1
|
Li Z, Xie Q, Zhao F, Huo X, Ren D, Liu Z, Zhou X, Shen G, Zhao J. Exploring GZMK as a prognostic marker and predictor of immunotherapy response in breast cancer: unveiling novel insights into treatment outcomes. J Cancer Res Clin Oncol 2024; 150:286. [PMID: 38833021 PMCID: PMC11150209 DOI: 10.1007/s00432-024-05791-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/08/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Granzyme K (GZMK) is a crucial mediator released by immune cells to eliminate tumor cells, playing significant roles in inflammation and tumorigenesis. Despite its importance, the specific role of GZMK in breast cancer and its mechanisms are not well understood. METHODS We utilized data from the TCGA and GEO databases and employed a range of analytical methods including GO, KEGG, GSEA, ssGSEA, and PPI to investigate the impact of GZMK on breast cancer. In vitro studies, including RT-qPCR, CCK-8 assay, cell cycle experiments, apoptosis assays, Celigo scratch assays, Transwell assays, and immunohistochemical methods, were conducted to validate the effects of GZMK on breast cancer cells. Additionally, Cox regression analysis integrating TCGA and our clinical data was used to develop an overall survival (OS) prediction model. RESULTS Analysis of clinical pathological features revealed significant correlations between GZMK expression and lymph node staging, differentiation grade, and molecular breast cancer subtypes. High GZMK expression was associated with improved OS, progression-free survival (PFS), and recurrence-free survival (RFS), as confirmed by multifactorial Cox regression analysis. Functional and pathway enrichment analyses of genes positively correlated with GZMK highlighted involvement in lymphocyte differentiation, T cell differentiation, and T cell receptor signaling pathways. A robust association between GZMK expression and T cell presence was noted in the breast cancer tumor microenvironment (TME), with strong correlations with ESTIMATEScore (Cor = 0.743, P < 0.001), ImmuneScore (Cor = 0.802, P < 0.001), and StromalScore (Cor = 0.516, P < 0.001). GZMK also showed significant correlations with immune checkpoint molecules, including CTLA4 (Cor = 0.856, P < 0.001), PD-1 (Cor = 0.82, P < 0.001), PD-L1 (Cor = 0.56, P < 0.001), CD48 (Cor = 0.75, P < 0.001), and CCR7 (Cor = 0.856, P < 0.001). Studies indicated that high GZMK expression enhances patient responsiveness to immunotherapy, with higher levels observed in responsive patients compared to non-responsive ones. In vitro experiments confirmed that GZMK promotes cell proliferation, cell division, apoptosis, cell migration, and invasiveness (P < 0.05). CONCLUSION Our study provides insights into the differential expression of GZMK in breast cancer and its potential mechanisms in breast cancer pathogenesis. Elevated GZMK expression is associated with improved OS and RFS, suggesting its potential as a prognostic marker for breast cancer survival and as a predictor of the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Zitao Li
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, 810000, China
- Breast Disease Diagnosis and Treatment Center of Qinghai University Affiliated Hospital & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Qiqi Xie
- Breast Disease Diagnosis and Treatment Center of Qinghai University Affiliated Hospital & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Fuxing Zhao
- Breast Disease Diagnosis and Treatment Center of Qinghai University Affiliated Hospital & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Xinfa Huo
- Breast Disease Diagnosis and Treatment Center of Qinghai University Affiliated Hospital & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Dengfeng Ren
- Breast Disease Diagnosis and Treatment Center of Qinghai University Affiliated Hospital & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Zhilin Liu
- Breast Disease Diagnosis and Treatment Center of Qinghai University Affiliated Hospital & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Xiaofeng Zhou
- Pathology Department, Affiliated Hospital of Qinghai University, Xining, 810000, China
| | - Guoshuang Shen
- Breast Disease Diagnosis and Treatment Center of Qinghai University Affiliated Hospital & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China.
| | - Jiuda Zhao
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, 810000, China.
- Breast Disease Diagnosis and Treatment Center of Qinghai University Affiliated Hospital & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China.
| |
Collapse
|
2
|
Cigalotto L, Martinvalet D. Granzymes in health and diseases: the good, the bad and the ugly. Front Immunol 2024; 15:1371743. [PMID: 38646541 PMCID: PMC11026543 DOI: 10.3389/fimmu.2024.1371743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Granzymes are a family of serine proteases, composed of five human members: GA, B, H, M and K. They were first discovered in the 1980s within cytotoxic granules released during NK cell- and T cell-mediated killing. Through their various proteolytic activities, granzymes can trigger different pathways within cells, all of which ultimately lead to the same result, cell death. Over the years, the initial consideration of granzymes as mere cytotoxic mediators has changed due to surprising findings demonstrating their expression in cells other than immune effectors as well as new intracellular and extracellular activities. Additional roles have been identified in the extracellular milieu, following granzyme escape from the immunological synapse or their release by specific cell types. Outside the cell, granzyme activities mediate extracellular matrix alteration via the degradation of matrix proteins or surface receptors. In certain contexts, these processes are essential for tissue homeostasis; in others, excessive matrix degradation and extensive cell death contribute to the onset of chronic diseases, inflammation, and autoimmunity. Here, we provide an overview of both the physiological and pathological roles of granzymes, highlighting their utility while also recognizing how their unregulated presence can trigger the development and/or worsening of diseases.
Collapse
Affiliation(s)
- Lavinia Cigalotto
- Laboratory of Reactive Oxygen Species and Cytotoxic Immunity, Department Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute Of Molecular Medicine (VIMM), Padova, Italy
| | - Denis Martinvalet
- Laboratory of Reactive Oxygen Species and Cytotoxic Immunity, Department Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute Of Molecular Medicine (VIMM), Padova, Italy
| |
Collapse
|
3
|
Fuentes Y, Olguín V, López-Ulloa B, Mendonça D, Ramos H, Abdalla A, Guajardo-Contreras G, Niu M, Rojas-Araya B, Mouland A, López-Lastra M. Heterogeneous nuclear ribonucleoprotein K promotes cap-independent translation initiation of retroviral mRNAs. Nucleic Acids Res 2024; 52:2625-2647. [PMID: 38165048 PMCID: PMC10954487 DOI: 10.1093/nar/gkad1221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024] Open
Abstract
Translation initiation of the human immunodeficiency virus-type 1 (HIV-1) genomic mRNA (vRNA) is cap-dependent or mediated by an internal ribosome entry site (IRES). The HIV-1 IRES requires IRES-transacting factors (ITAFs) for function. In this study, we evaluated the role of the heterogeneous nuclear ribonucleoprotein K (hnRNPK) as a potential ITAF for the HIV-1 IRES. In HIV-1-expressing cells, the depletion of hnRNPK reduced HIV-1 vRNA translation. Furthermore, both the depletion and overexpression of hnRNPK modulated HIV-1 IRES activity. Phosphorylations and protein arginine methyltransferase 1 (PRMT1)-induced asymmetrical dimethylation (aDMA) of hnRNPK strongly impacted the protein's ability to promote the activity of the HIV-1 IRES. We also show that hnRNPK acts as an ITAF for the human T cell lymphotropic virus-type 1 (HTLV-1) IRES, present in the 5'UTR of the viral sense mRNA, but not for the IRES present in the antisense spliced transcript encoding the HTLV-1 basic leucine zipper protein (sHBZ). This study provides evidence for a novel role of the host hnRNPK as an ITAF that stimulates IRES-mediated translation initiation for the retroviruses HIV-1 and HTLV-1.
Collapse
Affiliation(s)
- Yazmín Fuentes
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Valeria Olguín
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Brenda López-Ulloa
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Dafne Mendonça
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Hade Ramos
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Ana Luiza Abdalla
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Quebec H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Gabriel Guajardo-Contreras
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Quebec H3T 1E2, Canada
- Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Meijuan Niu
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Quebec H3T 1E2, Canada
| | - Barbara Rojas-Araya
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Andrew J Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Quebec H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H4A 3J1, Canada
- Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Marcelo López-Lastra
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| |
Collapse
|
4
|
Lyu Y, Song L, Mao R, Liu C, Feng M, Wu C, Pei R, Ding L, Wang J. hnRNP K induces HPV16 oncogene expression and promotes cervical cancerization. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04585-6. [PMID: 36700980 DOI: 10.1007/s00432-023-04585-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023]
Abstract
PURPOSE This study aims to explore the expression of hnRNP K in cervical carcinogenesis and to investigate the regulatory role of hnRNP K on HPV16 oncogene expression as well as biological changes in cervical cancer cells. METHODS In total 1042 subjects, including 573 with the normal cervix and 469 with different grades of cervical lesions were enrolled in this study to explore the association between hnRNP K and HPV16 oncogene expression in cervical carcinogenesis. Additionally, the Gene Omnibus (GEO) database was used to analyze hnRNP K mRNA expression in cervical cancerization. Meanwhile, the effects of hnRNP K on cell biological functions and HPV16 oncogene expression were investigated in Siha cells. Moreover, Function analyses were conducted using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases after ChIP-seq. RESULTS hnRNP K was highly expressed in cervical cancer and precancerous lesions, and positively correlated with HPV16 E6, but negatively correlated with HPV16 E2 and HPV16 E2/E6 ratio. hnRNP K induced cell proliferation, inhibited apoptosis and caused cell cycle arrest in the S phase, and particularly increased HPV16 E6 protein expression. CONCLUSION This study revealed that hnRNP K overexpression has important warning significance for the malignant transformation of cervical lesions, and could be used as a potential therapeutic target for inhibiting the carcinogenicity of HPV16 and prevention of cervical carcinogenesis.
Collapse
Affiliation(s)
- Yuanjing Lyu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Li Song
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Rui Mao
- Questrom School of Business, Boston University, Boston, MA, USA
| | - Chunliang Liu
- Department of Gastroenterology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Meijuan Feng
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Caihong Wu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Ruixin Pei
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Ling Ding
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Jintao Wang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
5
|
Snyder A, Jedreski K, Fitch J, Wijeratne S, Wetzel A, Hensley J, Flowers M, Bline K, Hall MW, Muszynski JA. Transcriptomic Profiles in Children With Septic Shock With or Without Immunoparalysis. Front Immunol 2021; 12:733834. [PMID: 34659221 PMCID: PMC8517409 DOI: 10.3389/fimmu.2021.733834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/14/2021] [Indexed: 12/29/2022] Open
Abstract
Background Severe innate immune suppression, termed immunoparalysis, is associated with increased risks of nosocomial infection and mortality in children with septic shock. Currently, immunoparalysis cannot be clinically diagnosed in children, and mechanisms remain unclear. Transcriptomic studies identify subsets of septic children with downregulation of genes within adaptive immune pathways, but assays of immune function have not been performed as part of these studies, and little is known about transcriptomic profiles of children with immunoparalysis. Methods We performed a nested case-control study to identify differences in RNA expression patterns between children with septic shock with immunoparalysis (defined as lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)α response < 200 pg/ml) vs those with normal LPS-induced TNFα response. Children were enrolled within 48 hours of the onset of septic shock and divided into two groups based on LPS-induced TNFα response. RNA was extracted from whole blood for RNAseq, differential expression analyses using DESeq2 software, and pathway analyses using Ingenuity Pathway Analysis. Results 32 children were included in analyses. Comparing those with immunoparalysis (n =19) to those with normal TNFα response (n = 13), 2,303 transcripts were differentially expressed with absolute value fold change ≥ 1.5 and false discovery rate ≤ 0.05. The majority of downregulated pathways in children with immunoparalysis were pathways that involved interactions between innate and adaptive immune cells necessary for cell-mediated immunity, crosstalk between dendritic cells and natural killer cells, and natural killer cell signaling pathways. Upregulated pathways included those involved in humoral immunity (T helper cell type 2), corticotropin signaling, platelet activation (GP6 signaling), and leukocyte migration and extravasation. Conclusions Our study suggests that gene expression data might be useful to identify children with immunoparalysis and identifies several key differentially regulated pathways involved in both innate and adaptive immunity. Our ongoing work in this area aims to dissect interactions between innate and adaptive immunity in septic children and to more fully elucidate patient-specific immunologic pathophysiology to guide individualized immunotherapeutic targets.
Collapse
Affiliation(s)
- Andrew Snyder
- Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Kathleen Jedreski
- Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - James Fitch
- Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Saranga Wijeratne
- Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Amy Wetzel
- Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Josey Hensley
- Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Margaret Flowers
- Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Katherine Bline
- Division of Critical Care Medicine, Nationwide Children's Hospital, Columbus, OH, United States
| | - Mark W Hall
- Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Division of Critical Care Medicine, Nationwide Children's Hospital, Columbus, OH, United States
| | - Jennifer A Muszynski
- Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Division of Critical Care Medicine, Nationwide Children's Hospital, Columbus, OH, United States
| |
Collapse
|
6
|
de Jong LC, Crnko S, ten Broeke T, Bovenschen N. Noncytotoxic functions of killer cell granzymes in viral infections. PLoS Pathog 2021; 17:e1009818. [PMID: 34529743 PMCID: PMC8445437 DOI: 10.1371/journal.ppat.1009818] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cytotoxic lymphocytes produce granules armed with a set of 5 serine proteases (granzymes (Gzms)), which, together with the pore-forming protein (perforin), serve as a major defense against viral infections in humans. This granule-exocytosis pathway subsumes a well-established mechanism in which target cell death is induced upon perforin-mediated entry of Gzms and subsequent activation of various (apoptosis) pathways. In the past decade, however, a growing body of evidence demonstrated that Gzms also inhibit viral replication and potential reactivation in cell death–independent manners. For example, Gzms can induce proteolysis of viral or host cell proteins necessary for the viral entry, release, or intracellular trafficking, as well as augment pro-inflammatory antiviral cytokine response. In this review, we summarize current evidence for the noncytotoxic mechanisms and roles by which killer cells can use Gzms to combat viral infections, and we discuss the potential thereof for the development of novel therapies.
Collapse
Affiliation(s)
- Lisanne C. de Jong
- Radboud University, Nijmegen, the Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sandra Crnko
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Toine ten Broeke
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Niels Bovenschen
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
- * E-mail:
| |
Collapse
|
7
|
Bouwman AC, van Daalen KR, Crnko S, Ten Broeke T, Bovenschen N. Intracellular and Extracellular Roles of Granzyme K. Front Immunol 2021; 12:677707. [PMID: 34017346 PMCID: PMC8129556 DOI: 10.3389/fimmu.2021.677707] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/21/2021] [Indexed: 12/30/2022] Open
Abstract
Granzymes are a family of serine proteases stored in granules inside cytotoxic cells of the immune system. Granzyme K (GrK) has been only limitedly characterized and knowledge on its molecular functions is emerging. Traditionally GrK is described as a granule-secreted, pro-apoptotic serine protease. However, accumulating evidence is redefining the functions of GrK by the discovery of novel intracellular (e.g. cytotoxicity, inhibition of viral replication) and extracellular roles (e.g. endothelial activation and modulation of a pro-inflammatory immune cytokine response). Moreover, elevated GrK levels are associated with disease, including viral and bacterial infections, airway inflammation and thermal injury. This review aims to summarize and discuss the current knowledge of i) intracellular and extracellular GrK activity, ii) cytotoxic and non-cytotoxic GrK functioning, iii) the role of GrK in disease, and iv) GrK as a potential therapeutic target.
Collapse
Affiliation(s)
- Annemieke C Bouwman
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Kim R van Daalen
- Cardiovascular Epidemiology Unit, Department of Public Health & Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Sandra Crnko
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Toine Ten Broeke
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Niels Bovenschen
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
8
|
Cantoni C, Wurzer H, Thomas C, Vitale M. Escape of tumor cells from the NK cell cytotoxic activity. J Leukoc Biol 2020; 108:1339-1360. [PMID: 32930468 DOI: 10.1002/jlb.2mr0820-652r] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
In recent years, NK cells, initially identified as potent cytotoxic effector cells, have revealed an unexpected complexity, both at phenotypic and functional levels. The discovery of different NK cell subsets, characterized by distinct gene expression and phenotypes, was combined with the characterization of the diverse functions NK cells can exert, not only as circulating cells, but also as cells localized or recruited in lymphoid organs and in multiple tissues. Besides the elimination of tumor and virus-infected cells, these functions include the production of cytokines and chemokines, the regulation of innate and adaptive immune cells, the influence on tissue homeostasis. In addition, NK cells display a remarkable functional plasticity, being able to adapt to the environment and to develop a kind of memory. Nevertheless, the powerful cytotoxic activity of NK cells remains one of their most relevant properties, particularly in the antitumor response. In this review, the process of tumor cell recognition and killing mediated by NK cells, starting from the generation of cytolytic granules and recognition of target cell, to the establishment of the NK cell immunological synapse, the release of cytotoxic molecules, and consequent tumor cell death is described. Next, the review focuses on the heterogeneous mechanisms, either intrinsic to tumors or induced by the tumor microenvironment, by which cancer cells can escape the NK cell-mediated attack.
Collapse
Affiliation(s)
- Claudia Cantoni
- Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy.,Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Hannah Wurzer
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Clément Thomas
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Massimo Vitale
- UO Immunologia, IRCCS Ospedale Policlinico San Martino Genova, Genoa, Italy
| |
Collapse
|
9
|
van Dijk AD, Hu CW, de Bont ESJM, Qiu Y, Hoff FW, Yoo SY, Coombes KR, Qutub AA, Kornblau SM. Histone Modification Patterns Using RPPA-Based Profiling Predict Outcome in Acute Myeloid Leukemia Patients. Proteomics 2018; 18:e1700379. [PMID: 29505696 DOI: 10.1002/pmic.201700379] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/31/2018] [Indexed: 11/09/2022]
Abstract
Posttranslational histone tail modifications are known to play a role in leukemogenesis and are therapeutic targets. A global analysis of the level and patterns of expression of multiple histone-modifying proteins (HMP) in acute myeloid leukemia (AML) and the effect of different patterns of expression on outcome and prognosis has not been investigated in AML patients. Here we analyzed 20 HMP by reverse phase protein array (RPPA) in a cohort of 205 newly diagnosed AML patients. Protein levels were correlated with patient and disease characteristics, including survival and mutational state. We identified different protein clusters characterized by higher (more on) or lower (more off) expression of HMP, relative to normal CD34+ cells. On state of HMP was associated with poorer outcome compared to normal-like and a more off state. FLT3 mutated AML patients were significantly overrepresented in the more on state. DNA methylation related mutations showed no correlation with the different HMP states. In this study, we demonstrate for the first time that HMP form recurrent patterns of expression and that these significantly correlate with survival in newly diagnosed AML patients.
Collapse
Affiliation(s)
- Anneke D van Dijk
- Division of Pediatric Oncology/Hematology, Department of Pediatrics, Beatrix Children's Hospital University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Chenyue W Hu
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Eveline S J M de Bont
- Division of Pediatric Oncology/Hematology, Department of Pediatrics, Beatrix Children's Hospital University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - YiHua Qiu
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fieke W Hoff
- Division of Pediatric Oncology/Hematology, Department of Pediatrics, Beatrix Children's Hospital University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Suk Young Yoo
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kevin R Coombes
- Department of Biomedical Informatics, Ohio State University, Columbus, OH, USA
| | - Amina A Qutub
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Steven M Kornblau
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
10
|
van der Burgh R, Meeldijk J, Jongeneel L, Frenkel J, Bovenschen N, van Gijn M, Boes M. Reduced serpinB9-mediated caspase-1 inhibition can contribute to autoinflammatory disease. Oncotarget 2017; 7:19265-71. [PMID: 26992230 PMCID: PMC4991381 DOI: 10.18632/oncotarget.8086] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 02/23/2016] [Indexed: 02/07/2023] Open
Abstract
Patients who suffer from autoinflammatory disease (AID) exhibit seemingly uncontrolled release of interleukin (IL)-1β. The presence of this inflammatory cytokine triggers immune activation in absence of pathogens and foreign material. The mechanisms that contribute to ‘sterile inflammation’ episodes in AID patients are not fully understood, although for some AIDs underlying genetic causes have been identified. We show that the serine protease inhibitor B9 (serpinB9) regulates IL-1β release in human monocytes. SerpinB9 function is more commonly known for its role in control of granzyme B. SerpinB9 however also serves to restrain IL-1β maturation through caspase-1 inhibition. We here describe an autoinflammatory disease-associated serpinB9 (c.985G>T, A329S) variant, which we discovered in a patient with unknown AID. Using patient cells and serpinB9 overexpressing monocytic cells, we show the A329S variant of serpinB9 exhibits unobstructed granzyme B inhibition, but compromised caspase-1 inhibition. SerpinB9 gene variants might contribute to AID development.
Collapse
Affiliation(s)
- Robert van der Burgh
- Department of Pediatric Immunology, Wilhelmina Children's Hospital, UMC Utrecht, EA, Utrecht, Netherlands.,Laboratory of Translational Immunology, University Medical Center Utrecht, CX, Utrecht, Netherlands
| | - Jan Meeldijk
- Department of Pathology, University Medical Center Utrecht, CX, Utrecht, Netherlands.,Laboratory of Translational Immunology, University Medical Center Utrecht, CX, Utrecht, Netherlands
| | - Lieneke Jongeneel
- Department of Pediatric Immunology, Wilhelmina Children's Hospital, UMC Utrecht, EA, Utrecht, Netherlands.,Laboratory of Translational Immunology, University Medical Center Utrecht, CX, Utrecht, Netherlands
| | - Joost Frenkel
- Department of General Pediatrics, Wilhelmina Children's Hospital, UMC Utrecht, EA, Utrecht, Netherlands
| | - Niels Bovenschen
- Department of Pathology, University Medical Center Utrecht, CX, Utrecht, Netherlands.,Laboratory of Translational Immunology, University Medical Center Utrecht, CX, Utrecht, Netherlands
| | - Mariëlle van Gijn
- Department of Genetics, University Medical Center Utrecht, EA, Utrecht, Netherlands
| | - Marianne Boes
- Department of Pediatric Immunology, Wilhelmina Children's Hospital, UMC Utrecht, EA, Utrecht, Netherlands.,Laboratory of Translational Immunology, University Medical Center Utrecht, CX, Utrecht, Netherlands
| |
Collapse
|
11
|
Wiesmann N, Strozynski J, Beck C, Zimmermann N, Mendler S, Gieringer R, Schmidtmann I, Brieger J. Knockdown of hnRNPK leads to increased DNA damage after irradiation and reduces survival of tumor cells. Carcinogenesis 2017; 38:321-328. [DOI: 10.1093/carcin/bgx006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/15/2017] [Indexed: 11/12/2022] Open
|
12
|
Liu CW, Atkinson MA, Zhang Q. Type 1 diabetes cadaveric human pancreata exhibit a unique exocrine tissue proteomic profile. Proteomics 2016; 16:1432-46. [PMID: 26935967 DOI: 10.1002/pmic.201500333] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 01/26/2016] [Accepted: 02/17/2016] [Indexed: 12/28/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disorder resulting from a self-destruction of pancreatic islet beta cells. The complete proteome of the human pancreas, where both the dysfunctional beta cells and their proximal environment co-exist, remains unknown. Here, we used TMT10-based isobaric labeling and multidimensional LC-MS/MS to quantitatively profile the differences between pancreatic head region tissues from T1D (N = 5) and healthy subjects (N = 5). Among the 5357 (1% false discovery rate) confidently identified proteins, 145 showed statistically significant dysregulation between T1D and healthy subjects. The differentially expressed pancreatic proteome supports the growing notion of a potential role for exocrine pancreas involvement in T1D. This study also demonstrates the utility for this approach to analyze dysregulated proteins as a means to investigate islet biology, pancreatic pathology and T1D pathogenesis.
Collapse
Affiliation(s)
- Chih-Wei Liu
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Qibin Zhang
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA.,Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| |
Collapse
|
13
|
Bigaud E, Corrales FJ. Methylthioadenosine (MTA) Regulates Liver Cells Proteome and Methylproteome: Implications in Liver Biology and Disease. Mol Cell Proteomics 2016; 15:1498-510. [PMID: 26819315 DOI: 10.1074/mcp.m115.055772] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Indexed: 12/21/2022] Open
Abstract
Methylthioadenosine phosphorylase (MTAP), a key enzyme in the adenine and methionine salvage pathways, catalyzes the hydrolysis of methylthioadenosine (MTA), a compound suggested to affect pivotal cellular processes in part through the regulation of protein methylation. MTAP is expressed in a wide range of cell types and tissues, and its deletion is common to cancer cells and in liver injury. The aim of this study was to investigate the proteome and methyl proteome alterations triggered by MTAP deficiency in liver cells to define novel regulatory mechanisms that may explain the pathogenic processes of liver diseases. iTRAQ analysis resulted in the identification of 216 differential proteins (p < 0.05) that suggest deregulation of cellular pathways as those mediated by ERK or NFκB. R-methyl proteome analysis led to the identification of 74 differentially methylated proteins between SK-Hep1 and SK-Hep1+ cells, including 116 new methylation sites. Restoring normal MTA levels in SK-Hep1+ cells parallels the specific methylation of 56 proteins, including KRT8, TGF, and CTF8A, which provides a novel regulatory mechanism of their activity with potential implications in carcinogenesis. Inhibition of RNA-binding proteins methylation is especially relevant upon accumulation of MTA. As an example, methylation of quaking protein in Arg(242) and Arg(256) in SK-Hep1+ cells may play a pivotal role in the regulation of its activity as indicated by the up-regulation of its target protein p27(kip1) The phenotype associated with a MTAP deficiency was further verified in the liver of MTAP± mice. Our data support that MTAP deficiency leads to MTA accumulation and deregulation of central cellular pathways, increasing proliferation and decreasing the susceptibility to chemotherapeutic drugs, which involves differential protein methylation. Data are available via ProteomeXchange with identifier PXD002957 (http://www.ebi.ac.uk/pride/archive/projects/PXD002957).
Collapse
Affiliation(s)
- Emilie Bigaud
- From the §Department of Hepatology, Proteomics Laboratory, CIMA, University of Navarra; CIBERehd; IDISNA, Pamplona, 31008 Spain
| | - Fernando J Corrales
- From the §Department of Hepatology, Proteomics Laboratory, CIMA, University of Navarra; CIBERehd; IDISNA, Pamplona, 31008 Spain
| |
Collapse
|
14
|
Gallardo M, Lee HJ, Zhang X, Bueso-Ramos C, Pageon LR, McArthur M, Multani A, Nazha A, Manshouri T, Parker-Thornburg J, Rapado I, Quintas-Cardama A, Kornblau SM, Martinez-Lopez J, Post SM. hnRNP K Is a Haploinsufficient Tumor Suppressor that Regulates Proliferation and Differentiation Programs in Hematologic Malignancies. Cancer Cell 2015; 28:486-499. [PMID: 26412324 PMCID: PMC4652598 DOI: 10.1016/j.ccell.2015.09.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 04/14/2015] [Accepted: 09/01/2015] [Indexed: 12/20/2022]
Abstract
hnRNP K regulates cellular programs, and changes in its expression and mutational status have been implicated in neoplastic malignancies. To directly examine its role in tumorigenesis, we generated a mouse model harboring an Hnrnpk knockout allele (Hnrnpk(+/-)). Hnrnpk haploinsufficiency resulted in reduced survival, increased tumor formation, genomic instability, and the development of transplantable hematopoietic neoplasms with myeloproliferation. Reduced hnRNP K expression attenuated p21 activation, downregulated C/EBP levels, and activated STAT3 signaling. Additionally, analysis of samples from primary acute myeloid leukemia patients harboring a partial deletion of chromosome 9 revealed a significant decrease in HNRNPK expression. Together, these data implicate hnRNP K in the development of hematological disorders and suggest hnRNP K acts as a tumor suppressor.
Collapse
Affiliation(s)
- Miguel Gallardo
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hun Ju Lee
- Department of Lymphoma & Myeloma, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaorui Zhang
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Carlos Bueso-Ramos
- Department of Histopathology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Laura R Pageon
- Department of Veterinary Medicine & Surgery, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mark McArthur
- Department of Veterinary Medicine & Surgery, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Asha Multani
- Department of Genetics, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Aziz Nazha
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Taghi Manshouri
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jan Parker-Thornburg
- Department of Genetics, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Inmaculada Rapado
- Department of Hematology, Hospital Universitario 12 de Octubre and CNIO, Madrid 28041, Spain
| | - Alfonso Quintas-Cardama
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Steven M Kornblau
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joaquin Martinez-Lopez
- Department of Hematology, Hospital Universitario 12 de Octubre and CNIO, Madrid 28041, Spain
| | - Sean M Post
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
15
|
|
16
|
Proteomic-based approach to gain insight into reprogramming of THP-1 cells exposed to Leishmania donovani over an early temporal window. Infect Immun 2015; 83:1853-68. [PMID: 25690103 DOI: 10.1128/iai.02833-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/13/2015] [Indexed: 12/20/2022] Open
Abstract
Leishmania donovani, a protozoan parasite, is the causative agent of visceral leishmaniasis. It lives and multiplies within the harsh environment of macrophages. In order to investigate how intracellular parasite manipulate the host cell environment, we undertook a quantitative proteomic study of human monocyte-derived macrophages (THP-1) following infection with L. donovani. We used the isobaric tags for relative and absolute quantification (iTRAQ) method and liquid chromatography-tandem mass spectrometry (LC-MS/MS) to compare expression profiles of noninfected and L. donovani-infected THP-1 cells. We detected modifications of protein expression in key metabolic pathways, including glycolysis and fatty acid oxidation, suggesting a global reprogramming of cell metabolism by the parasite. An increased abundance of proteins involved in gene transcription, RNA splicing (heterogeneous nuclear ribonucleoproteins [hnRNPs]), histones, and DNA repair and replication was observed at 24 h postinfection. Proteins involved in cell survival and signal transduction were more abundant at 24 h postinfection. Several of the differentially expressed proteins had not been previously implicated in response to the parasite, while the others support the previously identified proteins. Selected proteomics results were validated by real-time PCR and immunoblot analyses. Similar changes were observed in L. donovani-infected human monocyte-derived primary macrophages. The effect of RNA interference (RNAi)-mediated gene knockdown of proteins validated the relevance of the host quantitative proteomic screen. Our findings indicate that the host cell proteome is modulated after L. donovani infection, provide evidence for global reprogramming of cell metabolism, and demonstrate the complex relations between the host and parasite at the molecular level.
Collapse
|
17
|
Hirata Y, Inagaki H, Shimizu T, Kawada T. Substrate specificity of human granzyme 3: analyses of the P3-P2-P1 triplet using fluorescence resonance energy transfer substrate libraries. Biosci Trends 2014; 8:126-31. [PMID: 24815390 DOI: 10.5582/bst.8.126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Granzyme 3 (Gr3) is known as a tryptase-type member of the granzyme family and exists in the granules of immunocompetent cells. Granule proteases including granzymes, are transported into the cytoplasm of tumor cells or virus-infected cells by perforin function, degrade cytoplasmic or nuclear proteins and subsequently cause the death of the target cells. Recently, although several substrates of Gr3 in vivo have been reported, these hydrolyzed sites were unclear or lacked consistency. Our previous study investigated the optimal amino acid triplet (P3-P2-P1) as a substrate for Gr3 using a limited combination of amino acids at the P2 and P3 positions. In the present study, new fluorescence resonance energy transfer (FRET) substrate libraries to screen P2 and P3 positions were synthesized, respectively. Using these substrate libraries, the optimal amino acid triplet was shown to be Tyr-Phe-Arg as a substrate for human Gr3. Moreover, kinetic analyses also showed that the synthetic substrate FRETS-YFR had the lowest Km value for human Gr3. A substantial number of membrane proteins possessed the triplet Tyr-Phe-Arg and some of them might be in vivo substrates for Gr3. The results might also be a great help for preparing specific inhibitors to manipulate Gr3 activity both in vitro and in vivo.
Collapse
Affiliation(s)
- Yukiyo Hirata
- Department of Hygiene and Public Health, Nippon Medical School
| | | | | | | |
Collapse
|
18
|
Yang JH, Chiou YY, Fu SL, Shih IY, Weng TH, Lin WJ, Lin CH. Arginine methylation of hnRNPK negatively modulates apoptosis upon DNA damage through local regulation of phosphorylation. Nucleic Acids Res 2014; 42:9908-24. [PMID: 25104022 PMCID: PMC4150800 DOI: 10.1093/nar/gku705] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein K (hnRNPK) is an RNA/DNA-binding protein involved in chromatin remodeling, RNA processing and the DNA damage response. In addition, increased hnRNPK expression has been associated with tumor development and progression. A variety of post-translational modifications of hnRNPK have been identified and shown to regulate hnRNPK function, including phosphorylation, ubiquitination, sumoylation and methylation. However, the functional significance of hnRNPK arginine methylation remains unclear. In the present study, we demonstrated that the methylation of two essential arginines, Arg296 and Arg299, on hnRNPK inhibited a nearby Ser302 phosphorylation that was mediated through the pro-apoptotic kinase PKCδ. Notably, the engineered U2OS cells carrying an Arg296/Arg299 methylation-defective hnRNPK mutant exhibited increased apoptosis upon DNA damage. While such elevated apoptosis can be diminished through addition with wild-type hnRNPK, we further demonstrated that this increased apoptosis occurred through both intrinsic and extrinsic pathways and was p53 independent, at least in part. Here, we provide the first evidence that the arginine methylation of hnRNPK negatively regulates cell apoptosis through PKCδ-mediated signaling during DNA damage, which is essential for the anti-apoptotic role of hnRNPK in apoptosis and the evasion of apoptosis in cancer cells.
Collapse
Affiliation(s)
- Jen-Hao Yang
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming University, Taipei 11221, Taiwan
| | - Yi-Ying Chiou
- Institute of Biopharmaceutical Sciences, National Yang Ming University, Taipei 11221, Taiwan
| | - Shu-Ling Fu
- Institute of Traditional Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - I-Yun Shih
- Institute of Biopharmaceutical Sciences, National Yang Ming University, Taipei 11221, Taiwan
| | - Tsai-Hsuan Weng
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming University, Taipei 11221, Taiwan
| | - Wey-Jinq Lin
- Institute of Biopharmaceutical Sciences, National Yang Ming University, Taipei 11221, Taiwan
| | - Chao-Hsiung Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming University, Taipei 11221, Taiwan Institute of Biopharmaceutical Sciences, National Yang Ming University, Taipei 11221, Taiwan Proteomics Research Center, National Yang Ming University, Taipei 11221, Taiwan
| |
Collapse
|
19
|
Qiu J, Chen S, Su L, Liu J, Xiao N, Ou TM, Tan JH, Gu LQ, Huang ZS, Li D. Cellular nucleic acid binding protein suppresses tumor cell metastasis and induces tumor cell death by downregulating heterogeneous ribonucleoprotein K in fibrosarcoma cells. Biochim Biophys Acta Gen Subj 2014; 1840:2244-52. [DOI: 10.1016/j.bbagen.2014.02.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/13/2014] [Accepted: 02/25/2014] [Indexed: 12/11/2022]
|
20
|
Thomas MP, Whangbo J, McCrossan G, Deutsch AJ, Martinod K, Walch M, Lieberman J. Leukocyte protease binding to nucleic acids promotes nuclear localization and cleavage of nucleic acid binding proteins. THE JOURNAL OF IMMUNOLOGY 2014; 192:5390-7. [PMID: 24771851 DOI: 10.4049/jimmunol.1303296] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Killer lymphocyte granzyme (Gzm) serine proteases induce apoptosis of pathogen-infected cells and tumor cells. Many known Gzm substrates are nucleic acid binding proteins, and the Gzms accumulate in the target cell nucleus by an unknown mechanism. In this study, we show that human Gzms bind to DNA and RNA with nanomolar affinity. Gzms cleave their substrates most efficiently when both are bound to nucleic acids. RNase treatment of cell lysates reduces Gzm cleavage of RNA binding protein targets, whereas adding RNA to recombinant RNA binding protein substrates increases in vitro cleavage. Binding to nucleic acids also influences Gzm trafficking within target cells. Preincubation with competitor DNA and DNase treatment both reduce Gzm nuclear localization. The Gzms are closely related to neutrophil proteases, including neutrophil elastase (NE) and cathepsin G. During neutrophil activation, NE translocates to the nucleus to initiate DNA extrusion into neutrophil extracellular traps, which bind NE and cathepsin G. These myeloid cell proteases, but not digestive serine proteases, also bind DNA strongly and localize to nuclei and neutrophil extracellular traps in a DNA-dependent manner. Thus, high-affinity nucleic acid binding is a conserved and functionally important property specific to leukocyte serine proteases. Furthermore, nucleic acid binding provides an elegant and simple mechanism to confer specificity of these proteases for cleavage of nucleic acid binding protein substrates that play essential roles in cellular gene expression and cell proliferation.
Collapse
Affiliation(s)
- Marshall P Thomas
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115;Division of Hematology-Oncology, Boston Children's Hospital, Boston, MA 02215; andDepartment of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Jennifer Whangbo
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115;Division of Hematology-Oncology, Boston Children's Hospital, Boston, MA 02215; andDepartment of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Geoffrey McCrossan
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115;Division of Hematology-Oncology, Boston Children's Hospital, Boston, MA 02215; andDepartment of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Aaron J Deutsch
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115;Division of Hematology-Oncology, Boston Children's Hospital, Boston, MA 02215; andDepartment of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Kimberly Martinod
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115;Division of Hematology-Oncology, Boston Children's Hospital, Boston, MA 02215; andDepartment of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Michael Walch
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115;Division of Hematology-Oncology, Boston Children's Hospital, Boston, MA 02215; andDepartment of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115;Division of Hematology-Oncology, Boston Children's Hospital, Boston, MA 02215; andDepartment of Pediatrics, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
21
|
Granzyme M: behind enemy lines. Cell Death Differ 2014; 21:359-68. [PMID: 24413154 DOI: 10.1038/cdd.2013.189] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/12/2013] [Accepted: 11/27/2013] [Indexed: 11/08/2022] Open
Abstract
The granule-exocytosis pathway is the major mechanism via which cytotoxic lymphocytes eliminate virus-infected and tumor cells. In this pathway, cytotoxic lymphocytes release granules containing the pore-forming protein perforin and a family of serine proteases known as granzymes into the immunological synapse. Pore-formation by perforin facilitates entry of granzymes into the target cell, where they can activate various (death) pathways. Humans express five different granzymes, of which granzymes A and B have been most extensively characterized. However, much less is known about granzyme M (GrM). Recently, structural analysis and advanced proteomics approaches have determined the primary and extended specificity of GrM. GrM functions have expanded over the past few years: not only can GrM efficiently induce cell death in tumor cells, it can also inhibit cytomegalovirus replication in a noncytotoxic manner. Finally, a role for GrM in lipopolysaccharide-induced inflammatory responses has been proposed. In this review, we recapitulate the current status of GrM expression, substrate specificity, functions, and inhibitors.
Collapse
|
22
|
de Poot SAH, Lai KW, van der Wal L, Plasman K, Van Damme P, Porter AC, Gevaert K, Bovenschen N. Granzyme M targets topoisomerase II alpha to trigger cell cycle arrest and caspase-dependent apoptosis. Cell Death Differ 2013; 21:416-26. [PMID: 24185622 DOI: 10.1038/cdd.2013.155] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 09/23/2013] [Accepted: 09/26/2013] [Indexed: 12/31/2022] Open
Abstract
Cytotoxic lymphocyte protease granzyme M (GrM) is a potent inducer of tumor cell death. The apoptotic phenotype and mechanism by which it induces cell death, however, remain poorly understood and controversial. Here, we show that GrM-induced cell death was largely caspase-dependent with various hallmarks of classical apoptosis, coinciding with caspase-independent G2/M cell cycle arrest. Using positional proteomics in human tumor cells, we identified the nuclear enzyme topoisomerase II alpha (topoIIα) as a physiological substrate of GrM. Cleavage of topoIIα by GrM at Leu(1280) separated topoIIα functional domains from the nuclear localization signals, leading to nuclear exit of topoIIα catalytic activity, thereby rendering it nonfunctional. Similar to the apoptotic phenotype of GrM, topoIIα depletion in tumor cells led to cell cycle arrest in G2/M, mitochondrial perturbations, caspase activation, and apoptosis. We conclude that cytotoxic lymphocyte protease GrM targets topoIIα to trigger cell cycle arrest and caspase-dependent apoptosis.
Collapse
Affiliation(s)
- S A H de Poot
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - K W Lai
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - L van der Wal
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - K Plasman
- 1] Department of Medical Protein Research,VIB, Ghent, B-9000, Belgium [2] Department of Biochemistry, Ghent University, Ghent B-9000, Belgium
| | - P Van Damme
- 1] Department of Medical Protein Research,VIB, Ghent, B-9000, Belgium [2] Department of Biochemistry, Ghent University, Ghent B-9000, Belgium
| | - A C Porter
- Centre for Haematology, Faculty of Medicine, Imperial College London, London, UK
| | - K Gevaert
- 1] Department of Medical Protein Research,VIB, Ghent, B-9000, Belgium [2] Department of Biochemistry, Ghent University, Ghent B-9000, Belgium
| | - N Bovenschen
- 1] Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands [2] Laboratory for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
23
|
Dinh PX, Das A, Franco R, Pattnaik AK. Heterogeneous nuclear ribonucleoprotein K supports vesicular stomatitis virus replication by regulating cell survival and cellular gene expression. J Virol 2013; 87:10059-69. [PMID: 23843646 PMCID: PMC3754001 DOI: 10.1128/jvi.01257-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 06/30/2013] [Indexed: 11/20/2022] Open
Abstract
The heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a member of the family of hnRNPs and was recently shown in a genome-wide small interfering RNA (siRNA) screen to support vesicular stomatitis virus (VSV) growth. To decipher the role of hnRNP K in VSV infection, we conducted studies which suggest that the protein is required for VSV spreading. Virus binding to cells, entry, and nucleocapsid uncoating steps were not adversely affected in the absence of hnRNP K, whereas viral genome transcription and replication were reduced slightly. These results indicate that hnRNP K is likely involved in virus assembly and/or release from infected cells. Further studies showed that hnRNP K suppresses apoptosis of virus-infected cells, resulting in increased cell survival during VSV infection. The increased survival of the infected cells was found to be due to the suppression of proapoptotic proteins such as Bcl-XS and Bik in a cell-type-dependent manner. Additionally, depletion of hnRNP K resulted in not only significantly increased levels of T-cell-restricted intracellular antigen 1 (TIA1) but also switching of the expression of the two isoforms of the protein (TIA1a and TIA1b), both of which inhibited VSV replication. hnRNP K was also found to support expression of several cellular proteins known to be required for VSV infection. Overall, our studies demonstrate hnRNP K to be a multifunctional protein that supports VSV infection via its role(s) in suppressing apoptosis of infected cells, inhibiting the expression of antiviral proteins, and maintaining the expression of proteins required for the virus.
Collapse
Affiliation(s)
- Phat X. Dinh
- School of Veterinary Medicine and Biomedical Sciences
- Nebraska Center for Virology, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | - Anshuman Das
- School of Veterinary Medicine and Biomedical Sciences
- Nebraska Center for Virology, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | | | - Asit K. Pattnaik
- School of Veterinary Medicine and Biomedical Sciences
- Nebraska Center for Virology, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
24
|
Wu J, Chen Q, Liu W, Lin JM. A simple and versatile microfluidic cell density gradient generator for quantum dot cytotoxicity assay. LAB ON A CHIP 2013; 13:1948-1954. [PMID: 23538998 DOI: 10.1039/c3lc00041a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this work, a simple and versatile microfluidic cell density gradient generator was successfully developed for cytotoxicity of quantum dots (QDs) assay. The microfluidic cell density gradient generator is composed of eight parallel channels which are respectively surrounded by 1-8 microwells with optimized length and width. The cells fall into microwells by gravity and the cell densities are obviously dependent of microwell number. In a case study, HepG2 and MCF-7 cells were successfully utilized for generating cell density gradients on the microfluidic chip. The microfluidic cell density gradient generator was proved to be easily handled, cell-friendly and could be used to conduct the subsequent cell-based assay. As a proof-of-concept, QD cytotoxicity was evaluated and the results exhibited obvious cell density-dependence. For comparison, QD cytotoxicity was also investigated with a series of cell densities infused by pipette tips. Higher reproducibility was observed on the microfluidic cell density gradient generator and cell density was demonstrated to be a vital factor in cytotoxic study. With higher efficiency, controllability and reproducibility, the microfluidic cell density gradient generator could be integrated into microfluidic analysis systems to promote chip-based biological assay.
Collapse
Affiliation(s)
- Jing Wu
- Beijing Key Laboratory of Microanalytical Method and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | | | | | | |
Collapse
|
25
|
Xiao Z, Ko HL, Goh EH, Wang B, Ren EC. hnRNP K suppresses apoptosis independent of p53 status by maintaining high levels of endogenous caspase inhibitors. Carcinogenesis 2013; 34:1458-67. [DOI: 10.1093/carcin/bgt085] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|