1
|
Yalaz C, Bridges E, Alham NK, Zois CE, Chen J, Bensaad K, Miar A, Pires E, Muschel RJ, McCullagh JSO, Harris AL. Cone photoreceptor phosphodiesterase PDE6H inhibition regulates cancer cell growth and metabolism, replicating the dark retina response. Cancer Metab 2024; 12:5. [PMID: 38350962 PMCID: PMC10863171 DOI: 10.1186/s40170-023-00326-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/24/2023] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND PDE6H encodes PDE6γ', the inhibitory subunit of the cGMP-specific phosphodiesterase 6 in cone photoreceptors. Inhibition of PDE6, which has been widely studied for its role in light transduction, increases cGMP levels. The purpose of this study is to characterise the role of PDE6H in cancer cell growth. METHODS From an siRNA screen for 487 genes involved in metabolism, PDE6H was identified as a controller of cell cycle progression in HCT116 cells. Role of PDE6H in cancer cell growth and metabolism was studied through the effects of its depletion on levels of cell cycle controllers, mTOR effectors, metabolite levels, and metabolic energy assays. Effect of PDE6H deletion on tumour growth was also studied in a xenograft model. RESULTS PDE6H knockout resulted in an increase of intracellular cGMP levels, as well as changes to the levels of nucleotides and key energy metabolism intermediates. PDE6H knockdown induced G1 cell cycle arrest and cell death and reduced mTORC1 signalling in cancer cell lines. Both knockdown and knockout of PDE6H resulted in the suppression of mitochondrial function. HCT116 xenografts revealed that PDE6H deletion, as well as treatment with the PDE5/6 inhibitor sildenafil, slowed down tumour growth and improved survival, while sildenafil treatment did not have an additive effect on slowing the growth of PDE6γ'-deficient tumours. CONCLUSIONS Our results indicate that the changes in cGMP and purine pools, as well as mitochondrial function which is observed upon PDE6γ' depletion, are independent of the PKG pathway. We show that in HCT116, PDE6H deletion replicates many effects of the dark retina response and identify PDE6H as a new target in preventing cancer cell proliferation and tumour growth.
Collapse
Affiliation(s)
- Ceren Yalaz
- Molecular Oncology Laboratories, Department of Medical Oncology, John Radcliffe Hospital, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK.
| | - Esther Bridges
- Molecular Oncology Laboratories, Department of Medical Oncology, John Radcliffe Hospital, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Nasullah K Alham
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Christos E Zois
- Molecular Oncology Laboratories, Department of Medical Oncology, John Radcliffe Hospital, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Jianzhou Chen
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Karim Bensaad
- Molecular Oncology Laboratories, Department of Medical Oncology, John Radcliffe Hospital, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Ana Miar
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Elisabete Pires
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Ruth J Muschel
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - James S O McCullagh
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Adrian L Harris
- Molecular Oncology Laboratories, Department of Medical Oncology, John Radcliffe Hospital, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| |
Collapse
|
2
|
Aplin C, Cerione RA. Probing the mechanism by which the retinal G protein transducin activates its biological effector PDE6. J Biol Chem 2024; 300:105608. [PMID: 38159849 PMCID: PMC10838916 DOI: 10.1016/j.jbc.2023.105608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/23/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024] Open
Abstract
Phototransduction in retinal rods occurs when the G protein-coupled photoreceptor rhodopsin triggers the activation of phosphodiesterase 6 (PDE6) by GTP-bound alpha subunits of the G protein transducin (GαT). Recently, we presented a cryo-EM structure for a complex between two GTP-bound recombinant GαT subunits and native PDE6, that included a bivalent antibody bound to the C-terminal ends of GαT and the inhibitor vardenafil occupying the active sites on the PDEα and PDEβ subunits. We proposed GαT-activated PDE6 by inducing a striking reorientation of the PDEγ subunits away from the catalytic sites. However, questions remained including whether in the absence of the antibody GαT binds to PDE6 in a similar manner as observed when the antibody is present, does GαT activate PDE6 by enabling the substrate cGMP to access the catalytic sites, and how does the lipid membrane enhance PDE6 activation? Here, we demonstrate that 2:1 GαT-PDE6 complexes form with either recombinant or retinal GαT in the absence of the GαT antibody. We show that GαT binding is not necessary for cGMP nor competitive inhibitors to access the active sites; instead, occupancy of the substrate binding sites enables GαT to bind and reposition the PDE6γ subunits to promote catalytic activity. Moreover, we demonstrate by reconstituting GαT-stimulated PDE6 activity in lipid bilayer nanodiscs that the membrane-induced enhancement results from an increase in the apparent binding affinity of GαT for PDE6. These findings provide new insights into how the retinal G protein stimulates rapid catalytic turnover by PDE6 required for dim light vision.
Collapse
Affiliation(s)
- Cody Aplin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Richard A Cerione
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA; Department of Molecular Medicine, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
3
|
Photoreceptor Phosphodiesterase (PDE6): Structure, Regulatory Mechanisms, and Implications for Treatment of Retinal Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1371:33-59. [PMID: 34170501 DOI: 10.1007/5584_2021_649] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The photoreceptor phosphodiesterase (PDE6) is a member of large family of Class I phosphodiesterases responsible for hydrolyzing the second messengers cAMP and cGMP. PDE6 consists of two catalytic subunits and two inhibitory subunits that form a tetrameric protein. PDE6 is a peripheral membrane protein that is localized to the signal-transducing compartment of rod and cone photoreceptors. As the central effector enzyme of the G-protein coupled visual transduction pathway, activation of PDE6 catalysis causes a rapid decrease in cGMP levels that results in closure of cGMP-gated ion channels in the photoreceptor plasma membrane. Because of its importance in the phototransduction pathway, mutations in PDE6 genes result in various retinal diseases that currently lack therapeutic treatment strategies due to inadequate knowledge of the structure, function, and regulation of this enzyme. This review focuses on recent progress in understanding the structure of the regulatory and catalytic domains of the PDE6 holoenzyme, the central role of the multi-functional inhibitory γ-subunit, the mechanism of activation by the heterotrimeric G protein, transducin, and future directions for pharmacological interventions to treat retinal degenerative diseases arising from mutations in the PDE6 genes.
Collapse
|
4
|
Photoreceptor phosphodiesterase (PDE6): activation and inactivation mechanisms during visual transduction in rods and cones. Pflugers Arch 2021; 473:1377-1391. [PMID: 33860373 DOI: 10.1007/s00424-021-02562-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 01/16/2023]
Abstract
Rod and cone photoreceptors of the vertebrate retina utilize cGMP as the primary intracellular messenger for the visual signaling pathway that converts a light stimulus into an electrical response. cGMP metabolism in the signal-transducing photoreceptor outer segment reflects the balance of cGMP synthesis (catalyzed by guanylyl cyclase) and degradation (catalyzed by the photoreceptor phosphodiesterase, PDE6). Upon light stimulation, rapid activation of PDE6 by the heterotrimeric G-protein (transducin) triggers a dramatic drop in cGMP levels that lead to cell hyperpolarization. Following cessation of the light stimulus, the lifetime of activated PDE6 is also precisely regulated by additional processes. This review summarizes recent advances in the structural characterization of the rod and cone PDE6 catalytic and regulatory subunits in the context of previous biochemical studies of the enzymological properties and allosteric regulation of PDE6. Emphasis is given to recent advances in understanding the structural and conformational changes underlying the mechanism by which the activated transducin α-subunit binds to-and relieves inhibition of-PDE6 catalysis that is controlled by its intrinsically disordered, inhibitory γ-subunit. The role of the regulator of G-protein signaling 9-1 (RGS9-1) in regulating the lifetime of the transducin-PDE6 is also briefly covered. The therapeutic potential of pharmacological compounds acting as inhibitors or activators targeting PDE6 is discussed in the context of inherited retinal diseases resulting from mutations in rod and cone PDE6 genes as well as other inherited defects that arise from excessive cGMP accumulation in retinal photoreceptor cells.
Collapse
|
5
|
Cheng Y, Xu J, Fu Y, He N. Expression and Regulation of pde6h by Thyroid Hormone During Metamorphosis in Paralichthys olivaceus. Front Physiol 2020; 11:244. [PMID: 32300306 PMCID: PMC7144621 DOI: 10.3389/fphys.2020.00244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 03/02/2020] [Indexed: 11/27/2022] Open
Abstract
PDE6H is a cone cell-specific inhibitory subunit that plays a critical role in the adaptation of the photosensitive system to bright and dark phases of the light environment. Thyroid hormone (TH) is one of the most important factors that control development and metabolism in animals, composed mainly of triiodothyronine (T3), and thyroxine (T4). TH also plays a key role in the metamorphosis of the flounder (Paralichthys olivaceus), wherein exogenous TH can accelerate the behavioral changes of larvae from the pelagic to benthic type accompanying changes in the light environment from bright to dark. In this study, transcriptional analysis showed that pde6h is expressed in adult eye, that its expression peaks at the climax of metamorphosis, and that it can be significantly up-regulated to the highest level by exogenous T4 in the early stages of metamorphosis but is inhibited by thiourea (TU). The rescue experiment showed that metamorphic inhibition of larvae and expression inhibition of pde6h gene in TU groups can be rescued by removing TU. Further, dual-luciferase reporter assay indicated the putative regulatory effect of TH on pde6h expression, mediated directly on the gene promoter by the TRαA gene. Together, we speculated that TH may control physiological adaptation of the photosensitive system to light changes during metamorphosis by acting directly on pde6h. This study can help us further study the physiological function of pde6h during flounder metamorphosis in the future.
Collapse
Affiliation(s)
- Yuejuan Cheng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Jiaqian Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Yuanshuai Fu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Nisha He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
| |
Collapse
|
6
|
Circadian regulation of phosphodiesterase 6 genes in zebrafish differs between cones and rods: Implications for photopic and scotopic vision. Vision Res 2019; 166:43-51. [PMID: 31855667 DOI: 10.1016/j.visres.2019.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/14/2019] [Accepted: 11/04/2019] [Indexed: 11/24/2022]
Abstract
A correlation is known to exist between visual sensitivity and oscillations in red opsinand rhodopsin gene expression in zebrafish, both regulated by the clock gene. This indicates that an endogenous circadian clock regulates behavioural visual sensitivity, apart from the regulation exerted by the pineal organ. However, the specific mechanisms for cones (photopic vision) and rods (scotopic vision) are poorly understood. In this work, we performed gene expression, cosinor and immunohistochemical analyses to investigate other key genes involved in light perception, encoding the different subunits of phosphodiesterase pde6 and transducin GαT, in constant lighting conditions and compared to normal light-dark conditions. We found that cones display prominent circadian oscillations in mRNA levels for the inhibitory subunit gene pde6ha that could contribute to the regulation of photopic sensitivity by preventing overstimulation in photopic conditions. In rods, the mRNA levels of the inhibitory subunit gene pde6ga oscillate under normal conditions and dampen down in constant light but continue oscillating in constant darkness. There is an increase in total relative expression for pde6gb in constant conditions. These observations, together with previous data, suggest a complex regulation of the scotopic sensitivity involving endogenous and non-endogenous components, possibly present also in other teleost species. The GαT genes do not display mRNA oscillations and therefore may not be essential for the circadian regulation of photosensitivity. In summary, our results support different regulation for the zebrafish photopic and scotopic sensitivities and suggest circadian regulation of pde6ha as a key factor regulating photopic sensitivity, while the regulatory mechanisms in rods appear to be more complex.
Collapse
|
7
|
Irwin MJ, Gupta R, Gao XZ, Cahill KB, Chu F, Cote RH. The molecular architecture of photoreceptor phosphodiesterase 6 (PDE6) with activated G protein elucidates the mechanism of visual excitation. J Biol Chem 2019; 294:19486-19497. [PMID: 31690623 DOI: 10.1074/jbc.ra119.011002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/25/2019] [Indexed: 11/06/2022] Open
Abstract
Photoreceptor phosphodiesterase 6 (PDE6) is the central effector of the visual excitation pathway in both rod and cone photoreceptors, and PDE6 mutations that alter PDE6 structure or regulation can result in several human retinal diseases. The rod PDE6 holoenzyme consists of two catalytic subunits (Pαβ) whose activity is suppressed in the dark by binding of two inhibitory γ-subunits (Pγ). Upon photoactivation of rhodopsin, the heterotrimeric G protein (transducin) is activated, resulting in binding of the activated transducin α-subunit (Gtα) to PDE6, displacement of Pγ from the PDE6 active site, and enzyme activation. Although the biochemistry of this pathway is understood, a lack of detailed structural information about the PDE6 activation mechanism hampers efforts to develop therapeutic interventions for managing PDE6-associated retinal diseases. To address this gap, here we used a cross-linking MS-based approach to create a model of the entire interaction surface of Pγ with the regulatory and catalytic domains of Pαβ in its nonactivated state. Following reconstitution of PDE6 and activated Gtα with liposomes and identification of cross-links between Gtα and PDE6 subunits, we determined that the PDE6-Gtα protein complex consists of two Gtα-binding sites per holoenzyme. Each Gtα interacts with the catalytic domains of both catalytic subunits and induces major changes in the interaction sites of the Pγ subunit with the catalytic subunits. These results provide the first structural model for the activated state of the transducin-PDE6 complex during visual excitation, enhancing our understanding of the molecular etiology of inherited retinal diseases.
Collapse
Affiliation(s)
- Michael J Irwin
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire 03824
| | - Richa Gupta
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire 03824
| | - Xiong-Zhuo Gao
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire 03824
| | - Karyn B Cahill
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire 03824
| | - Feixia Chu
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire 03824
| | - Rick H Cote
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire 03824
| |
Collapse
|
8
|
Chu F, Hogan D, Gupta R, Gao XZ, Nguyen HT, Cote RH. Allosteric Regulation of Rod Photoreceptor Phosphodiesterase 6 (PDE6) Elucidated by Chemical Cross-Linking and Quantitative Mass Spectrometry. J Mol Biol 2019; 431:3677-3689. [PMID: 31394113 DOI: 10.1016/j.jmb.2019.07.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 06/29/2019] [Accepted: 07/30/2019] [Indexed: 12/31/2022]
Abstract
Photoreceptor phosphodiesterase (PDE6) is the central effector enzyme in the visual excitation pathway in rod and cone photoreceptors. Its tight regulation is essential for the speed, sensitivity, recovery, and adaptation of visual signaling. The rod PDE6 holoenzyme (Pαβγ2) is composed of a catalytic heterodimer (Pαβ) that binds two inhibitory γ subunits. Each of the two catalytic subunits (Pα and Pβ) contains a catalytic domain responsible for cGMP hydrolysis and two tandem GAF domains, one of which binds cGMP noncatalytically. Unlike related GAF-containing PDEs where cGMP binding allosterically activates catalysis, the physiological significance of cGMP binding to the GAF domains of PDE6 is unknown. To elucidate the structural determinants of PDE6 allosteric regulators, we biochemically characterized PDE6 complexes in various allosteric states (Pαβ, Pαβ-cGMP, Pαβγ2, and Pαβγ2-cGMP) with a quantitative cross-linking/mass spectrometry approach. We employed a normalization strategy to dissect the cross-linking reactivity of individual residues in order to assess the spatial cross-linking propensity of detected pairs. In addition to identifying cross-linked pairs that undergo conformational changes upon ligand binding, we observed an asymmetric binding of the inhibitory γ-subunit and the noncatalytic cGMP to the GAFa domains of rod PDE6, as well as a stable open conformation of Pαβ catalytic dimer in different allosteric states. These results advance our understanding of the exquisite regulatory control of the lifetime of rod PDE6 activation/deactivation during visual signaling, as well as providing a structural basis for interpreting how mutations in rod PDE6 subunits can lead to retinal diseases.
Collapse
Affiliation(s)
- Feixia Chu
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA; Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH 03824, USA.
| | - Donna Hogan
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Richa Gupta
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Xiong-Zhuo Gao
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Hieu T Nguyen
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Rick H Cote
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA; Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
9
|
Al-Nema MY, Gaurav A. Protein-Protein Interactions of Phosphodiesterases. Curr Top Med Chem 2019; 19:555-564. [PMID: 30931862 DOI: 10.2174/1568026619666190401113803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 03/27/2019] [Accepted: 03/29/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Phosphodiesterases (PDEs) are enzymes that play a key role in terminating cyclic nucleotides signalling by catalysing the hydrolysis of 3', 5'- cyclic adenosine monophosphate (cAMP) and/or 3', 5' cyclic guanosine monophosphate (cGMP), the second messengers within the cell that transport the signals produced by extracellular signalling molecules which are unable to get into the cells. However, PDEs are proteins which do not operate alone but in complexes that made up of a many proteins. OBJECTIVE This review highlights some of the general characteristics of PDEs and focuses mainly on the Protein-Protein Interactions (PPIs) of selected PDE enzymes. The objective is to review the role of PPIs in the specific mechanism for activation and thereby regulation of certain biological functions of PDEs. METHODS The article discusses some of the PPIs of selected PDEs as reported in recent scientific literature. These interactions are critical for understanding the biological role of the target PDE. RESULTS The PPIs have shown that each PDE has a specific mechanism for activation and thereby regulation a certain biological function. CONCLUSION Targeting of PDEs to specific regions of the cell is based on the interaction with other proteins where each PDE enzyme binds with specific protein(s) via PPIs.
Collapse
Affiliation(s)
- Mayasah Y Al-Nema
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Anand Gaurav
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
10
|
Wang X, Plachetzki DC, Cote RH. The N termini of the inhibitory γ-subunits of phosphodiesterase-6 (PDE6) from rod and cone photoreceptors differentially regulate transducin-mediated PDE6 activation. J Biol Chem 2019; 294:8351-8360. [PMID: 30962282 DOI: 10.1074/jbc.ra119.007520] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/02/2019] [Indexed: 12/26/2022] Open
Abstract
Phosphodiesterase-6 (PDE6) plays a central role in both rod and cone phototransduction pathways. In the dark, PDE6 activity is suppressed by its inhibitory γ-subunit (Pγ). Rhodopsin-catalyzed activation of the G protein transducin relieves this inhibition and enhances PDE6 catalysis. We hypothesized that amino acid sequence differences between rod- and cone-specific Pγs underlie transducin's ability to more effectively activate cone-specific PDE6 than rod PDE6. To test this, we analyzed rod and cone Pγ sequences from all major vertebrate and cyclostome lineages and found that rod Pγ loci are far more conserved than cone Pγ sequences and that most of the sequence differences are located in the N-terminal region. Next we reconstituted rod PDE6 catalytic dimer (Pαβ) with various rod or cone Pγ variants and analyzed PDE6 activation upon addition of the activated transducin α-subunit (Gtα*-GTPγS). This analysis revealed a rod-specific Pγ motif (amino acids 9-18) that reduces the ability of Gtα*-GTPγS to activate the reconstituted PDE6. In cone Pγ, Asn-13 and Gln-14 significantly enhanced Gtα*-GTPγS activation of cone Pγ truncation variants. Moreover, we observed that the first four amino acids of either rod or cone Pγ contribute to Gtα*-GTPγS-mediated activation of PDE6. We conclude that physiological differences between rod and cone photoreceptor light responsiveness can be partially ascribed to ancient, highly conserved amino acid differences in the N-terminal regions of Pγ isoforms, demonstrating for the first time a functional role for this region of Pγ in the differential activation of rod and cone PDE6 by transducin.
Collapse
Affiliation(s)
- Xin Wang
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire 03824
| | - David C Plachetzki
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire 03824
| | - Rick H Cote
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire 03824.
| |
Collapse
|
11
|
Gulati S, Palczewski K, Engel A, Stahlberg H, Kovacik L. Cryo-EM structure of phosphodiesterase 6 reveals insights into the allosteric regulation of type I phosphodiesterases. SCIENCE ADVANCES 2019; 5:eaav4322. [PMID: 30820458 PMCID: PMC6392808 DOI: 10.1126/sciadv.aav4322] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/14/2019] [Indexed: 05/27/2023]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) work in conjunction with adenylate/guanylate cyclases to regulate the key second messengers of G protein-coupled receptor signaling. Previous attempts to determine the full-length structure of PDE family members at high-resolution have been hindered by structural flexibility, especially in their linker regions and N- and C-terminal ends. Therefore, most structure-activity relationship studies have so far focused on truncated and conserved catalytic domains rather than the regulatory domains that allosterically govern the activity of most PDEs. Here, we used single-particle cryo-electron microscopy to determine the structure of the full-length PDE6αβ2γ complex. The final density map resolved at 3.4 Å reveals several previously unseen structural features, including a coiled N-terminal domain and the interface of PDE6γ subunits with the PDE6αβ heterodimer. Comparison of the PDE6αβ2γ complex with the closed state of PDE2A sheds light on the conformational changes associated with the allosteric activation of type I PDEs.
Collapse
Affiliation(s)
- Sahil Gulati
- Gavin Herbert Eye Institute and the Department of Ophthalmology, University of California, Irvine, 829 Health Sciences Road, Irvine, CA 92617, USA
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, 1819 East 101st Street, Cleveland, OH 44106, USA
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute and the Department of Ophthalmology, University of California, Irvine, 829 Health Sciences Road, Irvine, CA 92617, USA
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, 1819 East 101st Street, Cleveland, OH 44106, USA
| | - Andreas Engel
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Lubomir Kovacik
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, 4058 Basel, Switzerland
| |
Collapse
|
12
|
Deng WT, Kolandaivelu S, Dinculescu A, Li J, Zhu P, Chiodo VA, Ramamurthy V, Hauswirth WW. Cone Phosphodiesterase-6γ' Subunit Augments Cone PDE6 Holoenzyme Assembly and Stability in a Mouse Model Lacking Both Rod and Cone PDE6 Catalytic Subunits. Front Mol Neurosci 2018; 11:233. [PMID: 30038560 PMCID: PMC6046437 DOI: 10.3389/fnmol.2018.00233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/13/2018] [Indexed: 11/13/2022] Open
Abstract
Rod and cone phosphodiesterase 6 (PDE6) are key effector enzymes of the vertebrate phototransduction pathway. Rod PDE6 consists of two catalytic subunits PDE6α and PDE6β and two identical inhibitory PDE6γ subunits, while cone PDE6 is composed of two identical PDE6α’ catalytic subunits and two identical cone-specific PDE6γ’ inhibitory subunits. Despite their prominent function in regulating cGMP levels and therefore rod and cone light response properties, it is not known how each subunit contributes to the functional differences between rods and cones. In this study, we generated an rd10/cpfl1 mouse model lacking rod PDE6β and cone PDE6α’ subunits. Both rod and cone photoreceptor cells are degenerated with age and all PDE6 subunits degrade in rd10/cpfl1 mice. We expressed cone PDE6α’ in both rods and cones of rd10/cpfl1 mice by adeno-associated virus (AAV)-mediated delivery driven by the ubiquitous, constitutive small chicken β-actin promoter. We show that expression of PDE6α’ rescues rod function in rd10/cpfl1 mice, and the restoration of rod light sensitivity is attained through restoration of endogenous rod PDE6γ and formation of a functional PDE6α’γ complex. However, improved photopic cone responses were achieved only after supplementation of both cone PDE6α’ and PDE6γ’ subunits but not by PDE6α’ treatment alone. We observed a two fold increase of PDE6α’ levels in the eyes injected with both PDE6α’ plus PDE6γ’ relative to eyes receiving PDE6α’ alone. Despite the presence of both PDE6γ’ and PDE6γ, the majority of PDE6α’ formed functional complexes with PDE6γ’, suggesting that PDE6α’ has a higher association affinity for PDE6γ’ than for PDE6γ. These results suggest that the presence of PDE6γ’ augments cone PDE6 assembly and enhances its stability. Our finding has important implication for gene therapy of PDE6α’-associated achromatopsia.
Collapse
Affiliation(s)
- Wen-Tao Deng
- Department of Ophthalmology, University of Florida, Gainesville, FL, United States
| | - Saravanan Kolandaivelu
- Departments of Ophthalmology and Biochemistry, Center for Neuroscience, West Virginia University, Morgantown, WV, United States
| | - Astra Dinculescu
- Department of Ophthalmology, University of Florida, Gainesville, FL, United States
| | - Jie Li
- Department of Ophthalmology, University of Florida, Gainesville, FL, United States
| | - Ping Zhu
- Department of Ophthalmology, University of Florida, Gainesville, FL, United States
| | - Vince A Chiodo
- Department of Ophthalmology, University of Florida, Gainesville, FL, United States
| | - Visvanathan Ramamurthy
- Departments of Ophthalmology and Biochemistry, Center for Neuroscience, West Virginia University, Morgantown, WV, United States
| | - William W Hauswirth
- Department of Ophthalmology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
13
|
Lagman D, Franzén IE, Eggert J, Larhammar D, Abalo XM. Evolution and expression of the phosphodiesterase 6 genes unveils vertebrate novelty to control photosensitivity. BMC Evol Biol 2016; 16:124. [PMID: 27296292 PMCID: PMC4906994 DOI: 10.1186/s12862-016-0695-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 06/01/2016] [Indexed: 02/25/2023] Open
Abstract
Background Phosphodiesterase 6 (PDE6) is a protein complex that hydrolyses cGMP and acts as the effector of the vertebrate phototransduction cascade. The PDE6 holoenzyme consists of catalytic and inhibitory subunits belonging to two unrelated gene families. Rods and cones express distinct genes from both families: PDE6A and PDE6B code for the catalytic and PDE6G the inhibitory subunits in rods while PDE6C codes for the catalytic and PDE6H the inhibitory subunits in cones. We performed phylogenetic and comparative synteny analyses for both gene families in genomes from a broad range of animals. Furthermore, gene expression was investigated in zebrafish. Results We found that both gene families expanded from one to three members in the two rounds of genome doubling (2R) that occurred at the base of vertebrate evolution. The PDE6 inhibitory subunit gene family appears to be unique to vertebrates and expanded further after the teleost-specific genome doubling (3R). We also describe a new family member that originated in 2R and has been lost in amniotes, which we have named pde6i. Zebrafish has retained two additional copies of the PDE6 inhibitory subunit genes after 3R that are highly conserved, have high amino acid sequence identity, are coexpressed in the same photoreceptor type as their amniote orthologs and, interestingly, show strikingly different daily oscillation in gene expression levels. Conclusions Together, these data suggest specialisation related to the adaptation to different light intensities during the day-night cycle, most likely maintaining the regulatory function of the PDE inhibitory subunits in the phototransduction cascade. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0695-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David Lagman
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, SE-75124, Uppsala, Sweden
| | - Ilkin E Franzén
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, SE-75124, Uppsala, Sweden
| | - Joel Eggert
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, SE-75124, Uppsala, Sweden
| | - Dan Larhammar
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, SE-75124, Uppsala, Sweden
| | - Xesús M Abalo
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, SE-75124, Uppsala, Sweden.
| |
Collapse
|
14
|
Woodard GE, Jardín I, Berna-Erro A, Salido GM, Rosado JA. Regulators of G-protein-signaling proteins: negative modulators of G-protein-coupled receptor signaling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:97-183. [PMID: 26008785 DOI: 10.1016/bs.ircmb.2015.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulators of G-protein-signaling (RGS) proteins are a category of intracellular proteins that have an inhibitory effect on the intracellular signaling produced by G-protein-coupled receptors (GPCRs). RGS along with RGS-like proteins switch on through direct contact G-alpha subunits providing a variety of intracellular functions through intracellular signaling. RGS proteins have a common RGS domain that binds to G alpha. RGS proteins accelerate GTPase and thus enhance guanosine triphosphate hydrolysis through the alpha subunit of heterotrimeric G proteins. As a result, they inactivate the G protein and quickly turn off GPCR signaling thus terminating the resulting downstream signals. Activity and subcellular localization of RGS proteins can be changed through covalent molecular changes to the enzyme, differential gene splicing, and processing of the protein. Other roles of RGS proteins have shown them to not be solely committed to being inhibitors but behave more as modulators and integrators of signaling. RGS proteins modulate the duration and kinetics of slow calcium oscillations and rapid phototransduction and ion signaling events. In other cases, RGS proteins integrate G proteins with signaling pathways linked to such diverse cellular responses as cell growth and differentiation, cell motility, and intracellular trafficking. Human and animal studies have revealed that RGS proteins play a vital role in physiology and can be ideal targets for diseases such as those related to addiction where receptor signaling seems continuously switched on.
Collapse
Affiliation(s)
- Geoffrey E Woodard
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Isaac Jardín
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - A Berna-Erro
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Juan A Rosado
- Department of Physiology, University of Extremadura, Caceres, Spain
| |
Collapse
|
15
|
Zeng-Elmore X, Gao XZ, Pellarin R, Schneidman-Duhovny D, Zhang XJ, Kozacka KA, Tang Y, Sali A, Chalkley RJ, Cote RH, Chu F. Molecular architecture of photoreceptor phosphodiesterase elucidated by chemical cross-linking and integrative modeling. J Mol Biol 2014; 426:3713-3728. [PMID: 25149264 DOI: 10.1016/j.jmb.2014.07.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/01/2014] [Accepted: 07/28/2014] [Indexed: 11/20/2022]
Abstract
Photoreceptor phosphodiesterase (PDE6) is the central effector enzyme in visual excitation pathway in rod and cone photoreceptors. Its tight regulation is essential for the speed, sensitivity, recovery and adaptation of visual detection. Although major steps in the PDE6 activation/deactivation pathway have been identified, mechanistic understanding of PDE6 regulation is limited by the lack of knowledge about the molecular organization of the PDE6 holoenzyme (αβγγ). Here, we characterize the PDE6 holoenzyme by integrative structural determination of the PDE6 catalytic dimer (αβ), based primarily on chemical cross-linking and mass spectrometric analysis. Our models built from high-density cross-linking data elucidate a parallel organization of the two catalytic subunits, with juxtaposed α-helical segments within the tandem regulatory GAF domains to provide multiple sites for dimerization. The two catalytic domains exist in an open configuration when compared to the structure of PDE2 in the apo state. Detailed structural elements for differential binding of the γ-subunit to the GAFa domains of the α- and β-subunits are revealed, providing insight into the regulation of the PDE6 activation/deactivation cycle.
Collapse
Affiliation(s)
- Xiaohui Zeng-Elmore
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA; Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH 03824, USA
| | - Xiong-Zhuo Gao
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Riccardo Pellarin
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
| | - Dina Schneidman-Duhovny
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
| | - Xiu-Jun Zhang
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Katie A Kozacka
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Yang Tang
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA; Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH 03824, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA; California Institute for Quantitative Biosciences, University of California, San Francisco, CA 94158, USA
| | - Robert J Chalkley
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | - Rick H Cote
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Feixia Chu
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA; Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH 03824, USA.
| |
Collapse
|
16
|
Cone phosphodiesterase-6α' restores rod function and confers distinct physiological properties in the rod phosphodiesterase-6β-deficient rd10 mouse. J Neurosci 2013; 33:11745-53. [PMID: 23864662 DOI: 10.1523/jneurosci.1536-13.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Phosphodiesterase-6 (PDE6) is the key effector enzyme of the vertebrate phototransduction pathway in rods and cones. Rod PDE6 catalytic core is composed of two distinct subunits, PDE6α and PDE6β, whereas two identical PDE6α' subunits form the cone PDE6 catalytic core. It is not known whether this difference in PDE6 catalytic subunit identity contributes to the functional differences between rods and cones. To address this question, we expressed cone PDE6α' in the photoreceptor cells of the retinal degeneration 10 (rd10) mouse that carries a mutation in rod PDEβ subunit. We show that adeno-associated virus-mediated subretinal delivery of PDE6α' rescues rod electroretinogram responses and preserves retinal structure, indicating that cone PDE6α' can couple effectively to the rod phototransduction pathway. We also show that restoration of light sensitivity in rd10 rods is attributable to assembly of PDE6α' with rod PDE6γ. Single-cell recordings revealed that, surprisingly, rods expressing cone PDE6α' are twofold more sensitive to light than wild-type rods, most likely because of the slower shutoff of their light responses. Unlike in wild-type rods, the response kinetics in PDE6α'-treated rd10 rods accelerated with increasing flash intensity, indicating a possible direct feedback modulation of cone PDE6α' activity. Together, these results demonstrate that cone PDE6α' can functionally substitute for rod PDEαβ in vivo, conferring treated rods with distinct physiological properties.
Collapse
|