1
|
Su B, Xu F, Zhong J, Xu X, Lin J. Rational design on loop regions for precisely regulating flexibility of catalytic center to mitigate overoxidation of prazole sulfides by Baeyer-Villiger monooxygenase. Bioorg Chem 2024; 151:107718. [PMID: 39142195 DOI: 10.1016/j.bioorg.2024.107718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
S-omeprazole and R-rabeprazole are important proton pump inhibitors (PPIs) used for treating peptic disorders. They can be biosynthesized from the corresponding sulfide catalyzed by Baeyer-Villiger monooxygenases (BVMOs). During the development of BVMOs for target sulfoxide preparation, stereoselectivity and overoxidation degree are important factors considered most. In the present study, LnPAMO-Mu15 designed previously and TtPAMO from Thermothelomyces thermophilus showed high (S)- and (R)-configuration stereoselectivity respectively towards thioethers. TtPAMO was found to be capable of oxidating omeprazole sulfide (OPS) and rabeprazole sulfide (RPS) into R-omeprazole and R-rabeprazole respectively. However, the overoxidation issue existed and limited the application of TtPAMO in the biosynthesis of sulfoxides. The structural mechanisms for adverse stereoselectivity between LnPAMO-Mu15 and TtPAMO towards OPS and the overoxidation of OPS by TtPAMO were revealed, based on which, TtPAMO was rationally designed focused on the flexibility of loops near catalytic sites. The variant TtPAMO-S482Y was screened out with lowest overoxidation degree towards OPS and RPS due to the decreased flexibility of catalytic center than TtPAMO. The success in this study not only proved the rationality of the overoxidation mechanism proposed in this study but also provided hints for the development of BVMOs towards thioether substrate for corresponding sulfoxide preparation.
Collapse
Affiliation(s)
- Bingmei Su
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China; Institute of Enzyme Catalysis and Synthetic Biotechnology, Fuzhou University, Fuzhou 350108, China
| | - Fahui Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China
| | - Jinchang Zhong
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China
| | - Xinqi Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China; Institute of Enzyme Catalysis and Synthetic Biotechnology, Fuzhou University, Fuzhou 350108, China.
| | - Juan Lin
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China; Institute of Enzyme Catalysis and Synthetic Biotechnology, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
2
|
Yang G, Pećanac O, Wijma HJ, Rozeboom HJ, de Gonzalo G, Fraaije MW, Mascotti ML. Evolution of the catalytic mechanism at the dawn of the Baeyer-Villiger monooxygenases. Cell Rep 2024; 43:114130. [PMID: 38640062 DOI: 10.1016/j.celrep.2024.114130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/15/2024] [Accepted: 04/04/2024] [Indexed: 04/21/2024] Open
Abstract
Enzymes are crucial for the emergence and sustenance of life on earth. How they became catalytically active during their evolution is still an open question. Two opposite explanations are plausible: acquiring a mechanism in a series of discrete steps or all at once in a single evolutionary event. Here, we use molecular phylogeny, ancestral sequence reconstruction, and biochemical characterization to follow the evolution of a specialized group of flavoprotein monooxygenases, the bacterial Baeyer-Villiger monooxygenases (BVMOs). These enzymes catalyze an intricate chemical reaction relying on three different elements: a reduced nicotinamide cofactor, dioxygen, and a substrate. Characterization of ancestral BVMOs shows that the catalytic mechanism evolved in a series of steps starting from a FAD-binding protein and further acquiring reactivity and specificity toward each of the elements participating in the reaction. Together, the results of our work portray how an intrinsically complex catalytic mechanism emerged during evolution.
Collapse
Affiliation(s)
- Guang Yang
- Molecular Enzymology Group, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Ognjen Pećanac
- Molecular Enzymology Group, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Hein J Wijma
- Molecular Enzymology Group, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Henriëtte J Rozeboom
- Molecular Enzymology Group, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Gonzalo de Gonzalo
- Departamento de Química Orgánica, Universidad de Sevilla, and Centro de Innovación en Química Avanzada (ORFEO-CINQA), 41012 Sevilla, Spain
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Maria Laura Mascotti
- Molecular Enzymology Group, University of Groningen, 9747 AG Groningen, the Netherlands; IMIBIO-SL CONICET, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina.
| |
Collapse
|
3
|
Willetts A. Bicyclo[3.2.0]carbocyclic Molecules and Redox Biotransformations: The Evolution of Closed-Loop Artificial Linear Biocatalytic Cascades and Related Redox-Neutral Systems. Molecules 2023; 28:7249. [PMID: 37959669 PMCID: PMC10649493 DOI: 10.3390/molecules28217249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/11/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
The role of cofactor recycling in determining the efficiency of artificial biocatalytic cascades has become paramount in recent years. Closed-loop cofactor recycling, which initially emerged in the 1990s, has made a valuable contribution to the development of this aspect of biotechnology. However, the evolution of redox-neutral closed-loop cofactor recycling has a longer history that has been integrally linked to the enzymology of oxy-functionalised bicyclo[3.2.0]carbocyclic molecule metabolism throughout. This review traces that relevant history from the mid-1960s to current times.
Collapse
Affiliation(s)
- Andrew Willetts
- Curnow Consultancies Ltd., Trewithen House, Helston TR13 9PQ, Cornwall, UK
| |
Collapse
|
4
|
Gäfe S, Niemann HH. Structural basis of regioselective tryptophan dibromination by the single-component flavin-dependent halogenase AetF. Acta Crystallogr D Struct Biol 2023; 79:596-609. [PMID: 37314407 PMCID: PMC10306068 DOI: 10.1107/s2059798323004254] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/15/2023] [Indexed: 06/15/2023] Open
Abstract
The flavin-dependent halogenase (FDH) AetF successively brominates tryptophan at C5 and C7 to generate 5,7-dibromotryptophan. In contrast to the well studied two-component tryptophan halogenases, AetF is a single-component flavoprotein monooxygenase. Here, crystal structures of AetF alone and in complex with various substrates are presented, representing the first experimental structures of a single-component FDH. Rotational pseudosymmetry and pseudomerohedral twinning complicated the phasing of one structure. AetF is structurally related to flavin-dependent monooxygenases. It contains two dinucleotide-binding domains for binding the ADP moiety with unusual sequences that deviate from the consensus sequences GXGXXG and GXGXXA. A large domain tightly binds the cofactor flavin adenine dinucleotide (FAD), while the small domain responsible for binding the nicotinamide adenine dinucleotide (NADP) is unoccupied. About half of the protein forms additional structural elements containing the tryptophan binding site. FAD and tryptophan are about 16 Å apart. A tunnel between them presumably allows diffusion of the active halogenating agent hypohalous acid from FAD to the substrate. Tryptophan and 5-bromotryptophan bind to the same site but with a different binding pose. A flip of the indole moiety identically positions C5 of tryptophan and C7 of 5-bromotryptophan next to the tunnel and to catalytic residues, providing a simple explanation for the regioselectivity of the two successive halogenations. AetF can also bind 7-bromotryptophan in the same orientation as tryptophan. This opens the way for the biocatalytic production of differentially dihalogenated tryptophan derivatives. The structural conservation of a catalytic lysine suggests a way to identify novel single-component FDHs.
Collapse
Affiliation(s)
- Simon Gäfe
- Department of Chemistry, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld, Germany
| | - Hartmut H. Niemann
- Department of Chemistry, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld, Germany
| |
Collapse
|
5
|
Pimviriyakul P, Chaiyen P. Formation and stabilization of C4a-hydroperoxy-FAD by the Arg/Asn pair in HadA monooxygenase. FEBS J 2023; 290:176-195. [PMID: 35942637 DOI: 10.1111/febs.16591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/25/2022] [Accepted: 08/08/2022] [Indexed: 01/14/2023]
Abstract
HadA monooxygenase catalyses the detoxification of halogenated phenols and nitrophenols via dehalogenation and denitration respectively. C4a-hydroperoxy-FAD is a key reactive intermediate wherein its formation, protonation and stabilization reflect enzyme efficiency. Herein, transient kinetics, site-directed mutagenesis and pH-dependent behaviours of HadA reaction were employed to identify key features stabilizing C4a-adducts in HadA. The formation of C4a-hydroperoxy-FAD is pH independent, whereas its decay and protonation of distal oxygen are associated with pKa values of 8.5 and 8.4 respectively. These values are correlated with product formation within a pH range of 7.6-9.1, indicating the importance of adduct stabilization to enzymatic efficiency. We identified Arg101 as a key residue for reduced FAD (FADH- ) binding and C4a-hydroperoxy-FAD formation due to the loss of these abilities as well as enzyme activity in HadAR101A and HadAR101Q . Mutations of the neighbouring Asn447 do not affect the rate of C4a-hydroperoxy-FAD formation; however, they impair FADH- binding. The disruption of Arg101/Asn447 hydrogen bond networking in HadAN447A increases the pKa value of C4a-hydroperoxy-FAD decay to 9.5; however, this pKa was not altered in HadAN447D (pKa of 8.5). Thus, Arg101/Asn447 pair should provide important interactions for FADH- binding and maintain the pKa associated with H2 O2 elimination from C4a-hydroperoxy-FAD in HadA. In the presence of substrate, the formation of C4a-hydroxy-FAD at the hydroxylation step is pH insensitive, and it dehydrates to form the oxidized FAD with pKa of 7.9. This structural feature might help elucidate how the reactive intermediate was stabilized in other flavin-dependent monooxygenases.
Collapse
Affiliation(s)
- Panu Pimviriyakul
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| |
Collapse
|
6
|
Immobilization of Baeyer-Villiger monooxygenase from acetone grown Fusarium sp. Biotechnol Lett 2022; 44:461-471. [PMID: 35083583 DOI: 10.1007/s10529-022-03224-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/11/2022] [Indexed: 02/08/2023]
Abstract
OBJECTIVE A novel biocatalyst for Baeyer-Villiger oxidations is necessary for pharmaceutical and chemical industries, so this study aims to find a Baeyer-Villiger monooxygenase (BVMO) and to improve its stability by immobilization. RESULTS Acetone, the simplest ketone, was selected as the only carbon source for the screening of microorganisms with a BVMO. A eukaryote, Fusarium sp. NBRC 109816, with a BVMO (FBVMO), was isolated from a soil sample. FBVMO was overexpressed in E. coli and successfully immobilized by the organic-inorganic nanocrystal formation method. The immobilization improved the thermostability of FBVMO. Substrate specificity investigation revealed that both free and immobilized FBVMO were found to show catalytic activities not only for Baeyer-Villiger oxidation of ketones to esters but also for oxidation of sulfides to sulfoxides. Furthermore, a preparative scale reaction using immobilized FBVMO was successfully conducted. CONCLUSIONS FBVMO was discovered from an environmental sample, overexpressed in E. coli, and immobilized by the organic-inorganic nanocrystal formation method. The immobilization successfully improved its thermostability.
Collapse
|
7
|
Overview of structurally homologous flavoprotein oxidoreductases containing the low M r thioredoxin reductase-like fold - A functionally diverse group. Arch Biochem Biophys 2021; 702:108826. [PMID: 33684359 DOI: 10.1016/j.abb.2021.108826] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/23/2021] [Accepted: 02/27/2021] [Indexed: 01/12/2023]
Abstract
Structural studies show that enzymes have a limited number of unique folds, although structurally related enzymes have evolved to perform a large variety of functions. In this review, we have focused on enzymes containing the low molecular weight thioredoxin reductase (low Mr TrxR) fold. This fold consists of two domains, both containing a three-layer ββα sandwich Rossmann-like fold, serving as flavin adenine dinucleotide (FAD) and, in most cases, pyridine nucleotide (NAD(P)H) binding-domains. Based on a search of the Protein Data Bank for all published structures containing the low Mr TrxR-like fold, we here present a comprehensive overview of enzymes with this structural architecture. These range from TrxR-like ferredoxin/flavodoxin NAD(P)+ oxidoreductases, through glutathione reductase, to NADH peroxidase. Some enzymes are solely composed of the low Mr TrxR-like fold, while others contain one or two additional domains. In this review, we give a detailed description of selected enzymes containing only the low Mr TrxR-like fold, however, catalyzing a diversity of chemical reactions. Our overview of this structurally similar, yet functionally distinct group of flavoprotein oxidoreductases highlights the fascinating and increasing number of studies describing the diversity among these enzymes, especially during the last decade(s).
Collapse
|
8
|
Microbial Modifications of Androstane and Androstene Steroids by Penicillium vinaceum. Molecules 2020; 25:molecules25184226. [PMID: 32942593 PMCID: PMC7570940 DOI: 10.3390/molecules25184226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 01/07/2023] Open
Abstract
The biotransformation of steroid compounds is a promising, environmentally friendly route to new pharmaceuticals and hormones. One of the reaction types common in the metabolic fate of steroids is Baeyer-Villiger oxidation, which in the case of cyclic ketones, such as steroids, leads to lactones. Fungal enzymes catalyzing this reaction, Baeyer-Villiger monooxygenases (BVMOs), have been shown to possess broad substrate scope, selectivity, and catalytic performance competitive to chemical oxidation, being far more environmentally green. This study covers the biotransformation of a series of androstane steroids (epiandrosterone and androsterone) and androstene steroids (progesterone, pregnenolone, dehydroepiandrosterone, androstenedione, 19-OH-androstenedione, testosterone, and 19-nortestosterone) by the cultures of filamentous fungus Penicillium vinaceum AM110. The transformation was monitored by GC and the resulting products were identified on the basis of chromatographic and spectral data. The investigated fungus carries out effective Baeyer-Villiger oxidation of the substrates. Interestingly, introduction of the 19-OH group into androstenedione skeleton has significant inhibitory effect on the BVMO activity, as the 10-day transformation leaves half of the 19-OH-androstenedione unreacted. The metabolic fate of epiandrosterone and androsterone, the only 5α-saturated substrates among the investigated compounds, is more complicated. The transformation of these two substrates combined with time course monitoring revealed that each substrate is converted into three products, corresponding to oxidation at C-3 and C-17, with different time profiles and yields.
Collapse
|
9
|
Cascate reactions of progesterone by mycelia and culture broth from marine-derived fungus Aspergillus sydowii CBMAI 935. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Ji X, Tu J, Song Y, Zhang C, Wang L, Li Q, Ju J. A Luciferase-Like Monooxygenase and Flavin Reductase Pair AbmE2/AbmZ Catalyzes Baeyer–Villiger Oxidation in Neoabyssomicin Biosynthesis. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05488] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xiaoqi Ji
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- College of Oceanology, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Jiajia Tu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Yongxiang Song
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Chunyan Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Liyan Wang
- College of Life Sciences and Oceanography, Shenzhen University, 3688 Nanhai Ave., Shenzhen 518060, China
| | - Qinglian Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- College of Oceanology, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| |
Collapse
|
11
|
Fürst MJLJ, Gran-Scheuch A, Aalbers FS, Fraaije MW. Baeyer–Villiger Monooxygenases: Tunable Oxidative Biocatalysts. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03396] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Maximilian J. L. J. Fürst
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
| | - Alejandro Gran-Scheuch
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
- Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago 7820436, Chile
| | - Friso S. Aalbers
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
| | - Marco W. Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
| |
Collapse
|
12
|
Herga M, Gasparič A, Bitenc M, Pohar A, Likozar B. Development, optimization and scale-up of stereo-selective enzymatic Baeyer–Villiger oxidation of pyrmetazole to esomeprazole active ingredient in an industrial-scale slurry reactor. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.12.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Nguyen TD, Choi GE, Gu DH, Seo PW, Kim JW, Park JB, Kim JS. Structural basis for the selective addition of an oxygen atom to cyclic ketones by Baeyer-Villiger monooxygenase from Parvibaculum lavamentivorans. Biochem Biophys Res Commun 2019; 512:564-570. [PMID: 30914200 DOI: 10.1016/j.bbrc.2019.03.114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 03/18/2019] [Indexed: 11/17/2022]
Abstract
Baeyer-Villiger monooxygenase (BVMO) catalyzes insertion of an oxygen atom into aliphatic or cyclic ketones with high regioselectivity. The BVMOs from Parvibaculum lavamentivorans (BVMOParvi) and Oceanicola batsensis (BVMOOcean) are interesting because of their homologies, with >40% sequence identity, and reaction with the same cyclic ketones with a methyl moiety to give different products. The revealed BVMOParvi structure shows that BVMOParvi forms a two-domain structure like other BVMOs. It has two inserted residues, compared with BVMOOcean, that form a bulge near the bound flavin adenine dinucleotide in the active site. Furthermore, this bulge is linked to a nearby α-helix via a disulfide bond, probably restricting access of the bulky methyl group of the substrate to this bulge. Another sequence motif at the entrance of the active site (Ala-Ser in BVMOParvi and Ser-Thr in BVMOOcean) allows a large volume in BVMOParvi. These minute differences may discriminate a substrate orientation in both BVMOs from the initial substrate binding pocket to the final oxygenation site, resulting in the inserted oxygen atom being in different positions of the same substrate.
Collapse
Affiliation(s)
- Tien Duc Nguyen
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Go-Eun Choi
- Department of Food Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Do-Heon Gu
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Pil-Won Seo
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ji-Won Kim
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jin-Byung Park
- Department of Food Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jeong-Sun Kim
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
14
|
Tolmie C, Smit MS, Opperman DJ. Native roles of Baeyer–Villiger monooxygenases in the microbial metabolism of natural compounds. Nat Prod Rep 2019; 36:326-353. [DOI: 10.1039/c8np00054a] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Baeyer–Villiger monooxygenases function in the primary metabolism of atypical carbon sources, as well as the synthesis of complex microbial metabolites.
Collapse
Affiliation(s)
- Carmien Tolmie
- Department of Biotechnology
- University of the Free State
- Bloemfontein
- South Africa
| | - Martha S. Smit
- Department of Biotechnology
- University of the Free State
- Bloemfontein
- South Africa
| | | |
Collapse
|
15
|
Alternative Splicing of the Aflatoxin-Associated Baeyer⁻Villiger Monooxygenase from Aspergillus flavus: Characterisation of MoxY Isoforms. Toxins (Basel) 2018; 10:toxins10120521. [PMID: 30563144 PMCID: PMC6315744 DOI: 10.3390/toxins10120521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/01/2018] [Accepted: 12/03/2018] [Indexed: 01/24/2023] Open
Abstract
Aflatoxins are carcinogenic mycotoxins that are produced by the filamentous fungus Aspergillus flavus, a contaminant of numerous food crops. Aflatoxins are synthesised via the aflatoxin biosynthesis pathway, with the enzymes involved encoded by the aflatoxin biosynthesis gene cluster. MoxY is a type I Baeyer–Villiger monooxygenase (BVMO), responsible for the conversion of hydroxyversicolorone (HVN) and versicolorone (VN) to versiconal hemiacetal acetate (VHA) and versiconol acetate (VOAc), respectively. Using mRNA data, an intron near the C-terminus was identified that is alternatively spliced, creating two possible MoxY isoforms which exist in vivo, while analysis of the genomic DNA suggests an alternative start codon leading to possible elongation of the N-terminus. These four variants of the moxY gene were recombinantly expressed in Escherichia coli, and their activity evaluated with respect to their natural substrates HVN and VN, as well as surrogate ketone substrates. Activity of the enzyme is absolutely dependent on the additional 22 amino acid residues at the N-terminus. Two MoxY isoforms with alternative C-termini, MoxYAltN and MoxYAltNC, converted HVN and VN, in addition to a range of ketone substrates. Stability and flavin-binding data suggest that MoxYAltN is, most likely, the dominant isoform. MoxYAltNC is generated by intron splicing, in contrast to intron retention, which is the most prevalent type of alternative splicing in ascomycetes. The alternative C-termini did not alter the substrate acceptance profile, or regio- or enantioselectivity of the enzyme, but did significantly affect the solubility and stability.
Collapse
|
16
|
Integrated analysis of ethionamide resistance loci in Mycobacterium tuberculosis clinical isolates. Tuberculosis (Edinb) 2018; 113:163-174. [DOI: 10.1016/j.tube.2018.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/15/2018] [Accepted: 08/22/2018] [Indexed: 01/31/2023]
|
17
|
Kubitza C, Faust A, Gutt M, Gäth L, Ober D, Scheidig AJ. Crystal structure of pyrrolizidine alkaloid N-oxygenase from the grasshopper Zonocerus variegatus. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2018; 74:422-432. [PMID: 29717713 DOI: 10.1107/s2059798318003510] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/28/2018] [Indexed: 11/10/2022]
Abstract
The high-resolution crystal structure of the flavin-dependent monooxygenase (FMO) from the African locust Zonocerus variegatus is presented and the kinetics of structure-based protein variants are discussed. Z. variegatus expresses three flavin-dependent monooxygenase (ZvFMO) isoforms which contribute to a counterstrategy against pyrrolizidine alkaloids (PAs). PAs are protoxic compounds produced by some angiosperm lineages as a chemical defence against herbivores. N-Oxygenation of PAs and the accumulation of PA N-oxides within their haemolymph result in two evolutionary advantages for these insects: (i) they circumvent the defence mechanism of their food plants and (ii) they can use PA N-oxides to protect themselves against predators, which cannot cope with the toxic PAs. Despite a high degree of sequence identity and a similar substrate spectrum, the three ZvFMO isoforms differ greatly in enzyme activity. Here, the crystal structure of the Z. variegatus PA N-oxygenase (ZvPNO), the most active ZvFMO isoform, is reported at 1.6 Å resolution together with kinetic studies of a second isoform, ZvFMOa. This is the first available crystal structure of an FMO from class B (of six different FMO subclasses, A-F) within the family of flavin-dependent monooxygenases that originates from a more highly developed organism than yeast. Despite the differences in sequence between family members, their overall structure is very similar. This indicates the need for high conservation of the three-dimensional structure for this type of reaction throughout all kingdoms of life. Nevertheless, this structure provides the closest relative to the human enzyme that is currently available for modelling studies. Of note, the crystal structure of ZvPNO reveals a unique dimeric arrangement as well as small conformational changes within the active site that have not been observed before. A newly observed kink within helix α8 close to the substrate-binding path might indicate a potential mechanism for product release. The data show that even single amino-acid exchanges in the substrate-entry path, rather than the binding site, have a significant impact on the specific enzyme activity of the isoforms.
Collapse
Affiliation(s)
- Christian Kubitza
- Structural Biology, Zoological Institute, Kiel University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Annette Faust
- Structural Biology, Zoological Institute, Kiel University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Miriam Gutt
- Biochemical Ecology and Molecular Evolution, Botanical Institute, Kiel University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Luzia Gäth
- Structural Biology, Zoological Institute, Kiel University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Dietrich Ober
- Biochemical Ecology and Molecular Evolution, Botanical Institute, Kiel University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Axel J Scheidig
- Structural Biology, Zoological Institute, Kiel University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| |
Collapse
|
18
|
Bisagni S, Abolhalaj M, de Brevern AG, Rebehmed J, Hatti-Kaul R, Mamo G. Enhancing the Activity of a Dietzia
sp. D5 Baeyer-Villiger Monooxygenase towards Cyclohexanone by Saturation Mutagenesis. ChemistrySelect 2017. [DOI: 10.1002/slct.201701212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Serena Bisagni
- Biotechnology, Department of Chemistry; Centre for Chemistry and Chemical Engineering; Lund University; Box 124 SE-221 00 Lund Sweden
- Johnson Matthey; Cambridge Science Park 28 CB4 0FP Cambridge United Kingdom
| | - Milad Abolhalaj
- Department of Immunotechnology; Medicon Village; Scheelevägen 2 22100 Lund Sweden
| | - Alexandre G. de Brevern
- Inserm U1134; Paris France
- Université Paris Diderot; Sorbonne, Paris Cité, UMR_S 1134; Paris France
- Institut National de la Transfusion Sanguine; Paris France
- Laboratory of Excellence GR-Ex; Paris France
| | - Joseph Rebehmed
- Inserm U1134; Paris France
- Université Paris Diderot; Sorbonne, Paris Cité, UMR_S 1134; Paris France
- Institut National de la Transfusion Sanguine; Paris France
- Laboratory of Excellence GR-Ex; Paris France
- Department of Computer Science and Mathematics; Lebanese American University; Byblos 1 h401 2010 Lebanon
| | - Rajni Hatti-Kaul
- Biotechnology, Department of Chemistry; Centre for Chemistry and Chemical Engineering; Lund University; Box 124 SE-221 00 Lund Sweden
| | - Gashaw Mamo
- Biotechnology, Department of Chemistry; Centre for Chemistry and Chemical Engineering; Lund University; Box 124 SE-221 00 Lund Sweden
| |
Collapse
|
19
|
|
20
|
Musumeci MA, Lozada M, Rial DV, Mac Cormack WP, Jansson JK, Sjöling S, Carroll J, Dionisi HM. Prospecting Biotechnologically-Relevant Monooxygenases from Cold Sediment Metagenomes: An In Silico Approach. Mar Drugs 2017; 15:E114. [PMID: 28397770 PMCID: PMC5408260 DOI: 10.3390/md15040114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/20/2017] [Accepted: 03/23/2017] [Indexed: 11/16/2022] Open
Abstract
The goal of this work was to identify sequences encoding monooxygenase biocatalysts with novel features by in silico mining an assembled metagenomic dataset of polar and subpolar marine sediments. The targeted enzyme sequences were Baeyer-Villiger and bacterial cytochrome P450 monooxygenases (CYP153). These enzymes have wide-ranging applications, from the synthesis of steroids, antibiotics, mycotoxins and pheromones to the synthesis of monomers for polymerization and anticancer precursors, due to their extraordinary enantio-, regio-, and chemo- selectivity that are valuable features for organic synthesis. Phylogenetic analyses were used to select the most divergent sequences affiliated to these enzyme families among the 264 putative monooxygenases recovered from the ~14 million protein-coding sequences in the assembled metagenome dataset. Three-dimensional structure modeling and docking analysis suggested features useful in biotechnological applications in five metagenomic sequences, such as wide substrate range, novel substrate specificity or regioselectivity. Further analysis revealed structural features associated with psychrophilic enzymes, such as broader substrate accessibility, larger catalytic pockets or low domain interactions, suggesting that they could be applied in biooxidations at room or low temperatures, saving costs inherent to energy consumption. This work allowed the identification of putative enzyme candidates with promising features from metagenomes, providing a suitable starting point for further developments.
Collapse
Affiliation(s)
- Matías A Musumeci
- Laboratorio de Microbiología Ambiental, Centro para el Estudio de Sistemas Marinos, CONICET, Puerto Madryn, Chubut U9120ACD, Argentina.
| | - Mariana Lozada
- Laboratorio de Microbiología Ambiental, Centro para el Estudio de Sistemas Marinos, CONICET, Puerto Madryn, Chubut U9120ACD, Argentina.
| | - Daniela V Rial
- Área Biología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 531 S2002LRK Rosario, Argentina.
| | - Walter P Mac Cormack
- Instituto Antártico Argentino, Ciudad Autónoma de Buenos Aires C1010AAZ, Argentina.
- Instituto de Nanobiotecnología (NANOBIOTEC), CONICET-Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires C1113AAD, Argentina.
| | - Janet K Jansson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | - Sara Sjöling
- School of Natural Sciences and Environmental Studies, Södertörn University, 141 89 Huddinge, Sweden.
| | - JoLynn Carroll
- Akvaplan-niva, Fram-High North Research Centre for Climate and the Environment, NO-9296 Tromsø, Norway.
- ARCEx-Research Centre for Arctic Petroleum Exploration, Department of Geosciences, UiT The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Hebe M Dionisi
- Laboratorio de Microbiología Ambiental, Centro para el Estudio de Sistemas Marinos, CONICET, Puerto Madryn, Chubut U9120ACD, Argentina.
| |
Collapse
|
21
|
Panek A, Świzdor A, Milecka-Tronina N, Panek JJ. Insight into the orientational versatility of steroid substrates-a docking and molecular dynamics study of a steroid receptor and steroid monooxygenase. J Mol Model 2017; 23:96. [PMID: 28251412 PMCID: PMC5332494 DOI: 10.1007/s00894-017-3278-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/13/2017] [Indexed: 12/11/2022]
Abstract
Numerous steroids are essential plant, animal, and human hormones. The medical and industrial applications of these hormones require the identification of new synthetic routes, including biotransformations. The metabolic fate of a steroid can be complicated; it may be transformed into a variety of substituted derivatives. This may be because a steroid molecule can adopt several possible orientations in the binding pocket of a receptor or an enzyme. The present study, based on docking and molecular dynamics, shows that it is indeed possible for a steroid molecule to bind to a receptor binding site in two or more orientations (normal, head-to-tail reversed, upside down). Three steroids were considered: progesterone, dehydroepiandrosterone, and 7-oxo-dehydroepiandrosterone. Two proteins were employed as hosts: the human mineralocorticoid receptor and a bacterial Baeyer-Villiger monooxygenase. When the steroids were in nonstandard orientations, the estimated binding strength was found to be only moderately diminished and the network of hydrogen bonds between the steroid and the host was preserved.
Collapse
Affiliation(s)
- Anna Panek
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, C. K. Norwida 25, 50-375, Wrocław, Poland
| | - Alina Świzdor
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, C. K. Norwida 25, 50-375, Wrocław, Poland
| | - Natalia Milecka-Tronina
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, C. K. Norwida 25, 50-375, Wrocław, Poland
| | - Jarosław J Panek
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland.
| |
Collapse
|
22
|
Colpa DI, Fraaije MW. High overexpression of dye decolorizing peroxidase TfuDyP leads to the incorporation of heme precursor protoporphyrin IX. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.08.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Chen K, Wu S, Zhu L, Zhang C, Xiang W, Deng Z, Ikeda H, Cane DE, Zhu D. Substitution of a Single Amino Acid Reverses the Regiospecificity of the Baeyer-Villiger Monooxygenase PntE in the Biosynthesis of the Antibiotic Pentalenolactone. Biochemistry 2016; 55:6696-6704. [PMID: 27933799 DOI: 10.1021/acs.biochem.6b01040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the biosynthesis of pentalenolactone (1), PenE and PntE, orthologous proteins from Streptomyces exfoliatus and S. arenae, respectively, catalyze the flavin-dependent Baeyer-Villiger oxidation of 1-deoxy-11-oxopentalenic acid (4) to the lactone pentalenolactone D (5), in which the less-substituted methylene carbon has migrated. By contrast, the paralogous PtlE enzyme from S. avermitilis catalyzes the oxidation of 4 to neopentalenolactone D (6), in which the more substituted methane substitution has undergone migration. We report the design and analysis of 13 single and multiple mutants of PntE mutants to identify the key amino acids that contribute to the regiospecificity of these two classes of Baeyer-Villiger monooxygenases. The L185S mutation in PntE reversed the observed regiospecificity of PntE such that all recombinant PntE mutants harboring this L185S mutation acquired the characteristic regiospecificity of PtlE, catalyzing the conversion of 4 to 6 as the major product. The recombinant PntE mutant harboring R484L exhibited reduced regiospecificity, generating a mixture of lactones containing more than 17% of 6. These in vitro results were corroborated by analysis of the complementation of the S. avermitilis ΔptlED double deletion mutant with pntE mutants, such that pntE mutants harboring L185S produced 6 as the major product, whereas complemention of the ΔptlED deletion mutant with pntE mutants carrying the R484L mutation gave 6 as more than 33% of the total lactone product mixture.
Collapse
Affiliation(s)
- Ke Chen
- The Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University , Wuhan, Hubei Province 430071, China
| | - Shiwen Wu
- The Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University , Wuhan, Hubei Province 430071, China
| | - Lu Zhu
- The Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University , Wuhan, Hubei Province 430071, China
| | - Chengde Zhang
- The Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University , Wuhan, Hubei Province 430071, China
| | - Wensheng Xiang
- School of Life Science, Northeast Agricultural University , Harbin, Heilongjiang Province 150030, China
| | - Zixin Deng
- The Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University , Wuhan, Hubei Province 430071, China
| | - Haruo Ikeda
- Laboratory of Microbial Engineering, Kitasato Institute for Life Sciences, Kitasato University , 1-15-1 Kitasato, Sagamihara, Minami-ku, Kanagawa 252-0373, Japan
| | - David E Cane
- Department of Chemistry, Box H, Brown University , Providence, Rhode Island 02912-9108, United States
| | - Dongqing Zhu
- The Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University , Wuhan, Hubei Province 430071, China
| |
Collapse
|
24
|
Ferroni FM, Tolmie C, Smit MS, Opperman DJ. Structural and Catalytic Characterization of a Fungal Baeyer-Villiger Monooxygenase. PLoS One 2016; 11:e0160186. [PMID: 27472055 PMCID: PMC4966971 DOI: 10.1371/journal.pone.0160186] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/14/2016] [Indexed: 12/11/2022] Open
Abstract
Baeyer-Villiger monooxygenases (BVMOs) are biocatalysts that convert ketones to esters. Due to their high regio-, stereo- and enantioselectivity and ability to catalyse these reactions under mild conditions, they have gained interest as alternatives to chemical Baeyer-Villiger catalysts. Despite their widespread occurrence within the fungal kingdom, most of the currently characterized BVMOs are from bacterial origin. Here we report the catalytic and structural characterization of BVMOAFL838 from Aspergillus flavus. BVMOAFL838 converts linear and aryl ketones with high regioselectivity. Steady-state kinetics revealed BVMOAFL838 to show significant substrate inhibition with phenylacetone, which was more pronounced at low pH, enzyme and buffer concentrations. Para substitutions on the phenyl group significantly improved substrate affinity and increased turnover frequencies. Steady-state kinetics revealed BVMOAFL838 to preferentially oxidize aliphatic ketones and aryl ketones when the phenyl group are separated by at least two carbons from the carbonyl group. The X-ray crystal structure, the first of a fungal BVMO, was determined at 1.9 Å and revealed the typical overall fold seen in type I bacterial BVMOs. The active site Arg and Asp are conserved, with the Arg found in the “in” position. Similar to phenylacetone monooxygenase (PAMO), a two residue insert relative to cyclohexanone monooxygenase (CHMO) forms a bulge within the active site. Approximately half of the “variable” loop is folded into a short α-helix and covers part of the active site entry channel in the non-NADPH bound structure. This study adds to the current efforts to rationalize the substrate scope of BVMOs through comparative catalytic and structural investigation of different BVMOs.
Collapse
Affiliation(s)
- Felix Martin Ferroni
- Department of Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Carmien Tolmie
- Department of Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Martha Sophia Smit
- Department of Biotechnology, University of the Free State, Bloemfontein, South Africa
| | | |
Collapse
|
25
|
Identification, characterization and molecular adaptation of class I redox systems for the production of hydroxylated diterpenoids. Microb Cell Fact 2016; 15:86. [PMID: 27216162 PMCID: PMC4877809 DOI: 10.1186/s12934-016-0487-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/11/2016] [Indexed: 12/31/2022] Open
Abstract
Background De novo production of multi-hydroxylated diterpenoids is challenging due to the lack of efficient redox systems. Results In this study a new reductase/ferredoxin system from Streptomyces afghaniensis (AfR·Afx) was identified, which allowed the Escherichia coli-based production of the trihydroxylated diterpene cyclooctatin, a potent inhibitor of human lysophospholipase. This production system provides a 43-fold increase in cyclooctatin yield (15 mg/L) compared to the native producer. AfR·Afx is superior in activating the cylcooctatin-specific class I P450s CotB3/CotB4 compared to the conventional Pseudomonas putida derived PdR·Pdx model. To enhance the activity of the PdR·Pdx system, the molecular basis for these activity differences, was examined by molecular engineering. Conclusion We demonstrate that redox system engineering can boost and harmonize the catalytic efficiency of class I hydroxylase enzyme cascades. Enhancing CotB3/CotB4 activities also provided for identification of CotB3 substrate promiscuity and sinularcasbane D production, a functionalized diterpenoid originally isolated from the soft coral Sinularia sp. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0487-6) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
Genome mining of the sordarin biosynthetic gene cluster from Sordaria araneosa Cain ATCC 36386: characterization of cycloaraneosene synthase and GDP-6-deoxyaltrose transferase. J Antibiot (Tokyo) 2016; 69:541-8. [PMID: 27072286 DOI: 10.1038/ja.2016.40] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/04/2016] [Accepted: 03/13/2016] [Indexed: 01/24/2023]
Abstract
Sordarin is a glycoside antibiotic with a unique tetracyclic diterpene aglycone structure called sordaricin. To understand its intriguing biosynthetic pathway that may include a Diels-Alder-type [4+2]cycloaddition, genome mining of the gene cluster from the draft genome sequence of the producer strain, Sordaria araneosa Cain ATCC 36386, was carried out. A contiguous 67 kb gene cluster consisting of 20 open reading frames encoding a putative diterpene cyclase, a glycosyltransferase, a type I polyketide synthase, and six cytochrome P450 monooxygenases were identified. In vitro enzymatic analysis of the putative diterpene cyclase SdnA showed that it catalyzes the transformation of geranylgeranyl diphosphate to cycloaraneosene, a known biosynthetic intermediate of sordarin. Furthermore, a putative glycosyltransferase SdnJ was found to catalyze the glycosylation of sordaricin in the presence of GDP-6-deoxy-d-altrose to give 4'-O-demethylsordarin. These results suggest that the identified sdn gene cluster is responsible for the biosynthesis of sordarin. Based on the isolated potential biosynthetic intermediates and bioinformatics analysis, a plausible biosynthetic pathway for sordarin is proposed.
Collapse
|
27
|
Preparation of 11-hexyloxy-9-undecenoic acid from crude castor oil hydrolysates by recombinant Escherichia coli expressing alcohol dehydrogenase and Baeyer–Villiger monooxygenase. Process Biochem 2016. [DOI: 10.1016/j.procbio.2015.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Visitsatthawong S, Chenprakhon P, Chaiyen P, Surawatanawong P. Mechanism of Oxygen Activation in a Flavin-Dependent Monooxygenase: A Nearly Barrierless Formation of C4a-Hydroperoxyflavin via Proton-Coupled Electron Transfer. J Am Chem Soc 2015; 137:9363-74. [DOI: 10.1021/jacs.5b04328] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Surawit Visitsatthawong
- Department
of Chemistry and Center of Excellence for Innovation in
Chemistry, Faculty of Science, †Institute for Innovative Learning, and ∥Department of
Biochemistry and Center of Excellence in Protein Structure and Function,
Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Pirom Chenprakhon
- Department
of Chemistry and Center of Excellence for Innovation in
Chemistry, Faculty of Science, †Institute for Innovative Learning, and ∥Department of
Biochemistry and Center of Excellence in Protein Structure and Function,
Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Pimchai Chaiyen
- Department
of Chemistry and Center of Excellence for Innovation in
Chemistry, Faculty of Science, †Institute for Innovative Learning, and ∥Department of
Biochemistry and Center of Excellence in Protein Structure and Function,
Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Panida Surawatanawong
- Department
of Chemistry and Center of Excellence for Innovation in
Chemistry, Faculty of Science, †Institute for Innovative Learning, and ∥Department of
Biochemistry and Center of Excellence in Protein Structure and Function,
Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
29
|
Al-Beloshei NE, Al-Awadhi HA, Al-Khalaf RAR, Oommen S, Afzal M. Biocatalyzed transformation of progesterone by Geobacillus gargensis DSM 15378. APPL BIOCHEM MICRO+ 2015. [DOI: 10.1134/s0003683815030023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Baek AH, Jeon EY, Lee SM, Park JB. Expression levels of chaperones influence biotransformation activity of recombinantEscherichia coliexpressingMicrococcus luteusalcohol dehydrogenase andPseudomonas putidaBaeyer-Villiger monooxygenase. Biotechnol Bioeng 2015; 112:889-95. [DOI: 10.1002/bit.25521] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/08/2014] [Indexed: 01/13/2023]
Affiliation(s)
- A-Hyong Baek
- Department of Food Science & Engineering; Ewha Womans University; Seoul 120-750 Republic of Korea
| | - Eun-Yeong Jeon
- Department of Food Science & Engineering; Ewha Womans University; Seoul 120-750 Republic of Korea
| | - Sun-Mee Lee
- School; of; Food; Science; Kyungil University; Kyungsan 712-701 Republic of Korea
| | - Jin-Byung Park
- Department of Food Science & Engineering; Ewha Womans University; Seoul 120-750 Republic of Korea
| |
Collapse
|
31
|
Summers BD, Omar M, Ronson TO, Cartwright J, Lloyd M, Grogan G. E. coli cells expressing the Baeyer–Villiger monooxygenase ‘MO14’ (ro03437) from Rhodococcus jostii RHA1 catalyse the gram-scale resolution of a bicyclic ketone in a fermentor. Org Biomol Chem 2015; 13:1897-903. [DOI: 10.1039/c4ob01441c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
(1S,5R)-2-Oxalactone of >99% ee and (1S,5R)-ketone of 96% ee are produced after approximately 14 h at a temperature of 16 °C.
Collapse
Affiliation(s)
| | - Muhiadin Omar
- B.D. Summers
- M. Omar
- T. Ronson
- Dr G. Grogan
- York Structural Biology Laboratory
| | - Thomas O. Ronson
- B.D. Summers
- M. Omar
- T. Ronson
- Dr G. Grogan
- York Structural Biology Laboratory
| | - Jared Cartwright
- Technology Facility
- Department of Biology University of York
- York YO10 5DD
- UK
| | - Michael Lloyd
- Chirotech Technology Ltd
- Dr Reddy's Laboratories (EU) Ltd
- Cambridge
- UK
| | - Gideon Grogan
- B.D. Summers
- M. Omar
- T. Ronson
- Dr G. Grogan
- York Structural Biology Laboratory
| |
Collapse
|
32
|
Setser JW, Heemstra JR, Walsh CT, Drennan CL. Crystallographic evidence of drastic conformational changes in the active site of a flavin-dependent N-hydroxylase. Biochemistry 2014; 53:6063-77. [PMID: 25184411 PMCID: PMC4179590 DOI: 10.1021/bi500655q] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
![]()
The soil actinomycete Kutzneria sp. 744 produces
a class of highly decorated hexadepsipeptides, which represent a new
chemical scaffold that has both antimicrobial and antifungal properties.
These natural products, known as kutznerides, are created via nonribosomal
peptide synthesis using various derivatized amino acids. The piperazic
acid moiety contained in the kutzneride scaffold, which is vital for
its antibiotic activity, has been shown to derive from the hydroxylated
product of l-ornithine, l-N5-hydroxyornithine. The production of this hydroxylated species
is catalyzed by the action of an FAD- and NAD(P)H-dependent N-hydroxylase known as KtzI. We have been able to structurally
characterize KtzI in several states along its catalytic trajectory,
and by pairing these snapshots with the biochemical and structural
data already available for this enzyme class, we propose a structurally
based reaction mechanism that includes novel conformational changes
of both the protein backbone and the flavin cofactor. Further, we
were able to recapitulate these conformational changes in the protein
crystal, displaying their chemical competence. Our series of structures,
with corroborating biochemical and spectroscopic data collected by
us and others, affords mechanistic insight into this relatively new
class of flavin-dependent hydroxylases and adds another layer to the
complexity of flavoenzymes.
Collapse
Affiliation(s)
- Jeremy W Setser
- Department of Chemistry, ‡Department of Biology, and §Howard Hughes Medical Institute, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | | | | | | |
Collapse
|
33
|
Ceccoli RD, Bianchi DA, Rial DV. Flavoprotein monooxygenases for oxidative biocatalysis: recombinant expression in microbial hosts and applications. Front Microbiol 2014; 5:25. [PMID: 24567729 PMCID: PMC3915288 DOI: 10.3389/fmicb.2014.00025] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/14/2014] [Indexed: 11/21/2022] Open
Abstract
External flavoprotein monooxygenases comprise a group of flavin-dependent oxidoreductases that catalyze the insertion of one atom of molecular oxygen into an organic substrate and the second atom is reduced to water. These enzymes are involved in a great number of metabolic pathways both in prokaryotes and eukaryotes. Flavoprotein monooxygenases have attracted the attention of researchers for several decades and the advent of recombinant DNA technology caused a great progress in the field. These enzymes are subjected to detailed biochemical and structural characterization and some of them are also regarded as appealing oxidative biocatalysts for the production of fine chemicals and valuable intermediates toward active pharmaceutical ingredients due to their high chemo-, stereo-, and regioselectivity. Here, we review the most representative reactions catalyzed both in vivo and in vitro by prototype flavoprotein monooxygenases, highlighting the strategies employed to produce them recombinantly, to enhance the yield of soluble proteins, and to improve cofactor regeneration in order to obtain versatile biocatalysts. Although we describe the most outstanding features of flavoprotein monooxygenases, we mainly focus on enzymes that were cloned, expressed and used for biocatalysis during the last years.
Collapse
Affiliation(s)
- Romina D Ceccoli
- Área Biología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario CONICET, Rosario, Argentina
| | - Dario A Bianchi
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Área Análisis de Medicamentos, Departamento de Química Orgánica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Rosario, Argentina
| | - Daniela V Rial
- Área Biología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario CONICET, Rosario, Argentina
| |
Collapse
|
34
|
|
35
|
Martinoli C, Dudek HM, Orru R, Edmondson DE, Fraaije MW, Mattevi A. Beyond the Protein Matrix: Probing Cofactor Variants in a Baeyer-Villiger Oxygenation Reaction. ACS Catal 2013; 3:3058-3062. [PMID: 24443704 DOI: 10.1021/cs400837z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A general question in biochemistry is the interplay between the chemical properties of cofactors and the surrounding protein matrix. Here, the functions of NADP+ and FAD are explored by investigation of a representative monooxygenase reconstituted with chemically-modified cofactor analogues. Like pieces of a jigsaw puzzle, the enzyme active site juxtaposes the flavin and nicotinamide rings, harnessing their H-bonding and steric properties to finely construct an oxygen-reacting center that restrains the flavin-peroxide intermediate in a catalytically-competent orientation. Strikingly, the regio- and stereoselectivities of the reaction are essentially unaffected by cofactor modifications. These observations indicate a remarkable robustness of this complex multi-cofactor active site, which has implications for enzyme design based on cofactor engineering approaches.
Collapse
Affiliation(s)
- Christian Martinoli
- Department
of Biology and Biotechnology, University of Pavia, Via Ferrata
9, 27100 Pavia, Italy
| | - Hanna M. Dudek
- Molecular
Enzymology Group, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Roberto Orru
- Department
of Biology and Biotechnology, University of Pavia, Via Ferrata
9, 27100 Pavia, Italy
| | - Dale E. Edmondson
- Departments
of Biochemistry and Chemistry, Emory University, 1510 Clifton Road, Atlanta, Georgia 30322, United States
| | - Marco W. Fraaije
- Molecular
Enzymology Group, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Andrea Mattevi
- Department
of Biology and Biotechnology, University of Pavia, Via Ferrata
9, 27100 Pavia, Italy
| |
Collapse
|
36
|
Dudek HM, Fink MJ, Shivange AV, Dennig A, Mihovilovic MD, Schwaneberg U, Fraaije MW. Extending the substrate scope of a Baeyer–Villiger monooxygenase by multiple-site mutagenesis. Appl Microbiol Biotechnol 2013; 98:4009-20. [DOI: 10.1007/s00253-013-5364-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 10/25/2013] [Accepted: 10/28/2013] [Indexed: 10/26/2022]
|
37
|
Dhatwalia R, Singh H, Solano LM, Oppenheimer M, Robinson RM, Ellerbrock JF, Sobrado P, Tanner JJ. Identification of the NAD(P)H binding site of eukaryotic UDP-galactopyranose mutase. J Am Chem Soc 2012; 134:18132-8. [PMID: 23036087 PMCID: PMC3493617 DOI: 10.1021/ja308188z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
UDP-galactopyranose mutase (UGM) plays an essential role in galactofuranose biosynthesis in microorganisms by catalyzing the conversion of UDP-galactopyranose to UDP-galactofuranose. The enzyme has gained attention recently as a promising target for the design of new antifungal, antitrypanosomal, and antileishmanial agents. Here we report the first crystal structure of UGM complexed with its redox partner NAD(P)H. Kinetic protein crystallography was used to obtain structures of oxidized Aspergillus fumigatus UGM (AfUGM) complexed with NADPH and NADH, as well as reduced AfUGM after dissociation of NADP(+). NAD(P)H binds with the nicotinamide near the FAD isoalloxazine and the ADP moiety extending toward the mobile 200s active site flap. The nicotinamide riboside binding site overlaps that of the substrate galactopyranose moiety, and thus NADPH and substrate binding are mutually exclusive. On the other hand, the pockets for the adenine of NADPH and uracil of the substrate are distinct and separated by only 6 Å, which raises the possibility of designing novel inhibitors that bind both sites. All 12 residues that contact NADP(H) are conserved among eukaryotic UGMs. Residues that form the AMP pocket are absent in bacterial UGMs, which suggests that eukaryotic and bacterial UGMs have different NADP(H) binding sites. The structures address the longstanding question of how UGM binds NAD(P)H and provide new opportunities for drug discovery.
Collapse
Affiliation(s)
- Richa Dhatwalia
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Harkewal Singh
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Luis M. Solano
- Department of Biology, Costa Rica Institute of Technology, Cartago, Costa Rica
| | | | | | | | - Pablo Sobrado
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - John J. Tanner
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| |
Collapse
|
38
|
Two enzymes of a complete degradation pathway for linear alkylbenzenesulfonate (LAS) surfactants: 4-sulfoacetophenone Baeyer-Villiger monooxygenase and 4-sulfophenylacetate esterase in Comamonas testosteroni KF-1. Appl Environ Microbiol 2012; 78:8254-63. [PMID: 23001656 DOI: 10.1128/aem.02412-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Complete biodegradation of the surfactant linear alkylbenzenesulfonate (LAS) is accomplished by complex bacterial communities in two steps. First, all LAS congeners are degraded into about 50 sulfophenylcarboxylates (SPC), one of which is 3-(4-sulfophenyl)butyrate (3-C(4)-SPC). Second, these SPCs are mineralized. 3-C(4)-SPC is mineralized by Comamonas testosteroni KF-1 in a process involving 4-sulfoacetophenone (SAP) as a metabolite and an unknown inducible Baeyer-Villiger monooxygenase (BVMO) to yield 4-sulfophenyl acetate (SPAc) from SAP (SAPMO enzyme); hydrolysis of SPAc to 4-sulfophenol and acetate is catalyzed by an unknown inducible esterase (SPAc esterase). Transcriptional analysis showed that one of four candidate genes for BVMOs in the genome of strain KF-1, as well as an SPAc esterase candidate gene directly upstream, was inducibly transcribed during growth with 3-C(4)-SPC. The same genes were identified by enzyme purification and peptide fingerprinting-mass spectrometry when SAPMO was enriched and SPAc esterase purified to homogeneity by protein chromatography. Heterologously overproduced pure SAPMO converted SAP to SPAc and was active with phenylacetone and 4-hydroxyacetophenone but not with cyclohexanone and progesterone. SAPMO showed the highest sequence homology to the archetypal phenylacetone BVMO (57%), followed by steroid BVMO (55%) and 4-hydroxyacetophenone BVMO (30%). Finally, the two pure enzymes added sequentially, SAPMO with NADPH and SAP, and then SPAc esterase, catalyzed the conversion of SAP via SPAc to 4-sulfophenol and acetate in a 1:1:1:1 molar ratio. Hence, the first two enzymes of a complete LAS degradation pathway were identified, giving evidence for the recruitment of members of the very versatile type I BVMO and carboxylester hydrolase enzyme families for the utilization of a xenobiotic compound by bacteria.
Collapse
|
39
|
Franceschini S, Fedkenheuer M, Vogelaar NJ, Robinson HH, Sobrado P, Mattevi A. Structural Insight into the Mechanism of Oxygen Activation and Substrate Selectivity of Flavin-Dependent N-Hydroxylating Monooxygenases. Biochemistry 2012; 51:7043-5. [DOI: 10.1021/bi301072w] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stefano Franceschini
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, Pavia 27100, Italy
| | - Michael Fedkenheuer
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Nancy J. Vogelaar
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Howard H. Robinson
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973,
United States
| | - Pablo Sobrado
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, Pavia 27100, Italy
| |
Collapse
|