Erk1/2 via down-regulation of MKP-1: role in the apoptotic effect of etoposide. J Biol Chem 2008; 283:17731-9. [PMID: 18434324 DOI: 10.1074/jbc.m801727200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism underlying the important role of protein kinase Cdelta (PKCdelta) in the apoptotic effect of etoposide in glioma cells is incompletely understood. Here, we examined the role of PKCdelta in the activation of Erk1/2 by etoposide. We found that etoposide induced persistent activation of Erk1/2 and nuclear translocation of phospho-Erk1/2. MEK1 inhibitors decreased the apoptotic effect of etoposide, whereas inhibitors of p38 and JNK did not. The activation of Erk1/2 by etoposide was downstream of PKCdelta since the phosphorylation of Erk1/2 was inhibited by a PKCdelta-KD mutant and PKCdelta small interfering RNA. We recently reported that phosphorylation of PKCdelta on tyrosines 64 and 187 was essential for the apoptotic effect of etoposide. Using PKCdeltatyrosine mutants, we found that the phosphorylation of PKCdeltaon these tyrosine residues, but not on tyrosine 155, was also essential for the activation of Erk1/2 by etoposide. In contrast, nuclear translocation of PKCdelta was independent of its tyrosine phosphorylation and not necessary for the phosphorylation of Erk1/2. Etoposide induced down-regulation of kinase phosphatase-1 (MKP-1), which correlated with persistent phosphorylation of Erk1/2 and was dependent on the tyrosine phosphorylation of PKCdelta. Moreover, silencing of MKP-1 increased the phosphorylation of Erk1/2 and the apoptotic effect of etoposide. Etoposide induced polyubiquitylation and degradation of MKP-1 that was dependent on PKCdelta and on its tyrosine phosphorylation. These results indicate that distinct phosphorylation of PKCdeltaon tyrosines 64 and 187 specifically activates the Erk1/2 pathway by the down-regulation of MKP-1, resulting in the persistent phosphorylation of Erk1/2 and cell apoptosis.
Collapse
Affiliation(s)
- Stephanie L Lomonaco
- William and Karen Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan 48202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hung JH, Lu YS, Wang YC, Ma YH, Wang DS, Kulp SK, Muthusamy N, Byrd JC, Cheng AL, Chen CS. FTY720 induces apoptosis in hepatocellular carcinoma cells through activation of protein kinase C delta signaling. Cancer Res 2008; 68:1204-12. [PMID: 18281497 DOI: 10.1158/0008-5472.can-07-2621] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study was aimed at elucidating the mechanism by which FTY720, a synthetic sphingosine immunosuppressant, mediated antitumor effects in hepatocellular carcinoma (HCC) cells. The three HCC cell lines examined, Hep3B, Huh7, and PLC5, exhibited differential susceptibility to FTY720-mediated suppression of cell viability, with IC(50) values of 4.5, 6.3, and 11 mumol/L, respectively. Although FTY720 altered the phosphorylation state of protein kinase B and p38, our data refuted the role of these two signaling kinases in FTY720-mediated apoptosis. Evidence indicates that the antitumor effect of FTY720 was attributable to its ability to stimulate reactive oxygen species (ROS) production, which culminated in protein kinase C (PKC)delta activation and subsequent caspase-3-dependent apoptosis. We showed that FTY720 activated PKC delta through two distinct mechanisms: phosphorylation and caspase-3-dependent cleavage. Cotreatment with the caspase-3 inhibitor Z-VAD-FMK abrogated the effect of FTY720 on facilitating PKC delta proteolysis. Equally important, pharmacologic inhibition or shRNA-mediated knockdown of PKC delta protected FTY720-treated Huh7 cells from caspase-3 activation. Moreover, FTY720 induced ROS production to different extents among the three cell lines, in the order of Hep3B > Huh7 >> PLC5, which inversely correlated with the respective glutathione S-transferase pi expression levels. The low level of ROS generation might underlie the resistant phenotype of PLC5 cells to the apoptotic effects of FTY720. Blockade of ROS production by an NADPH oxidase inhibitor protected Huh7 cells from FTY720-induced PKC delta activation and caspase-3-dependent apoptosis. Together, this study provides a rationale to use FTY720 as a scaffold to develop potent PKC delta-activating agents for HCC therapy.
Collapse
Affiliation(s)
- Jui-Hsiang Hung
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sun F, Kanthasamy A, Song C, Yang Y, Anantharam V, Kanthasamy AG. Proteasome inhibitor-induced apoptosis is mediated by positive feedback amplification of PKCdelta proteolytic activation and mitochondrial translocation. J Cell Mol Med 2008; 12:2467-81. [PMID: 18298651 PMCID: PMC2957660 DOI: 10.1111/j.1582-4934.2008.00293.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Emerging evidence implicates impaired protein degradation by the ubiquitin proteasome system (UPS) in Parkinson's disease; however cellular mechanisms underlying dopaminergic degeneration during proteasomal dysfunction are yet to be characterized. In the present study, we identified that the novel PKC isoform PKCδ plays a central role in mediating apoptotic cell death following UPS dysfunction in dopaminergic neuronal cells. Inhibition of proteasome function by MG-132 in dopaminergic neuronal cell model (N27 cells) rapidly depolarized mitochondria independent of ROS generation to activate the apoptotic cascade involving cytochrome c release, and caspase-9 and caspase-3 activation. PKCδ was a key downstream effector of caspase-3 because the kinase was proteolytically cleaved by caspase-3 following exposure to proteasome inhibitors MG-132 or lactacystin, resulting in a persistent increase in the kinase activity. Notably MG-132 treatment resulted in translocation of proteolytically cleaved PKCδ fragments to mitochondria in a time-dependent fashion, and the PKCδ inhibition effectively blocked the activation of caspase-9 and caspase-3, indicating that the accumulation of the PKCδ catalytic fragment in the mitochondrial fraction possibly amplifies mitochondria-mediated apoptosis. Overexpression of the kinase active catalytic fragment of PKCδ (PKCδ-CF) but not the regulatory fragment (RF), or mitochondria-targeted expression of PKCδ-CF triggers caspase-3 activation and apoptosis. Furthermore, inhibition of PKCδ proteolytic cleavage by a caspase-3 cleavage-resistant mutant (PKCδ-CRM) or suppression of PKCδ expression by siRNA significantly attenuated MG-132-induced caspase-9 and -3 activation and DNA fragmentation. Collectively, these results demonstrate that proteolytically activated PKCδ has a significant feedback regulatory role in amplification of the mitochondria-mediated apoptotic cascade during proteasome dysfunction in dopaminergic neuronal cells.
Collapse
Affiliation(s)
- Faneng Sun
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
PKCdelta is essential for apoptosis, but regulation of the proapoptotic function of this ubiquitous kinase is not well understood. Nuclear translocation of PKCdelta is necessary and sufficient to induce apoptosis and is mediated via a C-terminal bipartite nuclear localization sequence. However, PKCdelta is found predominantly in the cytoplasm of nonapoptotic cells, and the apoptotic signal that activates its nuclear translocation is not known. We show that in salivary epithelial cells, phosphorylation at specific tyrosine residues in the N-terminal regulatory domain directs PKCdelta to the nucleus where it induces apoptosis. Analysis of each tyrosine residue in PKCdelta by site-directed mutagenesis identified two residues, Y64 and Y155, as essential for nuclear translocation. Suppression of apoptosis correlated with suppressed nuclear localization of the Y --> F mutant proteins. Moreover, a phosphomimetic PKCdelta Y64D/Y155D mutant accumulated in the nucleus in the absence of an apoptotic signal. Forced nuclear accumulation of PKCdelta-Y64F and Y155F mutant proteins, by attachment of an SV40 nuclear localization sequence, fully reconstituted their ability to induce apoptosis, indicating that tyrosine phosphorylation per se is not required for apoptosis, but for targeting PKCdelta to the nucleus. We propose that phosphorylation/dephosphorylation of PKCdelta in the regulatory domain functions as a switch to promote cell survival or cell death.
Collapse
|
25
|
Multiple PKCdelta tyrosine residues are required for PKCdelta-dependent activation of involucrin expression--a key role of PKCdelta-Y311. J Invest Dermatol 2007; 128:833-45. [PMID: 17943181 DOI: 10.1038/sj.jid.5701103] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Protein kinase C-delta (PKCdelta) is a key regulator of human involucrin (hINV) gene expression and is regulated by tyrosine phosphorylation. However, a comprehensive analysis of the requirement for individual PKCdelta tyrosine residues is lacking. We show that multiple tyrosine residues influence the ability of PKCdelta to increase hINV gene expression. Mutation of individual PKCdelta tyrosine residues 52, 64, 155, 187, or 565 does not reduce the ability of PKCdelta to increase hINV promoter activity; however, simultaneous mutation of these five tyrosines markedly reduces activity. Moreover, restoration of any one of these residues results in nearly full activity restoration. It is significant that phosphorylation of PKCdelta-Y(311) is reduced in the five-tyrosine mutant and that mutation of Y(311) results in reduced PKCdelta activity comparable to that observed in the five-tyrosine mutant. Restoration of any one of the tyrosine residues in the five-tyrosine mutant restores Y(311) phosphorylation and biological activity. In addition, reduced phosphorylation of endogenous PKCdelta-Y(311) is associated with reduced biological activity. These findings indicate that PKCdelta activity requires Y(311) and a second tyrosine residue; however, any one of the several tyrosine residues can serve in the secondary role.
Collapse
|
26
|
Hall K, Jones M, Poole A. Coincident regulation of PKCdelta in human platelets by phosphorylation of Tyr311 and Tyr565 and phospholipase C signalling. Biochem J 2007; 406:501-9. [PMID: 17570831 PMCID: PMC2049028 DOI: 10.1042/bj20070244] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PKC (protein kinase C)d plays a complex role in platelets, having effects on both positive and negative signalling functions. It is phosphorylated on tyrosine residues in response to thrombin and collagen, and it has recently been shown that Tyr311 is phosphorylated in response to PAR (protease-activated receptor) 1 and PAR4 receptor activation. In the present study, we show that Tyr311 and Tyr565 are phosphorylated in response to thrombin, and have examined the interplay between phosphorylation and the classical lipid-mediated activation of PKCd. Phosphorylation of both Tyr311 and Tyr565 is dependent on Src kinase and PLC (phospholipase C) activity in response to thrombin. Importantly, direct allosteric activation of PKCd with PMA also induced phosphorylation of Tyr311 and Tyr565, and this was dependent on the activity of Src kinases, but not PLC. Membrane recruitment of PKCd is essential for phosphorylation of this tyrosine residue, but tyrosine phosphorylation is not required for membrane recruitment of PKCd. Both thrombin and PMA induce recruitment of PKCd to the membrane, and for thrombin, this recruitment is a PLC-dependent process. In order to address the functional role of tyrosine residue phosphorylation of PKCd, we demonstrate that phosphorylation can potentiate the activity of the kinase, although phosphorylation does not play a role in membrane recruitment of the kinase. PKCd is therefore regulated in a coincident fashion, PLC-dependent signals recruiting it to the plasma membrane and by phosphorylation on tyrosine residues, potentiating its activity.
Collapse
Affiliation(s)
- Kellie J. Hall
- Department of Pharmacology, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, U.K
| | - Matthew L. Jones
- Department of Pharmacology, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, U.K
| | - Alastair W. Poole
- Department of Pharmacology, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
27
|
Grossoni VC, Falbo KB, Kazanietz MG, de Kier Joffé EDB, Urtreger AJ. Protein kinase C delta enhances proliferation and survival of murine mammary cells. Mol Carcinog 2007; 46:381-90. [PMID: 17219421 DOI: 10.1002/mc.20287] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Protein kinase C (PKC) delta, a member of the novel family of PKC serine-threonine kinases, has been implicated in negative regulation of proliferation and apoptosis in a large number of cell types, including breast cancer cell lines, and postulated as a tumor suppressor gene. In this study we show that in murine NMuMG mammary cells PKCdelta promotes a mitogenic response. Overexpression of PKCdelta in NMuMG cells leads to a significant increase in [3H]-tymidine incorporation and cell proliferation, as well as enhanced extracellular signal-regulated kinase (ERK)-mitogen-activated protein kinase (MAPK) activation. Activation of PKCdelta with a phorbol ester leads to elevated cyclin D1 expression and an hyperphosphorylated Rb state. Surprisingly, ectopic expression of PKCdelta conferred anchorage-independent growth capacity to NMuMG cells. PKCdelta overexpressors showed enhanced resistance to apoptotic stimuli, such as serum deprivation or doxorubicin treatment, an effect that correlates with hyperactivation of the Akt survival pathway. Our results provide evidence for a role of PKCdelta as a positive modulator of proliferative and survival signals in immortalized mammary cells. The fact that PKCdelta exerts differential responses depending on the cell context not only highlights the necessity to carefully understand the signaling events controlled by this PKC in each cell type but also suggests that we should be cautious in considering this kinase a target for cancer therapy.
Collapse
Affiliation(s)
- Valeria C Grossoni
- Research Area, Institute of Oncology Angel H. Roffo, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
28
|
Grossoni VC, Falbo KB, Mauro LV, Krasnapolski MA, Kazanietz MG, Bal De Kier Joffé ED, Urtreger AJ. Protein kinase C delta inhibits the production of proteolytic enzymes in murine mammary cells. Clin Exp Metastasis 2007; 24:513-20. [PMID: 17653823 DOI: 10.1007/s10585-007-9088-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 06/29/2007] [Indexed: 10/23/2022]
Abstract
In previous studies we have determined that protein kinase C (PKC) delta, a widely expressed member of the novel PKC serine-threonine kinases, induces in vitro changes associated with the acquisition of a malignant phenotype in NMuMG murine mammary cells. In this study we show that PKCdelta overexpression significantly decreases urokinase-type plasminogen activator (uPA) and matrix metalloproteinase-9 (MMP-9) production, two proteases associated with migratory and invasive capacities. This effect is markedly enhanced by treatment with phorbol 12-myristate 13-acetate (PMA). On the other hand, depletion of PKCdelta using RNAi led to a marked increase in both uPA and MMP-9 secretion, suggesting a physiological role for PKCdelta in controlling protease secretion. The MEK-1 inhibitor PD98059 reverted the characteristic pattern of proteases secretion and phospho-ERK1/2 up-regulation observed in PKCdelta overexpressors, suggesting that the PKCdelta effect is mediated by the MEK/ERK pathway. Our results suggest a dual role for PKCdelta in murine mammary cell cancer progression. While this kinase clearly promotes mitogenesis and favors malignant transformation, it also down-modulates the secretion of proteases probably limiting metastatic dissemination.
Collapse
Affiliation(s)
- Valeria C Grossoni
- Research Area, Institute of Oncology Angel H. Roffo, University of Buenos Aires, Av. San Martín 5481, Buenos Aires C1417DTB, Argentina
| | | | | | | | | | | | | |
Collapse
|
29
|
Lu W, Lee HK, Xiang C, Finniss S, Brodie C. The phosphorylation of tyrosine 332 is necessary for the caspase 3-dependent cleavage of PKCdelta and the regulation of cell apoptosis. Cell Signal 2007; 19:2165-73. [PMID: 17658731 DOI: 10.1016/j.cellsig.2007.06.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 06/21/2007] [Indexed: 11/25/2022]
Abstract
Protein kinase C delta (PKCdelta plays a major role in the regulation of cell apoptosis and survival. PKCdelta is cleaved by caspase 3 to generate a constitutively active catalytic domain that mediates both its apoptotic and anti-apoptotic effects. The caspase cleavage site of PKCdelta in the hinge region is flanked by the two tyrosine residues, Y311 and Y332. Here, we examined the role of the phosphorylation of tyrosines 311 and 332 in the cleavage and apoptotic function of PKCdelta using the apoptotic stimuli, TRAIL and cisplatin. Tyrosine 332 was constitutively phosphorylated in the A172 and HeLa cells and was further phosphorylated by TRAIL and cisplatin. This phosphorylation was inhibited by the Src inhibitors, PP2 and SU6656, and by silencing of Src. Treatment of the A172 and HeLa cells with TRAIL induced cleavage of the WT PKCdelta and of the PKCdeltaY311F mutant, whereas a lower level of cleavage was observed in the PKCdeltaY332F mutant. Similarly, a smaller degree of cleavage of the PKCdeltaY332 mutant was observed in LNZ308 cells treated with cisplatin. Mutation of Y332F affected the apoptotic function of PKCdelta; overexpression of the PKCdeltaY332 mutant increased the apoptotic effect of TRAIL, whereas it decreased the apoptotic effect of cisplatin. Inhibition of Src decreased the cleavage of PKCdelta and modified the apoptotic responses of the cells to TRAIL and cisplatin, similar to effect of the PKCdeltaY332F mutant. These results demonstrate that the phosphorylation of tyrosine 332 by Src modulates the cleavage of PKCdelta and the sensitivity of glioma cells to TRAIL and cisplatin.
Collapse
Affiliation(s)
- Wei Lu
- William and Karen Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | | | | | | | | |
Collapse
|
30
|
Gomel R, Xiang C, Finniss S, Lee HK, Lu W, Okhrimenko H, Brodie C. The Localization of Protein Kinase Cδ in Different Subcellular Sites Affects Its Proapoptotic and Antiapoptotic Functions and the Activation of Distinct Downstream Signaling Pathways. Mol Cancer Res 2007; 5:627-39. [PMID: 17579121 DOI: 10.1158/1541-7786.mcr-06-0255] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Protein kinase Cdelta (PKCdelta) regulates cell apoptosis and survival in diverse cellular systems. PKCdelta translocates to different subcellular sites in response to apoptotic stimuli; however, the role of its subcellular localization in its proapoptotic and antiapoptotic functions is just beginning to be understood. Here, we used a PKCdelta constitutively active mutant targeted to the cytosol, nucleus, mitochondria, and endoplasmic reticulum (ER) and examined whether the subcellular localization of PKCdelta affects its apoptotic and survival functions. PKCdelta-Cyto, PKCdelta-Mito, and PKCdelta-Nuc induced cell apoptosis, whereas no apoptosis was observed with the PKCdelta-ER. PKCdelta-Cyto and PKCdelta-Mito underwent cleavage, whereas no cleavage was observed in the PKCdelta-Nuc and PKCdelta-ER. Similarly, caspase-3 activity was increased in cells overexpressing PKCdelta-Cyto and PKCdelta-Mito. In contrast to the apoptotic effects of the PKCdelta-Cyto, PKCdelta-Mito, and PKCdelta-Nuc, the PKCdelta-ER protected the cells from tumor necrosis factor-related apoptosis-inducing ligand-induced and etoposide-induced apoptosis. Moreover, overexpression of a PKCdelta kinase-dead mutant targeted to the ER abrogated the protective effect of the endogenous PKCdelta and increased tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. The localization of PKCdelta differentially affected the activation of downstream signaling pathways. PKCdelta-Cyto increased the phosphorylation of p38 and decreased the phosphorylation of AKT and the expression of X-linked inhibitor of apoptosis protein, whereas PKCdelta-Nuc increased c-Jun NH(2)-terminal kinase phosphorylation. Moreover, p38 phosphorylation and the decrease in X-linked inhibitor of apoptosis protein expression played a role in the apoptotic effect of PKCdelta-Cyto, whereas c-Jun NH(2)-terminal kinase activation mediated the apoptotic effect of PKCdelta-Nuc. Our results indicate that the subcellular localization of PKCdelta plays important roles in its proapoptotic and antiapoptotic functions and in the activation of downstream signaling pathways.
Collapse
Affiliation(s)
- Ruth Gomel
- Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, MI 48202, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Lu W, Finnis S, Xiang C, Lee HK, Markowitz Y, Okhrimenko H, Brodie C. Tyrosine 311 is phosphorylated by c-Abl and promotes the apoptotic effect of PKCdelta in glioma cells. Biochem Biophys Res Commun 2006; 352:431-6. [PMID: 17126298 PMCID: PMC1847386 DOI: 10.1016/j.bbrc.2006.11.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 11/08/2006] [Indexed: 01/02/2023]
Abstract
In this study we characterized the phosphorylation of tyrosine 311 and its role in the apoptotic function of PKCdelta in glioma cells. We found that c-Abl phosphorylated PKCdelta on tyrosine 311 in response to H2O2 and that this phosphorylation contributed to the apoptotic effect of H2O2. In contrast, Src, Lyn, and Yes were not involved in the phosphorylation of tyrosine 311 by H2O2. A phosphomimetic PKCdelta mutant, in which tyrosine 311 was mutated to glutamic acid (PKCdeltaY311E), induced a large degree of cell apoptosis. Overexpression of the PKCdeltaY311E mutant induced the phosphorylation of p38 and inhibition of p38 abolished the apoptotic effect of the PKCdelta mutant. These results suggest an important role of tyrosine 311 in the apoptotic function of PKCdelta and implicate c-Abl as the kinase that phosphorylates this tyrosine.
Collapse
Affiliation(s)
- Wei Lu
- William and Karen Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, MI
| | - Susan Finnis
- William and Karen Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, MI
| | - Cunli Xiang
- William and Karen Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, MI
| | - Hae Kyung Lee
- William and Karen Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, MI
| | - Yael Markowitz
- The Mina & Everard Goodman Faculty of Life Sciences Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan Israel 52900
| | - Hana Okhrimenko
- The Mina & Everard Goodman Faculty of Life Sciences Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan Israel 52900
| | - Chaya Brodie
- William and Karen Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, MI
- The Mina & Everard Goodman Faculty of Life Sciences Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan Israel 52900
| |
Collapse
|
32
|
Choi SH, Hyman T, Blumberg PM. Differential effect of bryostatin 1 and phorbol 12-myristate 13-acetate on HOP-92 cell proliferation is mediated by down-regulation of protein kinase Cdelta. Cancer Res 2006; 66:7261-9. [PMID: 16849575 DOI: 10.1158/0008-5472.can-05-4177] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bryostatin 1 is currently in clinical trials as a cancer chemotherapeutic agent. Although bryostatin 1, like phorbol 12-myristate 13-acetate (PMA), is a potent activator of protein kinase C (PKC), it induces only a subset of those responses induced by PMA and antagonizes others. We report that, in the HOP-92 non-small cell lung cancer line, bryostatin 1 induced a biphasic proliferative response, with maximal proliferation at 1 to 10 nmol/L. This biphasic response mirrored a biphasic suppression of the level of PKCdelta protein, with maximal suppression likewise at 1 to 10 nmol/L bryostatin 1. The typical phorbol ester PMA, in contrast to bryostatin 1, had no effect on the level of PKCdelta and modest suppression of cell proliferation, particularly evident at later treatment times. Flow cytometric analysis revealed changes in the fraction of cells in the G0-G1 and S phases corresponding to the effects on proliferation. Cells overexpressing PKCdelta exhibited a lower rate of cell proliferation compared with control untreated cells and showed neither a proliferative response nor a loss of PKCdelta in response to bryostatin 1. Conversely, treatment with PKCdelta small interfering RNA significantly increased the cellular growth compared with controls. We conclude that the differential effect on cellular proliferation induced by bryostatin 1 compared with PMA reflects the differential suppression of PKCdelta.
Collapse
Affiliation(s)
- Sung Hee Choi
- Laboratory of Cellular Carcinogenesis and Tumor Promotion, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892-4255, USA
| | | | | |
Collapse
|
33
|
Wang Q, Wang X, Zhou Y, Evers BM. PKCdelta-mediated regulation of FLIP expression in human colon cancer cells. Int J Cancer 2006; 118:326-34. [PMID: 16052516 PMCID: PMC1850992 DOI: 10.1002/ijc.21373] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
FLICE-like inhibitory protein (FLIP), a naturally occurring caspase-inhibitory protein that lacks the critical cysteine domain necessary for catalytic activity, is a negative regulator of Fas-induced apoptosis. Decreased FLIP levels sensitize tumor cells to Fas- and TRAIL-mediated apoptosis; however, the cellular mechanisms regulating FLIP expression have not been defined. Here, we examined the roles of the PKC and NF-kappaB pathway in the regulation of FLIP in human colon cancers. FLIP mRNA levels were increased in Caco-2 cells by treatment with PMA; actinomycin D completely inhibited the induction of FLIP by PMA, indicating transcriptional regulation. PKC inhibitors Gö6983 and Ro-31-8220 blocked PMA-stimulated FLIP expression. Pretreatment with the PKCdelta-selective inhibitor rottlerin or transfection with PKCdelta siRNA inhibited PMA-induced FLIP expression, which identifies a role for PKCdelta in FLIP induction. Treatment with the proteasome inhibitor, MG132, or the NF-kappaB inhibitor (e.g., PDTC and gliotoxin), or overexpression of the superrepressor of IkappaB-alpha inhibited PMA-induced upregulation of FLIP. Moreover, PMA-induced NF-kappaB transactivation was blocked by GF109203x. In conclusion, our results demonstrate a critical role for PKCdelta/NF-kappaB in the regulation of FLIP in human colon cancer cells.
Collapse
Affiliation(s)
- Qingding Wang
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | |
Collapse
|
34
|
Patel NA, Song SS, Cooper DR. PKCdelta alternatively spliced isoforms modulate cellular apoptosis in retinoic acid-induced differentiation of human NT2 cells and mouse embryonic stem cells. Gene Expr 2006; 13:73-84. [PMID: 17017122 PMCID: PMC2664302 DOI: 10.3727/000000006783991890] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
NT2 cells are a human teratocarcinoma cell line that, upon treatment with retinoic acid (RA), begin differentiating into a neuronal phenotype. The transformation of undifferentiated NT2 cells into hNT neurons presents an opportunity to investigate the mechanisms involved in neurogenesis because a key component is cell apoptosis, which is essential for building neural networks. Protein kinase Cdelta (PKCdelta) plays an important role as a mediator of cellular apoptosis in response to various stimuli. PKCdelta (deltaI) is proteolytically cleaved at its hinge region (V3) by caspase 3 and the catalytic fragment is sufficient to induce apoptosis in various cell types. Mouse PKCdeltaII is rendered caspase resistant due to an insertion of 78 bp within the caspase recognition site in its V3 domain. No functional role has been attributed to these alternatively spliced variants of PKCdelta. We sought to find a correlation between the onset of apoptosis, neurogenesis, and the expression of PKCdelta isoforms. Our results indicate that RA regulates the expression of PKCdelta alternative splicing variants in NT2 cells. Further, overexpression of PKCdeltaI promotes apoptosis while PKCdeltaII overexpression shields the cells from apoptosis. This is the first report to attribute physiological function to PKCdeltaI and -deltaII isoforms. Next we demonstrated that mouse embryonic stem cells differentiate in vitro into dopaminergic neurons upon stimulation with RA and ciliary neurotrophic factor. These cells showed a simultaneous increase in tyrosine hydroxylase and PKCdeltaII expression. We suggest that the molecular mechanisms regulating differentiation and apoptosis could be understood by alternative expression of PKCdelta isoforms.
Collapse
Affiliation(s)
- Niketa A Patel
- James A. Haley Veterans Hospital, Research Service, Tampa, FL 33612, USA.
| | | | | |
Collapse
|
35
|
Giorgione JR, Lin JH, McCammon JA, Newton AC. Increased membrane affinity of the C1 domain of protein kinase Cdelta compensates for the lack of involvement of its C2 domain in membrane recruitment. J Biol Chem 2005; 281:1660-9. [PMID: 16293612 PMCID: PMC2913972 DOI: 10.1074/jbc.m510251200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase C (PKC) family members are allosterically activated following membrane recruitment by specific membrane-targeting modules. Conventional PKC isozymes are recruited to membranes by two such modules: a C1 domain, which binds diacylglycerol (DAG), and a C2 domain, which is a Ca2+-triggered phospholipid-binding module. In contrast, novel PKC isozymes respond only to DAG, despite the presence of a C2 domain. Here, we address the molecular mechanism of membrane recruitment of the novel isozyme PKCdelta. We show that PKCdelta and a conventional isozyme, PKCbetaII, bind membranes with comparable affinities. However, dissection of the contribution of individual domains to this binding revealed that, although the C2 domain is a major determinant in driving the interaction of PKCbetaII with membranes, the C2 domain of PKCdelta does not bind membranes. Instead, the C1B domain is the determinant that drives the interaction of PKCdelta with membranes. The C2 domain also does not play any detectable role in the activity or subcellular location of PKCdelta in cells; in vivo imaging studies revealed that deletion of the C2 domain does not affect the stimulus-dependent translocation or activity of PKCdelta. Thus, the increased affinity of the C1 domain of PKCdelta allows this isozyme to respond to DAG alone, whereas conventional PKC isozymes require the coordinated action of Ca2+ binding to the C2 domain and DAG binding to the C1 domain for activation.
Collapse
Affiliation(s)
| | | | | | - Alexandra C. Newton
- To whom correspondence should be addressed: Dept. of Pharmacology, University of California at San Diego, Leichtag 282, 9500 Gilman Dr., La Jolla, CA 92093-0721. Tel.: 858-534-4527; Fax: 858-822-5888;
| |
Collapse
|
36
|
Yamaguchi K, Richardson MD, Bigner DD, Kwatra MM. Signal transduction through substance P receptor in human glioblastoma cells: roles for Src and PKCdelta. Cancer Chemother Pharmacol 2005; 56:585-93. [PMID: 16012865 DOI: 10.1007/s00280-005-1030-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2004] [Accepted: 02/07/2005] [Indexed: 12/01/2022]
Abstract
Substance P receptor (SPR), a G protein-coupled receptor (GPCR), is found in human glioblastomas, and has been implicated in their growth. Consistent with a role for SPR in cell growth, activation of SPR in U373 MG human glioblastoma cells leads to the phosphorylation of mitogen-activated protein kinases [extracellular signal-regulated kinase 1 and 2 (ERK1/2)] and stimulation of cell proliferation. The purpose of the present study was to elucidate the pathway through which these actions occur. Using either the epidermal growth factor receptor (EGFR) kinase inhibitor, AG 1478, or a small-interfering RNA (siRNA) directed against human EGFR, we found that transactivation of EGFR by SPR is only marginally involved in SP-dependent ERK1/2 phosphorylation. Src, however, is shown to be a major component of SPR signaling because the Src kinase inhibitor, PP2, and a kinase-dead Src mutant both inhibit SP-dependent ERK1/2 phosphorylation. We also report that SPR stimulates the phosphorylation of protein kinase Cdelta(PKCdelta), and that this stimulation is blocked by PP2. SP-dependent ERK1/2 phosphorylation is also blocked by rottlerin, a PKCdelta inhibitor, and the calcium scavenger, BAPTA/AM. Finally, rottlerin and PP2 were both found to inhibit the growth of several glioblastoma cell lines, underscoring the potential of these agents to block glioblastoma growth.
Collapse
Affiliation(s)
- Keisuke Yamaguchi
- Department of Anesthesiology and Pain Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | |
Collapse
|
37
|
Vucenik I, Ramakrishna G, Tantivejkul K, Anderson LM, Ramljak D. Inositol hexaphosphate (IP6) blocks proliferation of human breast cancer cells through a PKCdelta-dependent increase in p27Kip1 and decrease in retinoblastoma protein (pRb) phosphorylation. Breast Cancer Res Treat 2005; 91:35-45. [PMID: 15868430 DOI: 10.1007/s10549-004-6456-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inositol hexaphosphate (IP6) is a naturally occurring polyphosphorylated carbohydrate with demonstrated anti-proliferative and anti-cancer activity in mammary cells. We hypothesized that IP6 modulates cell cycle proteins by action on cytoplasmic signaling molecules. The effects of both pharmacological (2 mM) and physiological (100 microM) doses of IP6 on major PKC isoforms (PKCalpha, delta, epsilon, beta and zeta), PI3-K/Akt and ras/Erk1/2 were evaluated. Treatment of MCF-7 human breast cancer cells with 2 mM IP6 for 24 h caused a 3.1-fold increase in the expression of anti-proliferative PKCdelta. Similar results were observed with 100 microM IP6 at only 30-60 min post-treatment. IP6 also caused an increase in PKCdelta activity, shown by its translocation from cytosol to membrane. No changes in expression of PKC alpha, delta, epsilon, beta and zeta were detected. Additionally, IP6 caused a decrease of Erk1/2 and Akt activity. Among cell cycle control proteins, IP6 resulted in increased p27Kip1 protein levels and marked reduction of pRb phosphorylation. Specificity of the IP6 effects on p27Kip1 and pRb in MCF-7 cells (hormone-dependent) were additionally confirmed in highly invasive hormone-independent MDA-MB 231 breast cancer cells. Use of specific pharmaclogical inhibitors of PKC delta, MEK/Erk, and PI3K/Akt pathways indicated that the IP6-mediated effects on PKC delta were responsible for up-regulation of p27Kip, and pRb hypo-phosphorylation. In addition, IP6-induced apoptosis detected in MCF-7 cells appeared also to be PKC delta-dependent. Our data suggest potential usefulness of IP6 as a novel therapeutic modulator of PKC delta and p27Kip1, an important prognostic factor in human breast cancers.
Collapse
Affiliation(s)
- Ivana Vucenik
- Department of Medical and Research Technology, University of Maryland School of Medicine, 100 Penn Street, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
38
|
Wollmann G, Tattersall P, van den Pol AN. Targeting human glioblastoma cells: comparison of nine viruses with oncolytic potential. J Virol 2005; 79:6005-22. [PMID: 15857987 PMCID: PMC1091699 DOI: 10.1128/jvi.79.10.6005-6022.2005] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Brain tumors classified as glioblastomas have proven refractory to treatment and generally result in death within a year of diagnosis. We used seven in vitro tests and one in vivo trial to compare the efficacy of nine different viruses for targeting human glioblastoma. Green fluorescent protein (GFP)-expressing vesicular stomatitis (VSV), Sindbis virus, pseudorabies virus (PRV), adeno-associated virus (AAV), and minute virus of mice i-strain (MVMi) and MVMp all infected glioblastoma cells. Mouse and human cytomegalovirus, and simian virus 40 showed only low levels of infection or GFP expression. VSV and Sindbis virus showed strong cytolytic actions and high rates of replication and spread, leading to an elimination of glioblastoma. PRV and both MVM strains generated more modest lytic effects and replication capacity. VSV showed a similar oncolytic profile on U-87 MG and M059J glioblastoma. In contrast, Sindbis virus showed strong preference for U-87 MG, whereas MVMi and MVMp preferred M059J. Sindbis virus and both MVM strains showed highly tumor-selective actions in glioblastoma plus fibroblast coculture. VSV and Sindbis virus were serially passaged on glioblastoma cells; we isolated a variant, VSV-rp30, that had increased selectivity and lytic capacity in glioblastoma cells. VSV and Sindbis virus were very effective at replicating, spreading within, and selectively killing human glioblastoma in an in vivo mouse model, whereas PRV and AAV remained at the injection site with minimal spread. Together, these data suggest that four (VSV, Sindbis virus, MVMi, and MVMp) of the nine viruses studied merit further analysis for potential therapeutic actions on glioblastoma.
Collapse
Affiliation(s)
- Guido Wollmann
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA
| | | | | |
Collapse
|
39
|
Okhrimenko H, Lu W, Xiang C, Ju D, Blumberg PM, Gomel R, Kazimirsky G, Brodie C. Roles of Tyrosine Phosphorylation and Cleavage of Protein Kinase Cδ in Its Protective Effect Against Tumor Necrosis Factor-related Apoptosis Inducing Ligand-induced Apoptosis. J Biol Chem 2005; 280:23643-52. [PMID: 15774464 DOI: 10.1074/jbc.m501374200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Protein kinase Cdelta (PKCdelta) regulates cell apoptosis in a cell- and stimulus-specific manner. Here, we studied the role of PKCdelta in the apoptotic effect of TRAIL in glioma cells. We found that transfection of the cells with a PKCdelta kinase-dead mutant (K376R) or with a small interfering RNA targeting the PKCdelta mRNA increased the apoptotic effect of tumor necrosis factor-related apoptosis inducing ligand (TRAIL), whereas overexpression of PKCdelta decreased it. PKCdelta acted downstream of caspase 8 and upstream of cytochrome c release from the mitochondria. TRAIL induced cleavage of PKCdelta within 2-3 h of treatment, which was abolished by caspase 3, 8, and 9 inhibitors. The cleavage of PKCdelta was essential for its protective effect because overexpression of a caspase-resistant mutant (PKCdeltaD327A) did not protect glioma cells from TRAIL-induced apoptosis but rather increased it. TRAIL induced translocation of PKCdelta to the perinuclear region and the endoplasmic reticulum and phosphorylation of PKCdelta on tyrosine 155. Using a PKCdeltaY155F mutant, we found that the phosphorylation of PKCdelta on tyrosine 155 was essential for the cleavage of PKCdelta in response to TRAIL and for its translocation to the endoplasmic reticulum. In addition, phosphorylation of PKCdelta on tyrosine 155 was necessary for the activation of AKT in response to TRAIL. Our results indicate that PKCdelta protects glioma cells from the apoptosis induced by TRAIL and implicate the phosphorylation of PKCdelta on tyrosine 155 and its cleavage as essential factors in the anti-apoptotic effect of PKCdelta.
Collapse
Affiliation(s)
- Hana Okhrimenko
- Gonda (Goldschmied) Medical Diagnosis Research Center, Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel 52900
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The calyx of Held serves as a model for synaptic transmission in the mammalian central nervous system. While offering unique access to the biophysics of presynaptic function, studies addressing the molecular mechanisms of neurotransmitter exocytosis in this model have been mainly limited to pharmacological interventions. To overcome this experimental limitation we used stereotaxic delivery of viral gene shuttles to rapidly and selectively manipulate protein composition in the calyx terminal in vivo. Sindbis or Semliki Forest viruses encoding enhanced green fluorescent protein (EGFP) were injected into the ventral cochlear nucleus (VCN) of rats (postnatal days 7-21) and yielded bright fluorescence in cells of the VCN, including globular bushy cells with their axon and calyx terminal. Fluorescence imaging and three dimensional reconstructions visualized developmental changes in calyx morphology. Small cytoplasmic and synaptic vesicle proteins were successfully overexpressed in the calyx. We extended two-photon microscopy to obtain simultaneous fluorescence and infrared scanning gradient contrast images, allowing for efficient patch-clamp recordings from EGFP-labelled calyces in acute brain slices (postnatal days 9-14). Recordings of spontaneous miniature excitatory postsynaptic currents and short-term depression in synapses overexpressing EGFP or synaptophysin-EGFP revealed normal synaptic function. Thus, Sindbis and Semliki Forest virus-directed overexpression of proteins in the calyx of Held provides a new avenue for molecular structure-function studies of mammalian central synapses.
Collapse
Affiliation(s)
- Verena C Wimmer
- Abteilung Zellphysiologie, Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
41
|
Deutsch E, Cohen A, Kazimirsky G, Dovrat S, Rubinfeld H, Brodie C, Sarid R. Role of protein kinase C delta in reactivation of Kaposi's sarcoma-associated herpesvirus. J Virol 2004; 78:10187-92. [PMID: 15331751 PMCID: PMC515025 DOI: 10.1128/jvi.78.18.10187-10192.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TPA (12-O-tetradecanoylphorbol-13-acetate), a well-known activator of protein kinase C (PKC), can experimentally induce reactivation of Kaposi's sarcoma-associated herpesvirus (KSHV) in certain latently infected cells. We selectively blocked the activity of PKC isoforms by using GF 109203X or rottlerin and demonstrated that this inhibition largely decreased lytic KSHV reactivation by TPA. Translocation of the PKCdelta isoform was evident shortly after TPA stimulation. Overexpression of the dominant-negative PKCdelta mutant supported an essential role for the PKCdelta isoform in virus reactivation, yet overexpression of PKCdelta alone was not sufficient to induce lytic reactivation of KSHV, suggesting that additional signaling molecules participate in this pathway.
Collapse
Affiliation(s)
- Einat Deutsch
- Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Many reports have indicated that infection with SV or SFV induces apoptosis both in cultured cells and in the CNS of mice. In general, the ability of virus strains to induce apoptosis correlates with their neurovirulence, although both apoptosis and neurovirulence are age dependent, i.e., resistance increases with age. SV can induce apoptosis simply by the process of membrane fusion and entry, by the expression of the envelope proteins, or by the expression of the nonstructural protein, nsP2. However, viral particles are not necessary to activate apoptosis, since transfection with viral RNA or even viral RNA expressing only the nonstructural proteins will result in apoptosis. The cellular pathways involved in alphavirus-induced apoptosis are complex, and much remains poorly understood. Experimental results point to the involvement of both the mitochondrial and the death receptor pathways. To date, there are no reports implicating the ER stress pathway.
Collapse
Affiliation(s)
- Mei-Ling Li
- Department of Molecular Genetics, Microbiology and Immunology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-5635, USA
| | | |
Collapse
|
43
|
Nelson EL, Prieto D, Alexander TG, Pushko P, Lofts LA, Rayner JO, Kamrud KI, Fralish B, Smith JF. Venezuelan Equine Encephalitis Replicon Immunization Overcomes Intrinsic Tolerance and Elicits Effective Anti-tumor Immunity to the ‘Self’ tumor-associated antigen, neu in a Rat Mammary Tumor Model. Breast Cancer Res Treat 2003; 82:169-83. [PMID: 14703064 DOI: 10.1023/b:brea.0000004373.09678.bb] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Many tumor-associated antigens (TAAs) represent 'self' antigens and as such, are subject to the constraints of immunologic tolerance. There are significant barriers to eliciting anti-tumor immune responses of sufficient magnitude. We have taken advantage of a Venezuelan equine encephalitis-derived alphavirus replicon vector system with documented in vivo tropism for immune system dendritic cells. We have overcome the intrinsic tolerance to the 'self' TAA rat neu and elicited an effective anti-tumor immune response using this alphavirus replicon vector system and a designed target antigen in a rigorous rat mammary tumor model. We have demonstrated the capacity to generate 50% protection in tumor challenge experiments (p = 0.004) and we have confirmed the establishment of immunologic memory by both second tumor challenge and Winn Assay (p = 0.009). Minor antibody responses were identified and supported the establishment of T helper type 1 (Th1) anti-tumor immune responses by isotype. Animals surviving in excess of 300 days with established effective anti-tumor immunity showed no signs of autoimmune phenomena. Together these experiments support the establishment of T lymphocyte dependent, Th1-biased anti-tumor immune responses to a non-mutated 'self' TAA in an aggressive tumor model. Importantly, this tumor model is subject to the constraints of immunologic tolerance present in animals with normal developmental, temporal, and anatomical expression of a non-mutated TAA. These data support the continued development and potential clinical application of this alphaviral replicon vector system and the use of appropriately designed target antigen sequences for anti-tumor immunotherapy.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Neoplasm/immunology
- Disease Models, Animal
- Encephalitis Virus, Venezuelan Equine/genetics
- Female
- Genetic Vectors/immunology
- Genetic Vectors/therapeutic use
- Humans
- Immunization
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/therapy
- Molecular Sequence Data
- Neoplasm Proteins/immunology
- Rats
- Rats, Inbred F344
- Receptor, ErbB-2/chemistry
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/immunology
- Replicon/immunology
- Self Tolerance
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Edward L Nelson
- Department of Medicine, Division of Hematology/Oncology, School of Medicine and Molecular Biology and Biochemistry, University of California, Irvine, CA 97697-4060, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Wang Q, Wang X, Evers BM. Induction of cIAP-2 in human colon cancer cells through PKC delta/NF-kappa B. J Biol Chem 2003; 278:51091-9. [PMID: 14527959 DOI: 10.1074/jbc.m306541200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Activation of protein kinase C (PKC) prevents apoptosis in certain cells; however, the mechanisms are largely unknown. Inhibitors of apoptosis (IAP) family members, including NAIP, cIAP-1, cIAP-2, XIAP/hILP, survivin, and BRUCE, block apoptosis by binding and potently inhibiting caspases. Activation of NF-kappa B contributes to cIAP-2 induction; however, the cellular mechanisms regulating cIAP-2 expression have not been entirely defined. In this study, we examined the role of the PKC and NF-kappa B pathways in the regulation of cIAP-2 in human colon cancers. We found that cIAP-2 mRNA levels were markedly increased in human colon cancer cells by treatment with the phorbol ester, phorbol-12-myristate-13-acetate (PMA), or bryostatin 1. Inhibitors of the Ca2+-independent, novel PKC isoforms, but not inhibitors of MAPK, PI3-kinase, or PKA, blocked PMA-stimulated cIAP-2 mRNA expression, suggesting a role of PKC in PMA-mediated cIAP-2 induction. Pretreatment with the PKC delta-selective inhibitor rottlerin or transfection with an antisense PKC delta oligonucleotide inhibited PMA-induced cIAP-2 expression, whereas cotransfection with a PKC delta plasmid induced cIAP-2 promoter activity, which, taken together, identifies a role for PKC delta in cIAP-2 induction. Treatment with the proteasome inhibitor, MG132 or inhibitors of NF-kappa B (e.g. PDTC and gliotoxin), decreased PMA-induced up-regulation of cIAP-2. PMA-induced NF-kappa B activation was blocked by either GF109203x, MG132, PDTC, or gliotoxin. Moreover, overexpression of PKC delta-induced cIAP-2 promoter activity and increased NF-kappa B transactivation, suggesting regulation of cIAP-2 expression by a PKC delta/NF-kappa B pathway. In conclusion, our findings demonstrate a role for a PKC/NF-kappa B-dependent pathway in the regulation of cIAP-2 expression in human colon cancer cells. These data suggest a novel mechanism for the anti-apoptotic function mediated by the PKC delta/NF-kappa B/cIAP-2 pathway in certain cancers.
Collapse
Affiliation(s)
- Qingding Wang
- Department of Surgery and the Sealy Center for Cancer Cell Biology, The University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | |
Collapse
|
45
|
Kanthasamy AG, Kitazawa M, Kanthasamy A, Anantharam V. Role of proteolytic activation of protein kinase Cdelta in oxidative stress-induced apoptosis. Antioxid Redox Signal 2003; 5:609-20. [PMID: 14580317 DOI: 10.1089/152308603770310275] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Protein kinase Cdelta (PKCdelta), a member of the novel PKC family, is emerging as a redox-sensitive kinase in various cell types. Oxidative stress activates the PKCdelta kinase by translocation, tyrosine phosphorylation, or proteolysis. During proteolysis, caspase-3 cleaves the native PKCdelta (72-74 kDa) into 41-kDa catalytically active and 38-kDa regulatory fragments to persistently activate the kinase. The proteolytic activation of PKCdelta plays a key role in promoting apoptotic cell death in various cell types, including neuronal cells. Attenuation of PKCdelta proteolytic activation by antioxidants suggests that the cellular redox status can influence activation of the proapoptotic kinase. PKCdelta may also amplify apoptotic signaling via positive feedback activation of the caspase cascade. Thus, the dual role of PKCdelta as a mediator and amplifier of apoptosis may be important in the pathogenesis of major neurodegenerative disorders, such as Parkinson's disease, Alzheimer's disease, and Huntington disease.
Collapse
Affiliation(s)
- Anumantha G Kanthasamy
- Parkinson's Disorders Research Program, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA.
| | | | | | | |
Collapse
|
46
|
Hao HN, Parker GC, Zhao J, Barami K, Lyman WD. Differential responses of human neural and hematopoietic stem cells to ethanol exposure. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 2003; 12:389-99. [PMID: 12965076 DOI: 10.1089/152581603322286024] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The mechanisms underlying fetal developmental defects caused by maternal ethanol (EtOH) consumption remain unclear. The symptoms of fetal alcohol syndrome (FAS) include neurological and immunological dysfunctions that are linked to cell reduction in these systems. Neural (NSC) and hematopoietic stem cells (HSC) may be targets for the cytotoxic effects of EtOH. Furthermore, protein kinase C (PKC) signal transduction systems of these stem cells may be involved in EtOH-induced cell death. Purified CD34+ human fetal liver hematopoietic stem cells (HSC) and CD133+/nestin+ human neural stem cells (NSC) were exposed to 0.1-10 mM EtOH. A range of indices of cell damage indicated that these doses of EtOH were deleterious to NSC, but had no observable effects on HSC. Furthermore, the colony-forming ability of NSC was completely inhibited by 5 mM EtOH treatment, whereas HSC were unaffected by even 20 mM EtOH. These results suggest that NSC are much more sensitive to EtOH than HSC. Classic and novel PKC isozyme protein expressions in the membrane fraction of cells were differentially affected by EtOH exposure across the two stem cell types. Concentrations of EtOH capable of inducing NSC, but not HSC, death also changed apoptosis-associated PKC isozyme expression in the membrane of NSC, but not HSC. Therefore, PKC expression may mediate the susceptibility of NSC to EtOH-induced cytotoxicity via cell signal transduction pathways. The toxic effect of EtOH on NSC may lead to the decreased neural cell number observed in FAS patients. The comparable immunity of HSC to the deleterious effects of EtOH exposure indicates that the susceptibility of NSC is not simply due to their being stem cells and also may explain the relative lack of hematopoietic problems associated with FAS.
Collapse
Affiliation(s)
- Hsiao-Nan Hao
- Department of Pediatrics, Wayne State University School of Medicine, and Children's Research Center of Michigan, Detroit, MI 48201, USA.
| | | | | | | | | |
Collapse
|