1
|
Tokoro Y, Nagae M, Nakano M, Harduin-Lepers A, Kizuka Y. LacdiNAc synthase B4GALNT3 has a unique PA14 domain and suppresses N-glycan capping. J Biol Chem 2024; 300:107450. [PMID: 38844136 PMCID: PMC11254600 DOI: 10.1016/j.jbc.2024.107450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/17/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Structural variation of N-glycans is essential for the regulation of glycoprotein functions. GalNAcβ1-4GlcNAc (LacdiNAc or LDN), a unique subterminal glycan structure synthesized by B4GALNT3 or B4GALNT4, is involved in the clearance of N-glycoproteins from the blood and maintenance of cell stemness. Such regulation of glycoprotein functions by LDN is largely different from that by the dominant subterminal structure, N-acetyllactosamine (Galβ1-4GlcNAc, LacNAc). However, the mechanisms by which B4GALNT activity is regulated and how LDN plays different roles from LacNAc remain unclear. Here, we found that B4GALNT3 and four have unique domain organization containing a noncatalytic PA14 domain, which is a putative glycan-binding module. A mutant lacking this domain dramatically decreases the activity toward various substrates, such as N-glycan, O-GalNAc glycan, and glycoproteins, indicating that this domain is essential for enzyme activity and forms part of the catalytic region. In addition, to clarify the mechanism underlying the functional differences between LDN and LacNAc, we examined the effects of LDN on the maturation of N-glycans, focusing on the related glycosyltransferases upstream and downstream of B4GALNT. We revealed that, unlike LacNAc synthesis, prior formation of bisecting GlcNAc in N-glycan almost completely inhibits LDN synthesis by B4GALNT3. Moreover, the presence of LDN negatively impacted the actions of many glycosyltransferases for terminal modifications, including sialylation, fucosylation, and human natural killer-1 synthesis. These findings demonstrate that LDN has significant impacts on N-glycan maturation in a completely different way from LacNAc, which could contribute to obtaining a comprehensive overview of the system regulating complex N-glycan biosynthesis.
Collapse
Affiliation(s)
- Yuko Tokoro
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Masamichi Nagae
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan; Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan
| | - Miyako Nakano
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Anne Harduin-Lepers
- University of Lille, CNRS, UMR 8576 -UGSF- Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Yasuhiko Kizuka
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan.
| |
Collapse
|
2
|
Jung SY, Yu H, Tan X, Pellegrini M. Novel DNA methylation-based epigenetic signatures in colorectal cancer from peripheral blood leukocytes. Am J Cancer Res 2024; 14:2253-2271. [PMID: 38859857 PMCID: PMC11162685 DOI: 10.62347/mxwj1398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/21/2024] [Indexed: 06/12/2024] Open
Abstract
Colorectal cancer (CRC) is a multifactorial disease characterized by accumulation of multiple genetic and epigenetic alterations, transforming colonic epithelial cells into adenocarcinomas. Alteration of DNA methylation (DNAm) is a promising biomarker for predicting cancer risk and prognosis, but its role in CRC tumorigenesis is inconclusive. Notably, few DNAm studies have used pre-diagnostic peripheral blood (PB) DNA, causing difficulty in postulating the underlying biologic mechanism of CRC initiation. We conducted epigenome-wide association (EWA) scans in postmenopausal women from Women's Health Initiative (WHI) with their pre-diagnostic DNAm in PB leukocytes (PBLs) to prospectively evaluate CRC development. Our site-specific DNAm analyses across the genome adjusted for DNAm-age, leukocyte heterogeneities, as well as body mass index, diabetes, and insulin resistance. We validated 20 top EWA-CpGs in 2 independent CRC tissue datasets. Also, we detected differentially methylated regions (DMRs) associated with CRC, further mapped to transcriptomic profile, and finally conducted a Gene Set Enrichment Analysis. We detected multiple novel CpGs validated across WHI and tissue datasets. In particular, 2 CpGs (B4GALNT4cg10321339, SV2Bcg18144285) had the strongest effect on CRC risk. Results from our DMR scans contained MIR663cg06007966, which was also validated in EWA analyses. Also, we detected 1 methylome region in PEG10 of Chr7 shared across datasets. Our findings reflect both novel and well-established epigenomic and transcriptomic sites in CRC, warranting further functional validations. Our study contributes to better understanding of the complex interrelated mechanisms on the methylome underlying CRC tumorigenesis and suggests novel preventive DNAm-targets in PBLs for detecting at-risk individuals for CRC development.
Collapse
Affiliation(s)
- Su Yon Jung
- Translational Sciences Section, School of Nursing, University of CaliforniaLos Angeles, CA 90095, USA
- Department of Epidemiology, Fielding School of Public Health, University of CaliforniaLos Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of CaliforniaLos Angeles, CA 90095, USA
| | - Herbert Yu
- Cancer Epidemiology Program, University of Hawaii Cancer CenterHonolulu, HI 96813, USA
| | - Xianglong Tan
- Department of Biological Chemistry, University of CaliforniaLos Angeles, CA 90095, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, Life Sciences Division, University of CaliforniaLos Angeles, CA 90095, USA
| |
Collapse
|
3
|
Bannell TAK, Cockburn JJB. The molecular structure and function of fibrocystin, the key gene product implicated in autosomal recessive polycystic kidney disease (ARPKD). Ann Hum Genet 2024; 88:58-75. [PMID: 37905714 DOI: 10.1111/ahg.12535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/14/2023] [Accepted: 10/03/2023] [Indexed: 11/02/2023]
Abstract
Autosomal recessive polycystic kidney disease is an early onset inherited hepatorenal disorder affecting around 1 in 20,000 births with no approved specific therapies. The disease is almost always caused by variations in the polycystic kidney and hepatic disease 1 gene, which encodes fibrocystin (FC), a very large, single-pass transmembrane glycoprotein found in primary cilia, urine and urinary exosomes. By comparison to proteins involved in autosomal dominant PKD, our structural and molecular understanding of FC has lagged far behind such that there are no published experimentally determined structures of any part of the protein. Bioinformatics analyses predict that the ectodomain contains a long chain of immunoglobulin-like plexin-transcription factor domains, a protective antigen 14 domain, a tandem G8-TMEM2 homology region and a sperm protein, enterokinase and agrin domain. Here we review current knowledge on the molecular function of the protein from a structural perspective.
Collapse
Affiliation(s)
- Travis A K Bannell
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Joseph J B Cockburn
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
4
|
Hirano K, Furukawa K. Biosynthesis and Biological Significances of LacdiNAc Group on N- and O-Glycans in Human Cancer Cells. Biomolecules 2022; 12:biom12020195. [PMID: 35204696 PMCID: PMC8961560 DOI: 10.3390/biom12020195] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 01/27/2023] Open
Abstract
An increasing number of studies have shown that the disaccharide GalNAcβ1→4GlcNAc (LacdiNAc) group bound to N- and O-glycans in glycoproteins is expressed in a variety of mammalian cells. Biosynthesis of the LacdiNAc group was well studied, and two β4-N-acetylgalactosaminyltransferases, β4GalNAcT3 and β4GalNAcT4, have been shown to transfer N-acetylgalactosamine (GalNAc) to N-acetylglucosamine (GlcNAc) of N- and O-glycans in a β-1,4-linkage. The LacdiNAc group is often sialylated, sulfated, and/or fucosylated, and the LacdiNAc group, with or without these modifications, is recognized by receptors and lectins and is thus involved in the regulation of several biological phenomena, such as cell differentiation. The occurrences of the LacdiNAc group and the β4GalNAcTs appear to be tissue specific and are closely associated with the tumor progression or regression, indicating that they will be potent diagnostic markers of particular cancers, such as prostate cancer. It has been demonstrated that the expression of the LacdiNAc group on N-glycans of cell surface glycoproteins including β1-integrin is involved in the modulation of their protein functions, thus affecting cellular invasion and other malignant properties of cancer cells. The biological roles of the LacdiNAc group in cancer cells have not been fully understood. However, the re-expression of the LacdiNAc group on N-glycans, which is lost in breast cancer cells by transfection of the β4GalNAcT4 gene, brings about the partial restoration of normal properties and subsequent suppression of malignant phenotypes of the cells. Therefore, elucidation of the biological roles of the LacdiNAc group in glycoproteins will lead to the suppression of breast cancers.
Collapse
Affiliation(s)
- Kiyoko Hirano
- Glycoinformatics Project, The Noguchi Institute, Itabashi, Tokyo 173-0003, Japan
- Correspondence: ; Tel.: +81-3-3961-3255
| | - Kiyoshi Furukawa
- Department of Endocrinology and Diabetes, Medical Center, Saitama Medical University, Kawagoe 350-8550, Japan;
| |
Collapse
|
5
|
Uhler R, Popa-Wagner R, Kröning M, Brehm A, Rennert P, Seifried A, Peschke M, Krieger M, Kohla G, Kannicht C, Wiedemann P, Hafner M, Rosenlöcher J. Glyco-engineered HEK 293-F cell lines for the production of therapeutic glycoproteins with human N-glycosylation and improved pharmacokinetics. Glycobiology 2021; 31:859-872. [PMID: 33403396 DOI: 10.1093/glycob/cwaa119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/25/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022] Open
Abstract
N-glycosylated proteins produced in human embryonic kidney 293 (HEK 293) cells often carry terminal N-acetylgalactosamine (GalNAc) and only low levels of sialylation. On therapeutic proteins, such N-glycans often trigger rapid clearance from the patient bloodstream via efficient binding to asialoglycoprotein receptor (ASGP-R) and mannose receptor (MR). This currently limits the use of HEK 293 cells for therapeutic protein production. To eliminate terminal GalNAc, we knocked-out GalNAc transferases B4GALNT3 and B4GALNT4 by CRISPR/Cas9 in FreeStyle 293-F cells. The resulting cell line produced a coagulation factor VII-albumin fusion protein without GalNAc but with increased sialylation. This glyco-engineered protein bound less efficiently to both the ASGP-R and MR in vitro and it showed improved recovery, terminal half-life and area under the curve in pharmacokinetic rat experiments. By overexpressing sialyltransferases ST6GAL1 and ST3GAL6 in B4GALNT3 and B4GALNT4 knock-out cells, we further increased factor VII-albumin sialylation; for ST6GAL1 even to the level of human plasma-derived factor VII. Simultaneous knock-out of B4GALNT3 and B4GALNT4, and overexpression of ST6GAL1 further lowered factor VII-albumin binding to ASGP-R and MR. This novel glyco-engineered cell line is well-suited for the production of factor VII-albumin and presumably other therapeutic proteins with fully human N-glycosylation and superior pharmacokinetic properties.
Collapse
Affiliation(s)
- Rico Uhler
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany.,Octapharma Biopharmaceuticals GmbH, 69120 Heidelberg, Germany
| | | | - Mario Kröning
- Octapharma Biopharmaceuticals GmbH, 12489 Berlin, Germany
| | - Anja Brehm
- Octapharma Biopharmaceuticals GmbH, 12489 Berlin, Germany
| | - Paul Rennert
- Octapharma Biopharmaceuticals GmbH, 12489 Berlin, Germany
| | | | | | - Markus Krieger
- Octapharma Biopharmaceuticals GmbH, 69120 Heidelberg, Germany
| | - Guido Kohla
- Octapharma Biopharmaceuticals GmbH, 12489 Berlin, Germany
| | - Christoph Kannicht
- Octapharma Biopharmaceuticals GmbH, 69120 Heidelberg, Germany.,Octapharma Biopharmaceuticals GmbH, 12489 Berlin, Germany
| | - Philipp Wiedemann
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany.,Institute for Medical Technology, University Heidelberg and the Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | | |
Collapse
|
6
|
Fiete D, Mi Y, Beranek M, Baenziger NL, Baenziger JU. The glycan-specific sulfotransferase (R77W)GalNAc-4-ST1 putatively responsible for peeling skin syndrome has normal properties consistent with a simple sequence polymorphisim. Glycobiology 2017; 27:450-456. [PMID: 28204496 PMCID: PMC5444257 DOI: 10.1093/glycob/cwx018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/10/2017] [Indexed: 11/14/2022] Open
Abstract
Expanded access to DNA sequencing now fosters ready detection of site-specific human genome alterations whose actual significance requires in-depth functional study to rule in or out disease-causing mutations. This is a particular concern for genomic sequence differences in glycosyltransferases, whose implications are often difficult to assess. A recent whole-exome sequencing study identifies (c.229 C > T) in the GalNAc-4-ST1 glycosyltransferase (CHST8) as a disease-causing missense R77W mutation yielding the genodermatosis peeling skin syndrome (PSS) when homozygous. Cabral et al. (Genomics. 2012;99:202-208) cite this sequence change as reducing keratinocyte GalNAc-4-ST1 activity, thus decreasing glycosaminoglycan sulfation, as the mechanism for this blistering disorder. Such an identification could point toward potential clinical and/or prenatal diagnosis of a harmful medical condition. However, GalNAc-4-ST1 has minimal activity toward glycosaminoglycans, instead modifying terminal β1,4-linked GalNAc on N- and O-linked oligosaccharides on specific glycoproteins. We find expression, processing and catalytic activity of GalNAc-4-ST1 completely equivalent between wild type and (R77W) sulfotransferases. Moreover, keratinocytes have little or no GalNAc-4-ST1 mRNA, indicating that they do not express GalNAc-4-ST1. In addition, loss-of-function of GalNAc-4-ST1 primarily presents as reproductive system aberrations rather than skin effects. These findings, an allele frequency of 0.004357, and a 10-fold difference in prevalence of CHST8 (c.299 C > T, R77W) across different ethnic groups, suggest that this sequence represents a "passenger" distributed polymorphism, a simple sequence variant form of the enzyme having normal activity, rather than a "driver" disease-causing mutation that accounts for PSS. This study presents an example for guiding biomedical research initiatives, as well as medical and personal/family perspectives, regarding newly-identified genomic sequence differences.
Collapse
Affiliation(s)
- Dorothy Fiete
- Departments of Biochemistry and Molecular Biophysics, and Neuroscience, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Yiling Mi
- Departments of Biochemistry and Molecular Biophysics, and Neuroscience, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Mary Beranek
- Departments of Biochemistry and Molecular Biophysics, and Neuroscience, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Nancy L Baenziger
- Departments of Biochemistry and Molecular Biophysics, and Neuroscience, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Jacques U Baenziger
- Departments of Biochemistry and Molecular Biophysics, and Neuroscience, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| |
Collapse
|
7
|
Gabius HJ, Manning JC, Kopitz J, André S, Kaltner H. Sweet complementarity: the functional pairing of glycans with lectins. Cell Mol Life Sci 2016; 73:1989-2016. [PMID: 26956894 PMCID: PMC11108359 DOI: 10.1007/s00018-016-2163-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 02/07/2023]
Abstract
Carbohydrates establish the third alphabet of life. As part of cellular glycoconjugates, the glycans generate a multitude of signals in a minimum of space. The presence of distinct glycotopes and the glycome diversity are mapped by sugar receptors (antibodies and lectins). Endogenous (tissue) lectins can read the sugar-encoded information and translate it into functional aspects of cell sociology. Illustrated by instructive examples, each glycan has its own ligand properties. Lectins with different folds can converge to target the same epitope, while intrafamily diversification enables functional cooperation and antagonism. The emerging evidence for the concept of a network calls for a detailed fingerprinting. Due to the high degree of plasticity and dynamics of the display of genes for lectins the validity of extrapolations between different organisms of the phylogenetic tree yet is inevitably limited.
Collapse
Affiliation(s)
- H-J Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539, Munich, Germany.
| | - J C Manning
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539, Munich, Germany
| | - J Kopitz
- Institute of Pathology, Department of Applied Tumor Biology, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - S André
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539, Munich, Germany
| | - H Kaltner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539, Munich, Germany
| |
Collapse
|
8
|
Stanley P. What Have We Learned from Glycosyltransferase Knockouts in Mice? J Mol Biol 2016; 428:3166-3182. [PMID: 27040397 DOI: 10.1016/j.jmb.2016.03.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 11/16/2022]
Abstract
There are five major classes of glycan including N- and O-glycans, glycosaminoglycans, glycosphingolipids, and glycophosphatidylinositol anchors, all expressed at the molecular frontier of each mammalian cell. Numerous biological consequences of altering the expression of mammalian glycans are understood at a mechanistic level, but many more remain to be characterized. Mouse mutants with deleted, defective, or misexpressed genes that encode activities necessary for glycosylation have led the way to identifying key functions of glycans in biology. However, with the advent of exome sequencing, humans with mutations in genes involved in glycosylation are also revealing specific requirements for glycans in mammalian development. The aim of this review is to summarize glycosylation genes that are necessary for mouse embryonic development, pathway-specific glycosylation genes whose deletion leads to postnatal morbidity, and glycosylation genes for which effects are mild, but perturbation of the organism may reveal functional consequences. General strategies for generating and interpreting the phenotype of mice with glycosylation defects are discussed in relation to human congenital disorders of glycosylation (CDG).
Collapse
Affiliation(s)
- Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY 10461, USA.
| |
Collapse
|
9
|
Che MI, Huang J, Hung JS, Lin YC, Huang MJ, Lai HS, Hsu WM, Liang JT, Huang MC. β1, 4-N-acetylgalactosaminyltransferase III modulates cancer stemness through EGFR signaling pathway in colon cancer cells. Oncotarget 2015; 5:3673-84. [PMID: 25003232 PMCID: PMC4116512 DOI: 10.18632/oncotarget.1981] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells are cancer cells characterized with tumor initiating capacity. β1,4-N-acetylgalactosaminyltransferase III (B4GALNT3) synthesizes GalNAcβ1-4GlcNAc (LacdiNAc) which contributes to self-renewal of mouse embryonic stem cells. We previously showed that B4GALNT3 overexpression enhances colon cancer cell malignant phenotypes in vitro and in vivo. However, the role of B4GALNT3 in cancer stemness remains unclear. We found that B4GALNT3 expression was positively correlated with advanced stages and poor survival in colorectal cancer patients. Knockdown of B4GALNT3 using small interfering (si) RNAs in colon cancer cell lines (HCT116, SW480, HCT15, and HT29 cells) decreased sphere formation and the expression of stem cell markers, OCT4 and NANOG. The expression of B4GALNT3 was upregulated in colonospheres. Interestingly, we found that B4GALNT3 primarily modified N-glycans of EGFR with LacdiNAc by Wisteria floribunda agglutinin (WFA) pull down assays. B4GALNT3 knockdown suppressed EGF-induced phosphorylation of EGFR and its downstream signaling molecules. Furthermore, EGF-induced degradation of EGFR was facilitated. In addition, EGF-induced migration and invasion were significantly suppressed by B4GALNT3 knockdown. Taken together, these data suggest B4GALNT3 regulates cancer stemness and the invasive properties of colon cancer cells through modifying EGFR glycosylation and signaling. Our results provide novel insights into the role of LacdiNAc in colorectal cancer development.
Collapse
Affiliation(s)
- Mei-Ieng Che
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | - Jin-Tung Liang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Min-Chuan Huang
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
10
|
Enhanced expression of the β4-N-acetylgalactosaminyltransferase 4 gene impairs tumor growth of human breast cancer cells. Biochem Biophys Res Commun 2015; 461:80-5. [PMID: 25858323 DOI: 10.1016/j.bbrc.2015.03.173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 03/29/2015] [Indexed: 11/22/2022]
Abstract
Two β4-N-acetylgalactosaminyltransferases (β4GalNAcTs), β4GalNAcT3 and β4GalNAcT4, have been shown to be involved in the synthesis of the GalNAcβ1 → 4GlcNAc (LacdiNAc) group expressed on the outer branches of N- and/or O-glycans, and only β4GalNAcT4 is expressed in human mammary gland. We found that the expression level of the LacdiNAc group decreases as human breast cancers progress. To investigate biological significances of this disaccharide in human breast cancers, we transfected the FLAG-tagged β4GalNAcT4 cDNA into MDA-MB-231 cells, and obtained several clones showing enhanced expression of the gene. Clones 1 and 2 showed 15 and 9 times more transcript than mock-transfected cells. The FLAG-β4GalNAcT4 protein and its product, the LacdiNAc group, were detected in clone 1 and 2 cells. No change was observed in their growth rates while significant decreases in colony forming and invasive abilities were observed for clone 1 and 2 cells. When clone 1 cells were transplanted subcutaneously into nude mice, no tumors were formed while tumors were formed with mock-transfected cells. These results indicate that the expression of the LacdiNAc group is quite important for the suppression of malignancies of the MDA-MB-231 cells.
Collapse
|
11
|
Xue J, Laine RA, Matta KL. Enhancing MS(n) mass spectrometry strategy for carbohydrate analysis: A b2 ion spectral library. J Proteomics 2014; 112:224-49. [PMID: 25175058 DOI: 10.1016/j.jprot.2014.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 06/24/2014] [Accepted: 07/12/2014] [Indexed: 11/24/2022]
Abstract
UNLABELLED Searchable mass spectral libraries for glycans may be enhanced using a B2 ion library. Using a quadrupole ion-trap mass spectrometer, successive fragmentations of sodiated oligosaccharides were carried out in the positive ion mode. In B,Y-type fragmentation, disaccharide B2 ions are generated which correspond to specific glycosidic linkages using progressive MS stages. Fragmentation of "B2 ions" corresponding to glycosidic linkages such as Hex-Fuc, Hex-Hex, Hex-HexNAc, HexNAc-Hex and HexNAc-HexNAc, were systematically studied in low energy CID and collected to form a "B2 library". Linkages produce characteristic fragmentation patterns in the absence of cross-ring fragmentation. Patterns of "B2 ions" rely on relative stability of glycosidic bonds and carbohydrate-metal complexes in the gas phase. MS(n) studies of linear, branched trisaccharides and tetrasaccharides show that isomers for which B2 ion information is not available are rarely a problem in practice by their absence in an isomeric sequence or by their scarcity in nature. This MS strategy for linkage determination of carbohydrates aided by a "B2 library" was developed with a scope for expansion, providing an improved tool for glycomics. We validated this method examining levels of expressed activities of two glycosyl transferases in cancer cell lines: β3(B3GALNT2) and β4GalNAcT(B4GALNT3&4) that generate GalNAcβ3GlcNAcβ and GalNAcβ4GlcNAcβ. BIOLOGICAL SIGNIFICANCE Glycosylation is an important class of the "postranslationome", which includes manifold aspects of post-translational protein modification, affecting protein conformation, providing ligands for protein receptors [1-5], and encoding unique haptenic [6,7] or antigenic markers for oncology [8-11] and other applications. Identification of individual monomeric units, linkages, ring size, branching and anomerity has posed significant challenges to mass spectrometrists. MS(n) is a growing key instrumental method to differentiate among isomers [12]. While the potential isomers in oligosaccharides are impossibly large [12], likely possibilities can be limited by the biological system, including the expressed glycosyl transferases [13-20]. Mass spectra from sequential stages of collision activation (MS(n)) can supply structural details for precise characterization of linkage, monomer ID, substitutions, anomerity and branching [21-25]. There is a fundamental need for high throughput tools in glycomics to complement proteome studies. In that regard, nothing could be more important than searchable spectral library files for structural confirmation. The National Academy of Science (NAS) report (http://glyco.nas.edu) recommends the need of more than 10,000 synthetic structures of carbohydrates to advance the field of glycomics. This study demonstrates that the general reproducibility of ion trap spectra, and energy independence from modes of ionization and collisional activation, make compiling an MS(n) library for carbohydrate identification an achievable research target [26]. We intend to use the new B2 library for carbohydrate differences found on cancers, where we profile the glycosyltransferases to predict classes of potential structures, and use the library for MS identification of the expected cohort of altered structures.
Collapse
Affiliation(s)
- Jun Xue
- Department of Cancer Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Roger A Laine
- Departments of Biological Sciences and Chemistry, Louisiana State University and A&M College, Baton Rouge, LA 70803, USA; TumorEnd, LLC, Louisiana Emerging Technology Center, Baton Rouge, LA 70803, USA.
| | - Khushi L Matta
- Department of Cancer Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA; TumorEnd, LLC, Louisiana Emerging Technology Center, Baton Rouge, LA 70803, USA.
| |
Collapse
|
12
|
Expression of LacdiNAc groups on N-glycans among human tumors is complex. BIOMED RESEARCH INTERNATIONAL 2014; 2014:981627. [PMID: 25003135 PMCID: PMC4066867 DOI: 10.1155/2014/981627] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/26/2014] [Indexed: 12/19/2022]
Abstract
Aberrant glycosylation of proteins and lipids is one of the characteristic features of malignantly transformed cells. The GalNAcβ1 → 4GlcNAc (LacdiNAc or LDN) group at the nonreducing termini of both N- and O-glycans is not generally found in mammalian cells. We previously showed that the expression level of the LacdiNAc group in N-glycans decreases dramatically during the progression of human breast cancer. In contrast, the enhanced expression of the LacdiNAc group has been shown to be associated with the progression of human prostate, ovarian, and pancreatic cancers. Therefore, the expression of the disaccharide group appears to be dependent on types of tumors. The mechanism of formation of the LacdiNAc group in human tumors and cancer cells has been studied, and two β4-N-acetylgalacto-saminyltransferases (β4GalNAcTs), β4GalNAcT3 and β4GalNAcT4, have been shown to be involved in the biosynthesis of this disaccharide group in a tissue-dependent manner. Transfection of the β4GalNAcT3 gene brought about significant changes in the malignant phenotypes of human neuroblastoma, indicating that this disaccharide group is important for suppressing the tumor growth.
Collapse
|
13
|
Mi Y, Lin A, Fiete D, Steirer L, Baenziger JU. Modulation of mannose and asialoglycoprotein receptor expression determines glycoprotein hormone half-life at critical points in the reproductive cycle. J Biol Chem 2014; 289:12157-12167. [PMID: 24619407 DOI: 10.1074/jbc.m113.544973] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The rate at which glycoproteins are cleared from the circulation has a critical impact on their biologic activity in vivo. We have shown that clearance rates for glycoproteins such as luteinizing hormone (LH) that undergo regulated release into the circulation determine their potency. Two highly abundant, carbohydrate-specific, endocytic receptors, the asialoglycoprotein receptor (ASGR) and the mannose receptor (ManR) are expressed in the liver by parenchymal and sinusoidal endothelial cells, respectively. We demonstrate that the ManR mediates the clearance of glycoproteins such as LH that bear N-linked glycans terminating with β1,4-linked GalNAc-4-SO4, as well as glycoproteins bearing glycans that terminate with Man. Steady state levels of mRNA encoding the ASGR and the ManR are regulated by progesterone in pregnant mice, reaching maximal levels on day 12.5 of pregnancy. Protein expression and glycan-specific binding activity also increase in the livers of pregnant mice. In contrast, ManR mRNA, but not ASGR mRNA, decreases in male mice at the time of sexual maturation. We show that levels of ManR and ASGR expression control the clearance rate for glycoproteins bearing recognized glycans. Thus, reduced expression of the ManR at the time of sexual maturation will increase the potency of LH in vivo, whereas increased expression during pregnancy will reduce LH potency until progesterone and receptor levels fall prior to parturition.
Collapse
Affiliation(s)
- Yiling Mi
- Department of Pathology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110
| | - Angela Lin
- Department of Pathology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110
| | - Dorothy Fiete
- Department of Pathology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110
| | - Lindsay Steirer
- Department of Pathology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110
| | - Jacques U Baenziger
- Department of Pathology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110.
| |
Collapse
|
14
|
Schafer CM, Sheikh MO, Zhang D, West CM. Novel regulation of Skp1 by the Dictyostelium AgtA α-galactosyltransferase involves the Skp1-binding activity of its WD40 repeat domain. J Biol Chem 2014; 289:9076-88. [PMID: 24550398 DOI: 10.1074/jbc.m113.528679] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The role of Skp1 as an adaptor protein that links Cullin-1 to F-box proteins in E3 Skp1/Cullin-1/F-box protein (SCF) ubiquitin ligases is well characterized. In the social amoeba Dictyostelium and probably many other unicellular eukaryotes, Skp1 is modified by a pentasaccharide attached to a hydroxyproline near its C terminus. This modification is important for oxygen-sensing during Dictyostelium development and is mediated by a HIF-α type prolyl 4-hydroxylase and five sequentially acting cytoplasmic glycosyltransferase activities. Gene disruption studies show that AgtA, the enzyme responsible for addition of the final two galactose residues, in α-linkages to the Skp1 core trisaccharide, is unexpectedly critical for oxygen-dependent terminal development. AgtA possesses a WD40 repeat domain C-terminal to its single catalytic domain and, by use of domain deletions, binding studies, and enzyme assays, we find that the WD40 repeats confer a salt-sensitive second-site binding interaction with Skp1 that mediates novel catalytic activation in addition to simple substrate recognition. In addition, AgtA binds similarly well to precursor isoforms of Skp1 by a salt-sensitive mechanism that competes with binding to an F-box protein and recognition by early modification enzymes, and the effect of binding is diminished when AgtA modifies Skp1. Genetic studies show that loss of AgtA is more severe when an earlier glycosylation step is blocked, and overexpressed AgtA is deleterious if catalytically inactivated. Together, the findings suggest that AgtA mediates non-enzymatic control of unmodified and substrate precursor forms of Skp1 by a binding mechanism that is normally relieved by switch-like activation of its glycosylation function.
Collapse
Affiliation(s)
- Christopher M Schafer
- From the Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | | | | | | |
Collapse
|
15
|
Toegel S, Bieder D, André S, Altmann F, Walzer SM, Kaltner H, Hofstaetter JG, Windhager R, Gabius HJ. Glycophenotyping of osteoarthritic cartilage and chondrocytes by RT-qPCR, mass spectrometry, histochemistry with plant/human lectins and lectin localization with a glycoprotein. Arthritis Res Ther 2013; 15:R147. [PMID: 24289744 PMCID: PMC3978707 DOI: 10.1186/ar4330] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 09/12/2013] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION This study aimed to characterize the glycophenotype of osteoarthritic cartilage and human chondrocytes. METHODS Articular knee cartilage was obtained from nine osteoarthritis (OA) patients. mRNA levels for 27 glycosyltransferases were analyzed in OA chondrocytes using RT-qPCR. Additionally, N- and O-glycans were quantified using mass-spectrometry. Histologically, two cartilage areas with Mankin scores (MS) either ≤ 4 or ≥ 9 were selected from each patient representing areas of mild and severe OA, respectively. Tissue sections were stained with (1) a selected panel of plant lectins for probing into the OA glycophenotype, (2) the human lectins galectins-1 and -3, and (3) the glycoprotein asialofetuin (ASF) for visualizing β-galactoside-specific endogenous lectins. RESULTS We found that OA chondrocytes expressed oligomannosidic structures as well as non-, mono- and disialylated complex-type N-glycans, and core 2 O-glycans. Reflecting B4GALNT3 mRNA presence in OA chondrocytes, LacdiNAc-terminated structures were detected. Staining profiles for plant and human lectins were dependent on the grade of cartilage degeneration, and ASF-positive cells were observed in significantly higher rates in areas of severe degeneration. CONCLUSIONS In summary, distinct aspects of the glycome in OA cartilage are altered with progressing degeneration. In particular, the alterations measured by galectin-3 and the pan-galectin sensor ASF encourage detailed studies of galectin functionality in OA.
Collapse
|
16
|
Fiete D, Beranek M, Baenziger JU. Peptide-specific transfer of N-acetylgalactosamine to O-linked glycans by the glycosyltransferases β1,4-N-acetylgalactosaminyl transferase 3 (β4GalNAc-T3) and β4GalNAc-T4. J Biol Chem 2012; 287:29204-12. [PMID: 22722940 DOI: 10.1074/jbc.m112.371880] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
N- and O-linked oligosaccharides on pro-opiomelanocortin both bear the unique terminal sequence SO(4)-4-GalNAcβ1,4GlcNAcβ. We previously demonstrated that protein-specific transfer of GalNAc to N-linked oligosaccharides on glycoprotein substrates is dependent on the presence of both an oligosaccharide acceptor and a peptide recognition motif consisting of a cluster of basic amino acids. We characterized how two β1,4-N-acetylgalactosaminyltransferases, β4GalNAc-T3 and β4GalNAc-T4, require the presence of both the peptide recognition motif and the N-linked oligosaccharide acceptors to transfer GalNAc in β1,4-linkage to GlcNAc in vivo and in vitro. We now show that β4GalNAc-T3 and β4GalNAc-T4 are able to utilize the same peptide motif to selectively add GalNAc to β1,6-linked GlcNAc in core 2 O-linked oligosaccharide structures to form Galβ1,3(GalNAcβ1,4GlcNAcβ1,6)GalNAcαSer/Thr. The β1,4-linked GalNAc can be further modified with 4-linked sulfate by either GalNAc-4-sulfotransferase 1 (GalNAc-4-ST1) (CHST8) or GalNAc-4-ST2 (CHST9) or with α2,6-linked N-acetylneuraminic acid by α2,6-sialyltransferase 1 (ST6Gal1), thus generating a family of unique GalNAcβ1,4GlcNAcβ (LacdiNAc)-containing structures on specific glycoproteins.
Collapse
Affiliation(s)
- Dorothy Fiete
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|