1
|
Khodaparast L, Khodaparast L, Wu G, Michiels E, Gallardo R, Houben B, Garcia T, De Vleeschouwer M, Ramakers M, Wilkinson H, Duran-Romaña R, Van Eldere J, Rousseau F, Schymkowitz J. Exploiting the aggregation propensity of beta-lactamases to design inhibitors that induce enzyme misfolding. Nat Commun 2023; 14:5571. [PMID: 37689716 PMCID: PMC10492782 DOI: 10.1038/s41467-023-41191-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 08/25/2023] [Indexed: 09/11/2023] Open
Abstract
There is an arms race between beta-lactam antibiotics development and co-evolving beta-lactamases, which provide resistance by breaking down beta-lactam rings. We have observed that certain beta-lactamases tend to aggregate, which persists throughout their evolution under the selective pressure of antibiotics on their active sites. Interestingly, we find that existing beta-lactamase active site inhibitors can act as molecular chaperones, promoting the proper folding of these resistance factors. Therefore, we have created Pept-Ins, synthetic peptides designed to exploit the structural weaknesses of beta-lactamases by causing them to misfold into intracellular inclusion bodies. This approach restores sensitivity to a wide range of beta-lactam antibiotics in resistant clinical isolates, including those with Extended Spectrum variants that pose significant challenges in medical practice. Our findings suggest that targeted aggregation of resistance factors could offer a strategy for identifying molecules that aid in addressing the global antibiotic resistance crisis.
Collapse
Affiliation(s)
- Ladan Khodaparast
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Laleh Khodaparast
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Guiqin Wu
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Emiel Michiels
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Rodrigo Gallardo
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Bert Houben
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Teresa Garcia
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Matthias De Vleeschouwer
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Meine Ramakers
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Hannah Wilkinson
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Ramon Duran-Romaña
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Johan Van Eldere
- Laboratory of Clinical Bacteriology and Mycology, Department of Microbiology & Immunology, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
2
|
Kermond-Marino A, Weng A, Xi Zhang SK, Tran Z, Huang M, Savige J. Population Frequency of Undiagnosed Fabry Disease in the General Population. Kidney Int Rep 2023; 8:1373-1379. [PMID: 37441486 PMCID: PMC10334396 DOI: 10.1016/j.ekir.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction Fabry disease is an X-linked disorder that results from pathogenic GLA variants and can now be treated. Most studies of its population frequency have examined only males or attendees at kidney failure or cardiac clinics. This study determined the prevalence of undiagnosed Fabry disease from predicted pathogenic GLA variants in the general population. Methods The Genome Aggregation Database (gnomAD) was examined for predicted pathogenic GLA variants based on variant rarity (≤5), and transcript effect in 4 computational tools (CADD >20, PP2 >0.95, SIFT <0.05, Mutation Taster - Disease-causing) and amino acid conservation in vertebrates in a Clustal. Results Predicted pathogenic variants in GLA occurred in 1 in 3225 of the gnomAD population and 1 in 3478 of its control subset. Predicted pathogenic variants were more common in women than expected (3.1:1), which is consistent with men being excluded from gnomAD because of Fabry complications. Predicted pathogenic variants were not found in members of this cohort with South Asian, Ashkenazim, or Finnish ancestries. Variants identified as pathogenic in the Fabry database were found in 1 in 2651 individuals of the gnomAD database and pathogenic variants from ClinVar in 1 in 4420. Discussion The population frequency of 1 in 3225 for undiagnosed men and women with Fabry disease still represents an underestimate because our pathogenicity criteria were rigorous, the cohort did not include already-diagnosed individuals, and whole exome sequencing does not detect intronic variants and large deletions. This study confirms that Fabry disease is more common than previously recognized and still underdiagnosed especially in women.
Collapse
Affiliation(s)
- Amalia Kermond-Marino
- Department of Medicine, Melbourne Health and Northern Health, The University of Melbourne Victoria, Australia
| | - Annie Weng
- Department of Medicine, Melbourne Health and Northern Health, The University of Melbourne Victoria, Australia
| | - Selina Kai Xi Zhang
- Department of Medicine, Melbourne Health and Northern Health, The University of Melbourne Victoria, Australia
| | - Zac Tran
- Department of Medicine, Melbourne Health and Northern Health, The University of Melbourne Victoria, Australia
| | - Mary Huang
- Department of Medicine, Melbourne Health and Northern Health, The University of Melbourne Victoria, Australia
| | - Judy Savige
- Department of Medicine, Melbourne Health and Northern Health, The University of Melbourne Victoria, Australia
| |
Collapse
|
3
|
α-Gal A missense variants associated with Fabry disease can lead to ER stress and induction of the unfolded protein response. Mol Genet Metab Rep 2022; 33:100926. [DOI: 10.1016/j.ymgmr.2022.100926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
|
4
|
Katsonis P, Wilhelm K, Williams A, Lichtarge O. Genome interpretation using in silico predictors of variant impact. Hum Genet 2022; 141:1549-1577. [PMID: 35488922 PMCID: PMC9055222 DOI: 10.1007/s00439-022-02457-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 04/17/2022] [Indexed: 02/06/2023]
Abstract
Estimating the effects of variants found in disease driver genes opens the door to personalized therapeutic opportunities. Clinical associations and laboratory experiments can only characterize a tiny fraction of all the available variants, leaving the majority as variants of unknown significance (VUS). In silico methods bridge this gap by providing instant estimates on a large scale, most often based on the numerous genetic differences between species. Despite concerns that these methods may lack reliability in individual subjects, their numerous practical applications over cohorts suggest they are already helpful and have a role to play in genome interpretation when used at the proper scale and context. In this review, we aim to gain insights into the training and validation of these variant effect predicting methods and illustrate representative types of experimental and clinical applications. Objective performance assessments using various datasets that are not yet published indicate the strengths and limitations of each method. These show that cautious use of in silico variant impact predictors is essential for addressing genome interpretation challenges.
Collapse
Affiliation(s)
- Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Kevin Wilhelm
- Graduate School of Biomedical Sciences, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Amanda Williams
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Department of Biochemistry, Human Genetics and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Department of Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Computational and Integrative Biomedical Research Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Bauer J, Mathias S, Kube S, Otte K, Garidel P, Gamer M, Blech M, Fischer S, Karow-Zwick AR. Rational optimization of a monoclonal antibody improves the aggregation propensity and enhances the CMC properties along the entire pharmaceutical process chain. MAbs 2021; 12:1787121. [PMID: 32658605 PMCID: PMC7531517 DOI: 10.1080/19420862.2020.1787121] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The discovery of therapeutic monoclonal antibodies (mAbs) primarily focuses on their biological activity favoring the selection of highly potent drug candidates. These candidates, however, may have physical or chemical attributes that lead to unfavorable chemistry, manufacturing, and control (CMC) properties, such as low product titers, conformational and colloidal instabilities, or poor solubility, which can hamper or even prevent development and manufacturing. Hence, there is an urgent need to consider the developability of mAb candidates during lead identification and optimization. This work provides a comprehensive proof of concept study for the significantly improved developability of a mAb variant that was optimized with the help of sophisticated in silico tools relative to its difficult-to-develop parental counterpart. Interestingly, a single amino acid substitution in the variable domain of the light chain resulted in a three-fold increased product titer after stable expression in Chinese hamster ovary cells. Microscopic investigations revealed that wild type mAb-producing cells displayed potential antibody inclusions, while the in silico optimized variant-producing cells showed a rescued phenotype. Notably, the drug substance of the in silico optimized variant contained substantially reduced levels of aggregates and fragments after downstream process purification. Finally, formulation studies unraveled a significantly enhanced colloidal stability of the in silico optimized variant while its folding stability and potency were maintained. This study emphasizes that implementation of bioinformatics early in lead generation and optimization of biotherapeutics reduces failures during subsequent development activities and supports the reduction of project timelines and resources.
Collapse
Affiliation(s)
- Joschka Bauer
- Early Stage Pharmaceutical Development, Pharmaceutical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG , Biberach/Riss, Germany
| | - Sven Mathias
- Institute of Applied Biotechnology, University of Applied Sciences Biberach , Biberach/Riss, Germany.,Early Stage Bioprocess Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG , Biberach/Riss, Germany
| | - Sebastian Kube
- Early Stage Pharmaceutical Development, Pharmaceutical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG , Biberach/Riss, Germany
| | - Kerstin Otte
- Institute of Applied Biotechnology, University of Applied Sciences Biberach , Biberach/Riss, Germany
| | - Patrick Garidel
- Early Stage Pharmaceutical Development, Pharmaceutical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG , Biberach/Riss, Germany
| | - Martin Gamer
- Early Stage Bioprocess Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG , Biberach/Riss, Germany
| | - Michaela Blech
- Early Stage Pharmaceutical Development, Pharmaceutical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG , Biberach/Riss, Germany
| | - Simon Fischer
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Boehringer Ingelheim Pharma GmbH & Co. KG , Biberach/Riss, Germany
| | - Anne R Karow-Zwick
- Early Stage Pharmaceutical Development, Pharmaceutical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG , Biberach/Riss, Germany
| |
Collapse
|
6
|
Claes F, Rudyak S, Laird AS, Louros N, Beerten J, Debulpaep M, Michiels E, van der Kant R, Van Durme J, De Baets G, Houben B, Ramakers M, Yuan K, Gwee SSL, Hernandez S, Broersen K, Oliveberg M, Moahamed B, Kirstein J, Robberecht W, Rousseau F, Schymkowitz J. Exposure of a cryptic Hsp70 binding site determines the cytotoxicity of the ALS-associated SOD1-mutant A4V. Protein Eng Des Sel 2020; 32:443-457. [PMID: 32399571 DOI: 10.1093/protein/gzaa008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022] Open
Abstract
The accumulation of toxic protein aggregates is thought to play a key role in a range of degenerative pathologies, but it remains unclear why aggregation of polypeptides into non-native assemblies is toxic and why cellular clearance pathways offer ineffective protection. We here study the A4V mutant of SOD1, which forms toxic aggregates in motor neurons of patients with familial amyotrophic lateral sclerosis (ALS). A comparison of the location of aggregation prone regions (APRs) and Hsp70 binding sites in the denatured state of SOD1 reveals that ALS-associated mutations promote exposure of the APRs more than the strongest Hsc/Hsp70 binding site that we could detect. Mutations designed to increase the exposure of this Hsp70 interaction site in the denatured state promote aggregation but also display an increased interaction with Hsp70 chaperones. Depending on the cell type, in vitro this resulted in cellular inclusion body formation or increased clearance, accompanied with a suppression of cytotoxicity. The latter was also observed in a zebrafish model in vivo. Our results suggest that the uncontrolled accumulation of toxic SOD1A4V aggregates results from insufficient detection by the cellular surveillance network.
Collapse
Affiliation(s)
- Filip Claes
- VIB Center for Brain & Disease Research, Switch Laboratory, Herestraat 49, Leuven, Belgium.,KU Leuven, Department of Cellular and Molecular Medicine, Switch Laboratory, Herestraat 49, Leuven, Belgium
| | - Stanislav Rudyak
- VIB Center for Brain & Disease Research, Switch Laboratory, Herestraat 49, Leuven, Belgium.,KU Leuven, Department of Cellular and Molecular Medicine, Switch Laboratory, Herestraat 49, Leuven, Belgium.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Leninskiy Prospekt, 14, Moscow 119991, Russia
| | - Angela S Laird
- VIB, Center for Brain and Disease Research, Laboratory of Neurobiology, Herestraat 49, Leuven, Belgium.,Center for Motor Neuron Disease Research, Department of Biomedical Science, Faculty of Medicine, Macquarie University, Balaclava Rd, Macquarie Park, Sydney NSW 2109, Australia
| | - Nikolaos Louros
- VIB Center for Brain & Disease Research, Switch Laboratory, Herestraat 49, Leuven, Belgium.,KU Leuven, Department of Cellular and Molecular Medicine, Switch Laboratory, Herestraat 49, Leuven, Belgium
| | - Jacinte Beerten
- VIB Center for Brain & Disease Research, Switch Laboratory, Herestraat 49, Leuven, Belgium.,Applied Stem Cell Technologies, University of Twente, Technical Medical Centre, Drienerlolaan 5, Enschede, The Netherlands
| | - Maja Debulpaep
- VIB Center for Brain & Disease Research, Switch Laboratory, Herestraat 49, Leuven, Belgium.,Applied Stem Cell Technologies, University of Twente, Technical Medical Centre, Drienerlolaan 5, Enschede, The Netherlands
| | - Emiel Michiels
- VIB Center for Brain & Disease Research, Switch Laboratory, Herestraat 49, Leuven, Belgium.,KU Leuven, Department of Cellular and Molecular Medicine, Switch Laboratory, Herestraat 49, Leuven, Belgium
| | - Rob van der Kant
- VIB Center for Brain & Disease Research, Switch Laboratory, Herestraat 49, Leuven, Belgium.,KU Leuven, Department of Cellular and Molecular Medicine, Switch Laboratory, Herestraat 49, Leuven, Belgium
| | - Joost Van Durme
- VIB Center for Brain & Disease Research, Switch Laboratory, Herestraat 49, Leuven, Belgium.,KU Leuven, Department of Cellular and Molecular Medicine, Switch Laboratory, Herestraat 49, Leuven, Belgium.,Applied Stem Cell Technologies, University of Twente, Technical Medical Centre, Drienerlolaan 5, Enschede, The Netherlands
| | - Greet De Baets
- VIB Center for Brain & Disease Research, Switch Laboratory, Herestraat 49, Leuven, Belgium.,KU Leuven, Department of Cellular and Molecular Medicine, Switch Laboratory, Herestraat 49, Leuven, Belgium.,Applied Stem Cell Technologies, University of Twente, Technical Medical Centre, Drienerlolaan 5, Enschede, The Netherlands
| | - Bert Houben
- VIB Center for Brain & Disease Research, Switch Laboratory, Herestraat 49, Leuven, Belgium.,KU Leuven, Department of Cellular and Molecular Medicine, Switch Laboratory, Herestraat 49, Leuven, Belgium
| | - Meine Ramakers
- VIB Center for Brain & Disease Research, Switch Laboratory, Herestraat 49, Leuven, Belgium.,KU Leuven, Department of Cellular and Molecular Medicine, Switch Laboratory, Herestraat 49, Leuven, Belgium
| | - Kristy Yuan
- Center for Motor Neuron Disease Research, Department of Biomedical Science, Faculty of Medicine, Macquarie University, Balaclava Rd, Macquarie Park, Sydney NSW 2109, Australia
| | - Serene S L Gwee
- Center for Motor Neuron Disease Research, Department of Biomedical Science, Faculty of Medicine, Macquarie University, Balaclava Rd, Macquarie Park, Sydney NSW 2109, Australia
| | - Sara Hernandez
- VIB, Center for Brain and Disease Research, Laboratory of Neurobiology, Herestraat 49, Leuven, Belgium
| | - Kerensa Broersen
- VIB Center for Brain & Disease Research, Switch Laboratory, Herestraat 49, Leuven, Belgium.,Applied Stem Cell Technologies, University of Twente, Technical Medical Centre, Drienerlolaan 5, Enschede, The Netherlands
| | - Mikael Oliveberg
- Stockholm University, Department of Biochemistry and Biophysics, Frescativägen, 114 19 Stockholm, Sweden
| | - Barbara Moahamed
- Universität Bremen, Fachbereich 2 Biologie/ Chemie, Postfach 330 440, Bremen, Germany
| | - Janine Kirstein
- Universität Bremen, Fachbereich 2 Biologie/ Chemie, Postfach 330 440, Bremen, Germany
| | - Wim Robberecht
- VIB, Center for Brain and Disease Research, Laboratory of Neurobiology, Herestraat 49, Leuven, Belgium
| | - Frederic Rousseau
- VIB Center for Brain & Disease Research, Switch Laboratory, Herestraat 49, Leuven, Belgium.,KU Leuven, Department of Cellular and Molecular Medicine, Switch Laboratory, Herestraat 49, Leuven, Belgium
| | - Joost Schymkowitz
- VIB Center for Brain & Disease Research, Switch Laboratory, Herestraat 49, Leuven, Belgium.,KU Leuven, Department of Cellular and Molecular Medicine, Switch Laboratory, Herestraat 49, Leuven, Belgium
| |
Collapse
|
7
|
Lombardi S, Ferrarese M, Marchi S, Pinton P, Pinotti M, Bernardi F, Branchini A. Translational readthrough of GLA nonsense mutations suggests dominant-negative effects exerted by the interaction of wild-type and missense variants. RNA Biol 2019; 17:254-263. [PMID: 31613176 DOI: 10.1080/15476286.2019.1676115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nonsense mutations are relatively frequent in the rare X-linked lysosomal α-galactosidase A (α-Gal) deficiency (Fabry disease; FD), but have been poorly investigated. Here, we evaluated the responsiveness of a wide panel (n = 14) of GLA premature termination codons (PTCs) to the RNA-based approach of drug-induced readthrough through expression of recombinant α-Gal (rGal) nonsense and missense variants.We identified four high-responders to the readthrough-inducing aminoglycoside G418 in terms of full-length protein (C56X/W209X, ≥10% of wild-type rGal) and/or activity (Q119X/W209X/Q321X, ~5-7%), resulting in normal (Q119X/Q321X) or reduced (C56X, 0.27 ± 0.11; W209X, 0.35 ± 0.1) specific activity.To provide mechanistic insights we investigated the predicted amino acid substitutions mediated by readthrough (W209C/R, C56W/R), which resulted in correct lysosomal localization and appreciable protein/activity levels for the W209C/R variants. Differently, the C56W/R variants, albeit appreciably produced and localized into lysosomes, were inactive, thus indicating detrimental effects of substitutions at this position.Noticeably, when co-expressed with the functional W209C or W209R variants, the wild-type rGal displayed a reduced specific activity (0.5 ± 0.2 and 0.6 ± 0.2, respectively) that, considering the dimeric features of the α-Gal enzyme, suggested dominant-negative effects of missense variants through their interaction with the wild-type.Overall, we provide a novel mechanism through which amino acids inserted during readthrough might impact on the functional protein output. Our findings may also have implications for the interpretation of pathological phenotypes in heterozygous FD females, and for other human disorders involving dimeric or oligomeric proteins.
Collapse
Affiliation(s)
- Silvia Lombardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Mattia Ferrarese
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Saverio Marchi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Alessio Branchini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
8
|
Zhou C, Huang J, Cui G, Zeng H, Wang DW, Zhou Q. Identification of a novel loss-of-function mutation of the GLA gene in a Chinese Han family with Fabry disease. BMC MEDICAL GENETICS 2018; 19:219. [PMID: 30587147 PMCID: PMC6307325 DOI: 10.1186/s12881-018-0734-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 12/13/2018] [Indexed: 11/11/2022]
Abstract
Background Fabry disease is an X-linked recessive lysosomal disorder caused by deficient enzymatic activity of α-galactosidase A (α-Gal A). The insufficient enzymatic activity leads to excessive accumulation of glycosphingolipids, the substrates of the enzyme, in lysosomes in organs and tissues. Mutations in the α-Gal A gene (GLA, Xq22) have been proven to be responsible for Fabry disease. Methods In this study, we report a four-generation pedigree with left ventricular hypertrophy and chronic renal failure that was diagnosed by sequencing the GLA gene. An over expression system was constructed to evaluate the function of the detected mutation. Results We identified a novel mutation in exon 6 of the GLA gene, p.Asn278Lys, which completely co-segregated with the disease phenotype. The protein level of α-Gal A was significantly lower in the variant group than in the wild-type group; additionally, the pharmacological chaperone 1-deoxy-galactonojirimycin (DGJ) effectively normalized the enzyme activity of α-Gal A and its decline at the protein level. Conclusions This study is the first to report a novel loss-of-function mutation, p.Asn278Lys, in exon 6 of the GLA gene as a genetic aetiology for Fabry disease. In addition, we analysed the feasibility of DGJ as a therapeutic approach for this particular GLA mutation.
Collapse
Affiliation(s)
- Chi Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Jin Huang
- Division of Hematology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guanglin Cui
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| | - Hesong Zeng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Qiang Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| |
Collapse
|
9
|
Lukas J, Knospe AM, Seemann S, Citro V, Cubellis MV, Rolfs A. In Vitro Enzyme Measurement to Test Pharmacological Chaperone Responsiveness in Fabry and Pompe Disease. J Vis Exp 2017. [PMID: 29286471 DOI: 10.3791/56550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The use of personalized medicine to treat rare monogenic diseases like lysosomal storage disorders (LSDs) is challenged by complex clinical trial designs, high costs, and low patient numbers. Hundreds of mutant alleles are implicated in most of the LSDs. The diseases are typically classified into 2 to 3 different clinical types according to severity. Moreover, molecular characterization of the genotype can help predict clinical outcomes and inform patient care. Therefore, we developed a simple cell culture assay based on HEK293H cells heterologously over-expressing the mutations identified in Fabry and Pompe disease. A similar assay has recently been introduced as a preclinical test to identify amenable mutations for Pharmacological Chaperone Therapy (PCT) in Fabry disease. This manuscript describes an amended cell culture assay which enables rapid phenotypic assessment of allelic variants in Fabry and Pompe disease to identify eligible patients for PCT and may aid in the development of novel pharmacochaperones.
Collapse
Affiliation(s)
- Jan Lukas
- Albrecht-Kossel-Institute, University Rostock Medical Center;
| | | | - Susanne Seemann
- Albrecht-Kossel-Institute, University Rostock Medical Center
| | | | | | - Arndt Rolfs
- Albrecht-Kossel-Institute, University Rostock Medical Center; Centogene AG
| |
Collapse
|
10
|
van der Kant R, Karow-Zwick AR, Van Durme J, Blech M, Gallardo R, Seeliger D, Aßfalg K, Baatsen P, Compernolle G, Gils A, Studts JM, Schulz P, Garidel P, Schymkowitz J, Rousseau F. Prediction and Reduction of the Aggregation of Monoclonal Antibodies. J Mol Biol 2017; 429:1244-1261. [PMID: 28322916 PMCID: PMC5397608 DOI: 10.1016/j.jmb.2017.03.014] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 12/21/2022]
Abstract
Protein aggregation remains a major area of focus in the production of monoclonal antibodies. Improving the intrinsic properties of antibodies can improve manufacturability, attrition rates, safety, formulation, titers, immunogenicity, and solubility. Here, we explore the potential of predicting and reducing the aggregation propensity of monoclonal antibodies, based on the identification of aggregation-prone regions and their contribution to the thermodynamic stability of the protein. Although aggregation-prone regions are thought to occur in the antigen binding region to drive hydrophobic binding with antigen, we were able to rationally design variants that display a marked decrease in aggregation propensity while retaining antigen binding through the introduction of artificial aggregation gatekeeper residues. The reduction in aggregation propensity was accompanied by an increase in expression titer, showing that reducing protein aggregation is beneficial throughout the development process. The data presented show that this approach can significantly reduce liabilities in novel therapeutic antibodies and proteins, leading to a more efficient path to clinical studies.
Collapse
Affiliation(s)
- Rob van der Kant
- VIB Switch Laboratory, Herestraat 49, B-3000 Leuven, Belgium; Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, PO 802, B-3000 Leuven, Belgium
| | - Anne R Karow-Zwick
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88400, Biberach/Riss, Germany
| | - Joost Van Durme
- VIB Switch Laboratory, Herestraat 49, B-3000 Leuven, Belgium; Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, PO 802, B-3000 Leuven, Belgium
| | - Michaela Blech
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88400, Biberach/Riss, Germany
| | - Rodrigo Gallardo
- VIB Switch Laboratory, Herestraat 49, B-3000 Leuven, Belgium; Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, PO 802, B-3000 Leuven, Belgium
| | - Daniel Seeliger
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88400, Biberach/Riss, Germany
| | - Kerstin Aßfalg
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88400, Biberach/Riss, Germany
| | - Pieter Baatsen
- EM-platform VIB Bio Imaging Core, VIB-KU Leuven, Herestraat 49, B-3000 Leuven
| | - Griet Compernolle
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven, Herestraat 49, PO 820, B-3000 Leuven, Belgium
| | - Ann Gils
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven, Herestraat 49, PO 820, B-3000 Leuven, Belgium
| | - Joey M Studts
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88400, Biberach/Riss, Germany
| | - Patrick Schulz
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88400, Biberach/Riss, Germany
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88400, Biberach/Riss, Germany
| | - Joost Schymkowitz
- VIB Switch Laboratory, Herestraat 49, B-3000 Leuven, Belgium; Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, PO 802, B-3000 Leuven, Belgium.
| | - Frederic Rousseau
- VIB Switch Laboratory, Herestraat 49, B-3000 Leuven, Belgium; Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, PO 802, B-3000 Leuven, Belgium.
| |
Collapse
|
11
|
Sánchez-Fernández EM, García Fernández JM, Mellet CO. Glycomimetic-based pharmacological chaperones for lysosomal storage disorders: lessons from Gaucher, GM1-gangliosidosis and Fabry diseases. Chem Commun (Camb) 2016; 52:5497-515. [PMID: 27043200 DOI: 10.1039/c6cc01564f] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Lysosomal storage disorders (LSDs) are often caused by mutations that destabilize native folding and impair the trafficking of enzymes, leading to premature endoplasmic reticulum (ER)-associated degradation, deficiencies of specific hydrolytic functions and aberrant storage of metabolites in the lysosomes. Enzyme replacement therapy (ERT) and substrate reduction therapy (SRT) are available for a few of these conditions, but most remain orphan. A main difficulty is that virtually all LSDs involve neurological decline and neither proteins nor the current SRT drugs can cross the blood-brain barrier. Twenty years ago a new therapeutic paradigm better suited for neuropathic LSDs was launched, namely pharmacological chaperone (PC) therapy. PCs are small molecules capable of binding to the mutant protein at the ER, inducing proper folding, restoring trafficking and increasing enzyme activity and substrate processing in the lysosome. In many LSDs the mutated protein is a glycosidase and the accumulated substrate is an oligo- or polysaccharide or a glycoconjugate, e.g. a glycosphingolipid. Although it might appear counterintuitive, substrate analogues (glycomimetics) behaving as competitive glycosidase inhibitors are good candidates to perform PC tasks. The advancements in the knowledge of the molecular basis of LSDs, including enzyme structures, binding modes, trafficking pathways and substrate processing mechanisms, have been put forward to optimize PC selectivity and efficacy. Moreover, the chemical versatility of glycomimetics and the variety of structures at hand allow simultaneous optimization of chaperone and pharmacokinetic properties. In this Feature Article we review the advancements made in this field in the last few years and the future outlook through the lessons taught by three archetypical LSDs: Gaucher disease, GM1-gangliosidosis and Fabry disease.
Collapse
Affiliation(s)
- Elena M Sánchez-Fernández
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Profesor García González 1, 41012, Sevilla, Spain.
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla, Spain.
| | - Carmen Ortiz Mellet
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Profesor García González 1, 41012, Sevilla, Spain.
| |
Collapse
|
12
|
Kabir A, Honda RP, Kamatari YO, Endo S, Fukuoka M, Kuwata K. Effects of ligand binding on the stability of aldo-keto reductases: Implications for stabilizer or destabilizer chaperones. Protein Sci 2016; 25:2132-2141. [PMID: 27595938 PMCID: PMC5119574 DOI: 10.1002/pro.3036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/30/2016] [Indexed: 01/26/2023]
Abstract
Ligands such as enzyme inhibitors stabilize the native conformation of a protein upon binding to the native state, but some compounds destabilize the native conformation upon binding to the non-native state. The former ligands are termed "stabilizer chaperones" and the latter ones "destabilizer chaperones." Because the stabilization effects are essential for the medical chaperone (MC) hypothesis, here we have formulated a thermodynamic system consisting of a ligand and a protein in its native- and non-native state. Using the differential scanning fluorimetry and the circular dichroism varying the urea concentration and temperature, we found that when the coenzyme NADP+ was absent, inhibitors such as isolithocholic acid stabilized the aldo-keto reductase AKR1A1 upon binding, which showed actually the three-state folding, but destabilized AKR1B10. In contrast, in the presence of NADP+ , they destabilized AKR1A1 and stabilized AKR1B10. To explain these phenomena, we decomposed the free energy of stabilization (ΔΔG) into its enthalpy (ΔΔH) and entropy (ΔΔS) components. Then we found that in a relatively unstable protein showing the three-state folding, native conformation was stabilized by the negative ΔΔH in association with the negative ΔΔS, suggesting that the stabilizer chaperon decreases the conformational fluctuation of the target protein or increase its hydration. However, in other cases, ΔΔG was essentially determined by the delicate balance between ΔΔH and ΔΔS. The proposed thermodynamic formalism is applicable to the system including multiple ligands with allosteric interactions. These findings would promote the development of screening strategies for MCs to regulate the target conformations.
Collapse
Affiliation(s)
- Aurangazeb Kabir
- United Graduate School of Drug Discovery and Medical Information SciencesGifu UniversityGifu501‐1193Japan
| | - Ryo P. Honda
- Department of Molecular Pathobiochemistry, Graduate School of MedicineGifu UniversityGifu501‐1193Japan
| | | | - Satoshi Endo
- Laboratory of BiochemistryGifu Pharmaceutical UniversityGifu501‐1196Japan
| | - Mayuko Fukuoka
- United Graduate School of Drug Discovery and Medical Information SciencesGifu UniversityGifu501‐1193Japan
| | - Kazuo Kuwata
- United Graduate School of Drug Discovery and Medical Information SciencesGifu UniversityGifu501‐1193Japan
- Department of Gene and Development, Graduate School of MedicineGifu UniversityGifu501‐1193Japan
| |
Collapse
|
13
|
Musiani F, Giorgetti A. Protein Aggregation and Molecular Crowding: Perspectives From Multiscale Simulations. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 329:49-77. [PMID: 28109331 DOI: 10.1016/bs.ircmb.2016.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cells are extremely crowded environments, thus the use of diluted salted aqueous solutions containing a single protein is too simplistic to mimic the real situation. Macromolecular crowding might affect protein structure, folding, shape, conformational stability, binding of small molecules, enzymatic activity, interactions with cognate biomolecules, and pathological aggregation. The latter phenomenon typically leads to the formation of amyloid fibrils that are linked to several lethal neurodegenerative diseases, but that can also play a functional role in certain organisms. The majority of molecular simulations performed before the last few years were conducted in diluted solutions and were restricted both in the timescales and in the system dimensions by the available computational resources. In recent years, several computational solutions were developed to get close to physiological conditions. In this review we summarize the main computational techniques used to tackle the issue of protein aggregation both in a diluted and in a crowded environment.
Collapse
Affiliation(s)
- F Musiani
- Laboratory of Bioinorganic Chemistry, University of Bologna, Bologna, Italy.
| | - A Giorgetti
- Applied Bioinformatics Group, University of Verona, Verona, Italy.
| |
Collapse
|
14
|
Stütz AE, Wrodnigg TM. Carbohydrate-Processing Enzymes of the Lysosome: Diseases Caused by Misfolded Mutants and Sugar Mimetics as Correcting Pharmacological Chaperones. Adv Carbohydr Chem Biochem 2016; 73:225-302. [PMID: 27816107 DOI: 10.1016/bs.accb.2016.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lysosomal storage diseases are hereditary disorders caused by mutations on genes encoding for one of the more than fifty lysosomal enzymes involved in the highly ordered degradation cascades of glycans, glycoconjugates, and other complex biomolecules in the lysosome. Several of these metabolic disorders are associated with the absence or the lack of activity of carbohydrate-processing enzymes in this cell compartment. In a recently introduced therapy concept, for susceptible mutants, small substrate-related molecules (so-called pharmacological chaperones), such as reversible inhibitors of these enzymes, may serve as templates for the correct folding and transport of the respective protein mutant, thus improving its concentration and, consequently, its enzymatic activity in the lysosome. Carbohydrate-processing enzymes in the lysosome, related lysosomal diseases, and the scope and limitations of reported reversible inhibitors as pharmacological chaperones are discussed with a view to possibly extending and improving research efforts in this area of orphan diseases.
Collapse
Affiliation(s)
- Arnold E Stütz
- Glycogroup, Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| | - Tanja M Wrodnigg
- Glycogroup, Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| |
Collapse
|
15
|
Van Durme J, De Baets G, Van Der Kant R, Ramakers M, Ganesan A, Wilkinson H, Gallardo R, Rousseau F, Schymkowitz J. Solubis: a webserver to reduce protein aggregation through mutation. Protein Eng Des Sel 2016; 29:285-9. [PMID: 27284085 DOI: 10.1093/protein/gzw019] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/09/2016] [Indexed: 11/12/2022] Open
Abstract
Protein aggregation is a major factor limiting the biotechnological and therapeutic application of many proteins, including enzymes and monoclonal antibodies. The molecular principles underlying aggregation are by now sufficiently understood to allow rational redesign of natural polypeptide sequences for decreased aggregation tendency, and hence potentially increased expression and solubility. Given that aggregation-prone regions (APRs) tend to contribute to the stability of the hydrophobic core or to functional sites of the protein, mutations in these regions have to be carefully selected in order not to disrupt protein structure or function. Therefore, we here provide access to an automated pipeline to identify mutations that reduce protein aggregation by reducing the intrinsic aggregation propensity of the sequence (using the TANGO algorithm), while taking care not to disrupt the thermodynamic stability of the native structure (using the empirical force-field FoldX). Moreover, by providing a plot of the intrinsic aggregation propensity score of APRs corrected by the local stability of that region in the folded structure, we allow users to prioritize those regions in the protein that are most in need of improvement through protein engineering. The method can be accessed at http://solubis.switchlab.org/.
Collapse
Affiliation(s)
- Joost Van Durme
- VIB Switch Laboratory, VIB, Leuven, Belgium Switch Laboratory, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Greet De Baets
- VIB Switch Laboratory, VIB, Leuven, Belgium Switch Laboratory, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Rob Van Der Kant
- VIB Switch Laboratory, VIB, Leuven, Belgium Switch Laboratory, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Meine Ramakers
- VIB Switch Laboratory, VIB, Leuven, Belgium Switch Laboratory, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Ashok Ganesan
- VIB Switch Laboratory, VIB, Leuven, Belgium Switch Laboratory, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Hannah Wilkinson
- VIB Switch Laboratory, VIB, Leuven, Belgium Switch Laboratory, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Rodrigo Gallardo
- VIB Switch Laboratory, VIB, Leuven, Belgium Switch Laboratory, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Frederic Rousseau
- VIB Switch Laboratory, VIB, Leuven, Belgium Switch Laboratory, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- VIB Switch Laboratory, VIB, Leuven, Belgium Switch Laboratory, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Structural hot spots for the solubility of globular proteins. Nat Commun 2016; 7:10816. [PMID: 26905391 PMCID: PMC4770091 DOI: 10.1038/ncomms10816] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 01/25/2016] [Indexed: 12/25/2022] Open
Abstract
Natural selection shapes protein solubility to physiological requirements and recombinant applications that require higher protein concentrations are often problematic. This raises the question whether the solubility of natural protein sequences can be improved. We here show an anti-correlation between the number of aggregation prone regions (APRs) in a protein sequence and its solubility, suggesting that mutational suppression of APRs provides a simple strategy to increase protein solubility. We show that mutations at specific positions within a protein structure can act as APR suppressors without affecting protein stability. These hot spots for protein solubility are both structure and sequence dependent but can be computationally predicted. We demonstrate this by reducing the aggregation of human α-galactosidase and protective antigen of Bacillus anthracis through mutation. Our results indicate that many proteins possess hot spots allowing to adapt protein solubility independently of structure and function. Mutations in aggregation prone regions of recombinant proteins often improve their solubility, although they might cause negative effects on their structure and function. Here, the authors identify proteins hot spots that can be exploited to optimize solubility without compromising stability.
Collapse
|
17
|
Montioli R, Oppici E, Dindo M, Roncador A, Gotte G, Cellini B, Borri Voltattorni C. Misfolding caused by the pathogenic mutation G47R on the minor allele of alanine:glyoxylate aminotransferase and chaperoning activity of pyridoxine. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1280-9. [DOI: 10.1016/j.bbapap.2015.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/03/2015] [Indexed: 12/22/2022]
|
18
|
De Baets G, Van Doorn L, Rousseau F, Schymkowitz J. Increased Aggregation Is More Frequently Associated to Human Disease-Associated Mutations Than to Neutral Polymorphisms. PLoS Comput Biol 2015; 11:e1004374. [PMID: 26340370 PMCID: PMC4560525 DOI: 10.1371/journal.pcbi.1004374] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 06/03/2015] [Indexed: 12/22/2022] Open
Abstract
Protein aggregation is a hallmark of over 30 human pathologies. In these diseases, the aggregation of one or a few specific proteins is often toxic, leading to cellular degeneration and/or organ disruption in addition to the loss-of-function resulting from protein misfolding. Although the pathophysiological consequences of these diseases are overt, the molecular dysregulations leading to aggregate toxicity are still unclear and appear to be diverse and multifactorial. The molecular mechanisms of protein aggregation and therefore the biophysical parameters favoring protein aggregation are better understood. Here we perform an in silico survey of the impact of human sequence variation on the aggregation propensity of human proteins. We find that disease-associated variations are statistically significantly enriched in mutations that increase the aggregation potential of human proteins when compared to neutral sequence variations. These findings suggest that protein aggregation might have a broader impact on human disease than generally assumed and that beyond loss-of-function, the aggregation of mutant proteins involved in cancer, immune disorders or inflammation could potentially further contribute to disease by additional burden on cellular protein homeostasis. Protein aggregation has been recognized to contribute to the development of more than 30 human diseases such as Alzheimer and Parkinson disease. Here we have performed an in silico survey of human sequence variations to evaluate whether protein aggregation might impact human disease beyond the above-mentioned aggregation diseases. We find that human disease mutations are more likely to increase the aggregation potential of proteins than non-disease associated mutations. This survey therefore suggests the possibility that protein aggregation is a more widespread disease modifier than previously expected.
Collapse
Affiliation(s)
- Greet De Baets
- VIB Switch Laboratory, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Loic Van Doorn
- VIB Switch Laboratory, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Frederic Rousseau
- VIB Switch Laboratory, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
- * E-mail: (FR); (JS)
| | - Joost Schymkowitz
- VIB Switch Laboratory, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
- * E-mail: (FR); (JS)
| |
Collapse
|
19
|
Serebrinsky G, Calvo M, Fernandez S, Saito S, Ohno K, Wallace E, Warnock D, Sakuraba H, Politei J. Late onset variants in Fabry disease: Results in high risk population screenings in Argentina. Mol Genet Metab Rep 2015; 4:19-24. [PMID: 26937405 PMCID: PMC4750630 DOI: 10.1016/j.ymgmr.2015.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 05/29/2015] [Accepted: 05/29/2015] [Indexed: 01/03/2023] Open
Abstract
Background Screening for Fabry disease (FD) in high risk populations yields a significant number of individuals with novel, ultra rare genetic variants in the GLA gene, largely without classic manifestations of FD. These variants often have significant residual α-galactosidase A activity. The establishment of the pathogenic character of previously unknown or rare variants is challenging but necessary to guide therapeutic decisions. Objectives To present 2 cases of non-classical presentations of FD with renal involvement as well as to discuss the importance of high risk population screenings for FD. Results Our patients with non-classical variants were diagnosed through FD screenings in dialysis units. However, organ damage was not limited to kidneys, since LVH, vertebrobasilar dolichoectasia and cornea verticillata were also present. Lyso-Gb3 concentrations in plasma were in the pathologic range, compatible with late onset FD. Structural studies and in silico analysis of p.(Cys174Gly) and p.(Arg363His), employing different tools, suggest that enzyme destabilization and possibly aggregation could play a role in organ damage. Conclusions Screening programs for FD in high risk populations are important as FD is a treatable multisystemic disease which is frequently overlooked in patients who present without classical manifestations.
Collapse
Affiliation(s)
| | - M Calvo
- Nephrology Department, Hospital Zonal General de Agudos Evita, Buenos Aires, Argentina
| | - S Fernandez
- Nephrology Department, Centro Médico CIPERCA, Catamarca, Argentina
| | - S Saito
- Department of Medical Management and Informatics, Hokkaido Information University, Ebetsu, Hokkaido, Japan
| | - K Ohno
- Department of Research, Not-for-Profit Organization for the Promotion of Research on Intellectual Property Tokyo, Chiyoda, Tokyo, Japan
| | - E Wallace
- Department of Medicine, University of Alabama, Birmingham, AL, United States
| | - D Warnock
- Department of Medicine, University of Alabama, Birmingham, AL, United States
| | - H Sakuraba
- Department of Clinical Genetics, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - J Politei
- Fundación para el Estudio de las Enfermedades Neurometabólicas (FESEN), Buenos Aires, Argentina
| |
Collapse
|
20
|
Parenti G, Andria G, Valenzano KJ. Pharmacological Chaperone Therapy: Preclinical Development, Clinical Translation, and Prospects for the Treatment of Lysosomal Storage Disorders. Mol Ther 2015; 23:1138-1148. [PMID: 25881001 DOI: 10.1038/mt.2015.62] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 04/01/2015] [Indexed: 02/06/2023] Open
Abstract
Lysosomal storage disorders (LSDs) are a group of inborn metabolic diseases caused by mutations in genes that encode proteins involved in different lysosomal functions, in most instances acidic hydrolases. Different therapeutic approaches have been developed to treat these disorders. Pharmacological chaperone therapy (PCT) is an emerging approach based on small-molecule ligands that selectively bind and stabilize mutant enzymes, increase their cellular levels, and improve lysosomal trafficking and activity. Compared to other approaches, PCT shows advantages, particularly in terms of oral administration, broad biodistribution, and positive impact on patients' quality of life. After preclinical in vitro and in vivo studies, PCT is now being translated in the first clinical trials, either as monotherapy or in combination with enzyme replacement therapy, for some of the most prevalent LSDs. For some LSDs, the results of the first clinical trials are encouraging and warrant further development. Future research in the field of PCT will be directed toward the identification of novel chaperones, including new allosteric drugs, and the exploitation of synergies between chaperone treatment and other therapeutic approaches.
Collapse
Affiliation(s)
- Giancarlo Parenti
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.
| | - Generoso Andria
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | | |
Collapse
|
21
|
Abstract
Pharmacological chaperone therapy is an emerging approach to treat lysosomal storage diseases. Small-molecule chaperones interact with mutant enzymes, favor their correct conformation and enhance their stability. This approach shows significant advantages when compared with existing therapies, particularly in terms of the bioavailability of drugs, oral administration and positive impact on the quality of patients' lives. On the other hand, future research in this field must confront important challenges. The identification of novel chaperones is indispensable to expanding the number of patients amenable to this treatment and to optimize therapeutic efficacy. It is important to develop new allosteric drugs, to address the risk of inhibiting target enzymes. Future research must also be directed towards the exploitation of synergies between chaperone treatment and other therapeutic approaches.
Collapse
|
22
|
Putko BN, Wen K, Thompson RB, Mullen J, Shanks M, Yogasundaram H, Sergi C, Oudit GY. Anderson-Fabry cardiomyopathy: prevalence, pathophysiology, diagnosis and treatment. Heart Fail Rev 2015; 20:179-191. [PMID: 25030479 DOI: 10.1007/s10741-014-9452-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Anderson-Fabry disease (AFD) is a lysosomal storage disease caused by the inappropriate accumulation of globotriaosylceramide in tissues due to a deficiency in the enzyme α-galactosidase A (α-Gal A). Anderson-Fabry cardiomyopathy is characterized by structural, valvular, vascular and conduction abnormalities, and is now the most common cause of mortality in patients with AFD. Large-scale metabolic and genetic screening studies have revealed AFD to be prevalent in populations of diverse ethnic origins, and the variant form of AFD represents an unrecognized health burden. Anderson-Fabry disease is an X-linked disorder, and genetic testing is critical for the diagnosis of AFD in women. Echocardiography with strain imaging and cardiac magnetic resonance imaging using late enhancement and T1 mapping are important imaging tools. The current therapy for AFD is enzyme replacement therapy (ERT), which can reverse or prevent AFD progression, while gene therapy and the use of molecular chaperones represent promising novel therapies for AFD. Anderson-Fabry cardiomyopathy is an important and potentially reversible cause of heart failure that involves LVH, increased susceptibility to arrhythmias and valvular regurgitation. Genetic testing and cardiac MRI are important diagnostic tools, and AFD cardiomyopathy is treatable if ERT is introduced early.
Collapse
Affiliation(s)
- Brendan N Putko
- Division of Cardiology, Department of Medicine, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, T6G 2S2, AB, Canada
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Enzyme enhancers for the treatment of Fabry and Pompe disease. Mol Ther 2014; 23:456-64. [PMID: 25409744 DOI: 10.1038/mt.2014.224] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 11/07/2014] [Indexed: 12/22/2022] Open
Abstract
Lysosomal storage disorders (LSD) are a group of heterogeneous diseases caused by compromised enzyme function leading to multiple organ failure. Therapeutic approaches involve enzyme replacement (ERT), which is effective for a substantial fraction of patients. However, there are still concerns about a number of issues including tissue penetrance, generation of host antibodies against the therapeutic enzyme, and financial aspects, which render this therapy suboptimal for many cases. Treatment with pharmacological chaperones (PC) was recognized as a possible alternative to ERT, because a great number of mutations do not completely abolish enzyme function, but rather trigger degradation in the endoplasmic reticulum. The theory behind PC is that they can stabilize enzymes with remaining function, avoid degradation and thereby ameliorate disease symptoms. We tested several compounds in order to identify novel small molecules that prevent premature degradation of the mutant lysosomal enzymes α-galactosidase A (for Fabry disease (FD)) and acid α-glucosidase (GAA) (for Pompe disease (PD)). We discovered that the expectorant Ambroxol when used in conjunction with known PC resulted in a significant enhancement of mutant α-galactosidase A and GAA activities. Rosiglitazone was effective on α-galactosidase A either as a monotherapy or when administered in combination with the PC 1-deoxygalactonojirimycin. We therefore propose both drugs as potential enhancers of pharmacological chaperones in FD and PD to improve current treatment strategies.
Collapse
|
24
|
Fraga H, Graña-Montes R, Illa R, Covaleda G, Ventura S. Association between foldability and aggregation propensity in small disulfide-rich proteins. Antioxid Redox Signal 2014; 21:368-83. [PMID: 24635049 PMCID: PMC4076991 DOI: 10.1089/ars.2013.5543] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIMS Disulfide-rich domains (DRDs) are small proteins whose native structure is stabilized by the presence of covalent disulfide bonds. These domains are versatile and can perform a wide range of functions. Many of these domains readily unfold on disulfide bond reduction, suggesting that in the absence of covalent bonding they might display significant disorder. RESULTS Here, we analyzed the degree of disorder in 97 domains representative of the different DRDs families and demonstrate that, in terms of sequence, many of them can be classified as intrinsically disordered proteins (IDPs) or contain predicted disordered regions. The analysis of the aggregation propensity of these domains indicates that, similar to IDPs, their sequences are more soluble and have less aggregating regions than those of other globular domains, suggesting that they might have evolved to avoid aggregation after protein synthesis and before they can attain its compact and covalently linked native structure. INNOVATION AND CONCLUSION DRDs, which resemble IDPs in the reduced state and become globular when their disulfide bonds are formed, illustrate the link between protein folding and aggregation propensities and how these two properties cannot be easily dissociated, determining the main traits of the folding routes followed by these small proteins to attain their native oxidized states.
Collapse
Affiliation(s)
- Hugo Fraga
- Departament de Bioquimica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona , Barcelona, Spain
| | | | | | | | | |
Collapse
|
25
|
Yu Y, Mena-Barragán T, Higaki K, Johnson JL, Drury JE, Lieberman RL, Nakasone N, Ninomiya H, Tsukimura T, Sakuraba H, Suzuki Y, Nanba E, Mellet CO, García Fernández JM, Ohno K. Molecular basis of 1-deoxygalactonojirimycin arylthiourea binding to human α-galactosidase a: pharmacological chaperoning efficacy on Fabry disease mutants. ACS Chem Biol 2014; 9:1460-9. [PMID: 24783948 DOI: 10.1021/cb500143h] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fabry disease (FD) is an X-linked lysosomal storage disorder caused by mutations in the GLA gene often leading to missense α-galactosidase A (α-Gal A) variants that undergo premature endoplasmic reticulum-associated degradation due to folding defects. We have synthesized and characterized a new family of neutral amphiphilic pharmacological chaperones, namely 1-deoxygalactonojirimycin-arylthioureas (DGJ-ArTs), capable of stabilizing α-Gal A and restoring trafficking. Binding to the enzyme is reinforced by a strong hydrogen bond involving the aryl-N'H thiourea proton and the catalytic aspartic acid acid D231 of α-Gal A, as confirmed by a 2.55 Å resolution cocrystal structure. Selected candidates enhanced α-Gal A activity and ameliorate globotriaosylceramide (Gb3) accumulation and autophagy impairments in FD cell cultures. Moreover, they acted synergistically with the proteostasis regulator 4-phenylbutyric acid, appearing to be promising leads as pharmacological chaperones for FD.
Collapse
Affiliation(s)
- Yi Yu
- Division
of Functional Genomics, Research Center for Bioscience and Technology, Tottori University, Yonago 683-8503, Japan
- Division
of Child Neurology, Institute of Neurological Sciences, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Teresa Mena-Barragán
- Departamento
de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla 41012, Spain
| | - Katsumi Higaki
- Division
of Functional Genomics, Research Center for Bioscience and Technology, Tottori University, Yonago 683-8503, Japan
| | - Jennifer L. Johnson
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta 30332-0400, Georgia United States
| | - Jason E. Drury
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta 30332-0400, Georgia United States
| | - Raquel L. Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta 30332-0400, Georgia United States
| | - Naoe Nakasone
- Department
of Biomedical Regulation, School of Health Science, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Haruaki Ninomiya
- Department
of Biomedical Regulation, School of Health Science, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Takahiro Tsukimura
- Department
of Functional Bioanalysis, Meiji Pharmaceutical University, Tokyo 204-8588, Japan
| | - Hitoshi Sakuraba
- Department
of Clinical Genetics, Meiji Pharmaceutical University, Tokyo 204-8588, Japan
| | - Yoshiyuki Suzuki
- Tokyo Metropolitan Institute of Medical Science, Tokyo 156-0057, Japan
| | - Eiji Nanba
- Division
of Functional Genomics, Research Center for Bioscience and Technology, Tottori University, Yonago 683-8503, Japan
| | - Carmen Ortiz Mellet
- Departamento
de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla 41012, Spain
| | | | - Kousaku Ohno
- Division
of Child Neurology, Institute of Neurological Sciences, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| |
Collapse
|
26
|
Andreotti G, Citro V, Correra A, Cubellis MV. A thermodynamic assay to test pharmacological chaperones for Fabry disease. Biochim Biophys Acta Gen Subj 2013; 1840:1214-24. [PMID: 24361605 PMCID: PMC3909460 DOI: 10.1016/j.bbagen.2013.12.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 12/04/2013] [Accepted: 12/11/2013] [Indexed: 12/29/2022]
Abstract
Background The majority of the disease-causing mutations affect protein stability, but not functional sites and are amenable, in principle, to be treated with pharmacological chaperones. These drugs enhance the thermodynamic stability of their targets. Fabry disease, a disorder caused by mutations in the gene encoding lysosomal alpha-galactosidase, represents an excellent model system to develop experimental protocols to test the efficiency of such drugs. Methods The stability of lysosomal alpha-galactosidase under different conditions was studied by urea-induced unfolding followed by limited proteolysis and Western blotting. Results We measured the concentration of urea needed to obtain half-maximal unfolding because this parameter represents an objective indicator of protein stability. Conclusions Urea-induced unfolding is a versatile technique that can be adapted to cell extracts containing tiny amounts of wild-type or mutant proteins. It allows testing of protein stability as a function of pH, in the presence or in the absence of drugs. Results are not influenced by the method used to express the protein in transfected cells. General significance Scarce and dispersed populations pose a problem for the clinical trial of drugs for rare diseases. This is particularly true for pharmacological chaperones that must be tested on each mutation associated with a given disease. Diverse in vitro tests are needed. We used a method based on chemically induced unfolding as a tool to assess whether a particular Fabry mutation is responsive to pharmacological chaperones, but, by no means is our protocol limited to this disease.
Pharmacological chaperones stabilize the folded state of proteins. Only some Fabry mutations can be treated with pharmacological chaperones. Urea-induced unfolding represents a novel assay to test the efficiency of drugs. The test with urea can be applied to a tiny amount of mutants in raw extracts. Responsiveness of Fabry mutations to drugs can be tested with urea-induced unfolding.
Collapse
Affiliation(s)
| | - Valentina Citro
- Istituto di Genetica e Biofisica 'A. Buzzati Traverso,' CNR, Napoli, Italy.
| | - Antonella Correra
- Istituto di Genetica e Biofisica 'A. Buzzati Traverso,' CNR, Napoli, Italy; Dipartimento di Biologia, Università Federico II, Napoli, Italy.
| | - Maria Vittoria Cubellis
- Dipartimento di Biologia, Università Federico II, Napoli, Italy; Istituto di Biostrutture e Bioimmagini, CNR, Napoli, Italy.
| |
Collapse
|
27
|
Oppici E, Roncador A, Montioli R, Bianconi S, Cellini B. Gly161 mutations associated with Primary Hyperoxaluria Type I induce the cytosolic aggregation and the intracellular degradation of the apo-form of alanine:glyoxylate aminotransferase. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2277-88. [PMID: 24055001 DOI: 10.1016/j.bbadis.2013.09.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/05/2013] [Accepted: 09/06/2013] [Indexed: 11/18/2022]
Abstract
Primary Hyperoxaluria Type I (PH1) is a severe rare disorder of metabolism due to inherited mutations on liver peroxisomal alanine:glyoxylate aminotransferase (AGT), a pyridoxal 5'-phosphate (PLP)-dependent enzyme whose deficiency causes the deposition of calcium oxalate crystals in the kidneys and urinary tract. PH1 is an extremely heterogeneous disease and there are more than 150 disease-causing mutations currently known, most of which are missense mutations. Moreover, the molecular mechanisms by which missense mutations lead to AGT deficiency span from structural, functional to subcellular localization defects. Gly161 is a highly conserved residue whose mutation to Arg, Cys or Ser is associated with PH1. Here we investigated the molecular bases of the AGT deficit caused by Gly161 mutations with expression studies in a mammalian cellular system paired with biochemical analyses on the purified recombinant proteins. Our results show that the mutations of Gly161 (i) strongly reduce the expression levels and the intracellular half-life of AGT, and (ii) make the protein in the apo-form prone to an electrostatically-driven aggregation in the cell cytosol. The coenzyme PLP, by shifting the equilibrium from the apo- to the holo-form, is able to reduce the aggregation propensity of the variants, thus partly decreasing the effect of the mutations. Altogether, these results shed light on the mechanistic details underlying the pathogenicity of Gly161 variants, thus expanding our knowledge of the enzymatic phenotypes leading to AGT deficiency.
Collapse
Affiliation(s)
- Elisa Oppici
- Department of Life Sciences and Reproduction, Section of Biological Chemistry, University of Verona, Strada Le Grazie 8 37134 Verona, Italy
| | | | | | | | | |
Collapse
|
28
|
Cammisa M, Correra A, Andreotti G, Cubellis MV. Fabry_CEP: a tool to identify Fabry mutations responsive to pharmacological chaperones. Orphanet J Rare Dis 2013; 8:111. [PMID: 23883437 PMCID: PMC3729670 DOI: 10.1186/1750-1172-8-111] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 06/20/2013] [Indexed: 01/12/2023] Open
Abstract
Fabry_CEP is a user-friendly web-application designed to help clinicians Choose Eligible Patients for the therapy with pharmacological chaperones. It provides a database and a predictive tool to evaluate the responsiveness of lysosomal alpha-galactosidase mutants to a small molecule drug, namely 1-Deoxy-galactonojirimycin. The user can introduce any missense/nonsense mutation in the coding sequence, learn whether it is has been tested and gain access to appropriate reference literature. In the absence of experimental data structural, functional and evolutionary analysis provides a prediction and the probability that a given mutation is responsive to the drug.
Collapse
Affiliation(s)
- Marco Cammisa
- Dipartimento di Biologia, Università Federico II, Napoli, Italy
| | | | | | | |
Collapse
|
29
|
Fargue S, Rumsby G, Danpure CJ. Multiple mechanisms of action of pyridoxine in primary hyperoxaluria type 1. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1776-83. [PMID: 23597595 DOI: 10.1016/j.bbadis.2013.04.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 03/28/2013] [Accepted: 04/08/2013] [Indexed: 11/19/2022]
Abstract
Primary hyperoxaluria type 1 (PH1) is a rare hereditary calcium oxalate kidney stone disease caused by a deficiency of the liver-specific pyridoxal-phosphate-dependent peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT). About one third of patients are responsive to pharmacological doses of pyridoxine (vitamin B6), but its mechanism of action is unknown. Using stably transformed Chinese Hamster Ovary (CHO) cells expressing various normal and mutant forms of AGT, we have shown that pyridoxine increases the net expression, catalytic activity and peroxisomal import of the most common mistargeted mutant form of AGT (i.e. Gly170Arg on the background of the polymorphic minor allele). These multiple effects explain for the first time the action of pyridoxine in the most common group of responsive patients. Partial effects of pyridoxine were also observed for two other common AGT mutants on the minor allele (i.e. Phe152Ile and Ile244Thr) but not for the minor allele mutant AGT containing a Gly41Arg replacement. These findings demonstrate that pyridoxine, which is metabolised to pyridoxal phosphate, the essential cofactor of AGT, achieves its effects both as a prosthetic group (increasing enzyme catalytic activity) and a chemical chaperone (increasing peroxisome targeting and net expression). This new understanding should aid the development of pharmacological treatments that attempt to enhance efficacy of pyridoxine in PH1, as well as encouraging a re-evaluation of the extent of pyridoxine responsiveness in PH1, as more patients than previously thought might benefit from such treatment.
Collapse
Affiliation(s)
- Sonia Fargue
- Department of Cell & Developmental Biology, University College London, London, UK
| | | | | |
Collapse
|
30
|
Fargue S, Lewin J, Rumsby G, Danpure CJ. Four of the most common mutations in primary hyperoxaluria type 1 unmask the cryptic mitochondrial targeting sequence of alanine:glyoxylate aminotransferase encoded by the polymorphic minor allele. J Biol Chem 2012; 288:2475-84. [PMID: 23229545 DOI: 10.1074/jbc.m112.432617] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gene encoding the liver-specific peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT, EC. 2.6.1.44) exists as two common polymorphic variants termed the "major" and "minor" alleles. The P11L amino acid replacement encoded by the minor allele creates a hidden N-terminal mitochondrial targeting sequence, the unmasking of which occurs in the hereditary calcium oxalate kidney stone disease primary hyperoxaluria type 1 (PH1). This unmasking is due to the additional presence of a common disease-specific G170R mutation, which is encoded by about one third of PH1 alleles. The P11L and G170R replacements interact synergistically to reroute AGT to the mitochondria where it cannot fulfill its metabolic role (i.e. glyoxylate detoxification) effectively. In the present study, we have reinvestigated the consequences of the interaction between P11L and G170R in stably transformed CHO cells and have studied for the first time whether a similar synergism exists between P11L and three other mutations that segregate with the minor allele (i.e. I244T, F152I, and G41R). Our investigations show that the latter three mutants are all able to unmask the cryptic P11L-generated mitochondrial targeting sequence and, as a result, all are mistargeted to the mitochondria. However, whereas the G170R, I244T, and F152I mutants are able to form dimers and are catalytically active, the G41R mutant aggregates and is inactive. These studies open up the possibility that all PH1 mutations, which segregate with the minor allele, might also lead to the peroxisome-to-mitochondrion mistargeting of AGT, a suggestion that has important implications for the development of treatment strategies for PH1.
Collapse
Affiliation(s)
- Sonia Fargue
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | | | | | | |
Collapse
|