1
|
Tu P, Xu Q, Zhou X, Villa-Roel N, Kumar S, Dong N, Jo H, Ou C, Lin Z. Myeloid CCN3 protects against aortic valve calcification. Cell Commun Signal 2023; 21:14. [PMID: 36670446 PMCID: PMC9854076 DOI: 10.1186/s12964-022-01020-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/14/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Cellular communication network factor 3 (CCN3) has been implicated in the regulation of osteoblast differentiation. However, it is not known if CCN3 can regulate valvular calcification. While macrophages have been shown to regulate valvular calcification, the molecular and cellular mechanisms of this process remain poorly understood. In the present study, we investigated the role of macrophage-derived CCN3 in the progression of calcific aortic valve disease. METHODS Myeloid-specific knockout of CCN3 (Mye-CCN3-KO) and control mice were subjected to a single tail intravenous injection of AAV encoding mutant mPCSK9 (rAAV8/D377Y-mPCSK9) to induce hyperlipidemia. AAV-injected mice were then fed a high fat diet for 40 weeks. At the conclusion of high fat diet feeding, tissues were harvested and subjected to histologic and pathologic analyses. In vitro, bone marrow-derived macrophages (BMDM) were obtained from Mye-CCN3-KO and control mice and the expression of bone morphogenic protein signaling related gene were verified via quantitative real-time PCR and Western blotting. The BMDM conditioned medium was cocultured with human valvular intersititial cells which was artificially induced calcification to test the effect of the conditioned medium via Western blotting and Alizarin red staining. RESULTS Echocardiography revealed that both male and female Mye-CCN3-KO mice displayed compromised aortic valvular function accompanied by exacerbated valve thickness and cardiac dysfunction. Histologically, Alizarin-Red staining revealed a marked increase in aortic valve calcification in Mye-CCN3-KO mice when compared to the controls. In vitro, CCN3 deficiency augmented BMP2 production and secretion from bone marrow-derived macrophages. In addition, human valvular interstitial cells cultured with conditioned media from CCN3-deficient BMDMs resulted in exaggerated pro-calcifying gene expression and the consequent calcification. CONCLUSION Our data uncovered a novel role of myeloid CCN3 in the regulation of aortic valve calcification. Modulation of BMP2 production and secretion in macrophages might serve as a key mechanism for macrophage-derived CCN3's anti-calcification function in the development of CAVD. Video Abstract.
Collapse
Affiliation(s)
- Peinan Tu
- grid.189967.80000 0001 0941 6502Cardiology Division, Emory University School of Medicine, 101 Woodruff Circle, Room 3004, Atlanta, GA 30322 USA ,grid.284723.80000 0000 8877 7471Affiliated Dongguan Hospital Southern Medical University (Dongguan People’s Hospital), Dongguan, 523058 China
| | - Qian Xu
- grid.189967.80000 0001 0941 6502Cardiology Division, Emory University School of Medicine, 101 Woodruff Circle, Room 3004, Atlanta, GA 30322 USA ,grid.452223.00000 0004 1757 7615Department of Cardiovascular Surgery, Xiangya Hospital of Central South University, Changsha, China
| | - Xianming Zhou
- grid.189967.80000 0001 0941 6502Cardiology Division, Emory University School of Medicine, 101 Woodruff Circle, Room 3004, Atlanta, GA 30322 USA ,grid.33199.310000 0004 0368 7223Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nicolas Villa-Roel
- grid.213917.f0000 0001 2097 4943Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA USA
| | - Sandeep Kumar
- grid.213917.f0000 0001 2097 4943Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA USA
| | - Nianguo Dong
- grid.33199.310000 0004 0368 7223Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hanjoong Jo
- grid.213917.f0000 0001 2097 4943Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA USA
| | - Caiwen Ou
- Affiliated Dongguan Hospital Southern Medical University (Dongguan People's Hospital), Dongguan, 523058, China.
| | - Zhiyong Lin
- Cardiology Division, Emory University School of Medicine, 101 Woodruff Circle, Room 3004, Atlanta, GA, 30322, USA.
| |
Collapse
|
2
|
Redox-Regulation in Cancer Stem Cells. Biomedicines 2022; 10:biomedicines10102413. [PMID: 36289675 PMCID: PMC9598867 DOI: 10.3390/biomedicines10102413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022] Open
Abstract
Cancer stem cells (CSCs) represent a small subset of slowly dividing cells with tumor-initiating ability. They can self-renew and differentiate into all the distinct cell populations within a tumor. CSCs are naturally resistant to chemotherapy or radiotherapy. CSCs, thus, can repopulate a tumor after therapy and are responsible for recurrence of disease. Stemness manifests itself through, among other things, the expression of stem cell markers, the ability to induce sphere formation and tumor growth in vivo, and resistance to chemotherapeutics and irradiation. Stemness is maintained by keeping levels of reactive oxygen species (ROS) low, which is achieved by enhanced activity of antioxidant pathways. Here, cellular sources of ROS, antioxidant pathways employed by CSCs, and underlying mechanisms to overcome resistance are discussed.
Collapse
|
3
|
Won JH, Choi JS, Jun JI. CCN1 interacts with integrins to regulate intestinal stem cell proliferation and differentiation. Nat Commun 2022; 13:3117. [PMID: 35660741 PMCID: PMC9166801 DOI: 10.1038/s41467-022-30851-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/20/2022] [Indexed: 12/14/2022] Open
Abstract
Intestinal stem cells (ISCs) at the crypt base contribute to intestinal homeostasis through a balance between self-renewal and differentiation. However, the molecular mechanisms regulating this homeostatic balance remain elusive. Here we show that the matricellular protein CCN1/CYR61 coordinately regulates ISC proliferation and differentiation through distinct pathways emanating from CCN1 interaction with integrins αvβ3/αvβ5. Mice that delete Ccn1 in Lgr5 + ISCs or express mutant CCN1 unable to bind integrins αvβ3/αvβ5 exhibited exuberant ISC expansion and enhanced differentiation into secretory cells at the expense of absorptive enterocytes in the small intestine, leading to nutrient malabsorption. Analysis of crypt organoids revealed that through integrins αvβ3/αvβ5, CCN1 induces NF-κB-dependent Jag1 expression to regulate Notch activation for differentiation and promotes Src-mediated YAP activation and Dkk1 expression to control Wnt signaling for proliferation. Moreover, CCN1 and YAP amplify the activities of each other in a regulatory loop. These findings establish CCN1 as a niche factor in the intestinal crypts, providing insights into how matrix signaling exerts overarching control of ISC homeostasis. Intestinal stem cells contribute to homeostasis through a balance between self-renewal and differentiation. Here the authors show that CCN1 is an intestinal stem cell niche factor that activates integrin αvβ3/αvβ5 signaling to regulate proliferation and differentiation through distinct downstream pathways.
Collapse
Affiliation(s)
- Jong Hoon Won
- Department of Biochemistry and Molecular Genetics, College of Medicine, The University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL, 60607, USA
| | - Jacob S Choi
- Department of Biochemistry and Molecular Genetics, College of Medicine, The University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL, 60607, USA.,Department of Medicine, Northwestern University, 676 North St. Clair street Arkes Suite 2330, Chicago, IL, 60611, USA
| | - Joon-Il Jun
- Department of Biochemistry and Molecular Genetics, College of Medicine, The University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL, 60607, USA.
| |
Collapse
|
4
|
Stott MC, Oldfield L, Hale J, Costello E, Halloran CM. Recent advances in understanding pancreatic cancer. Fac Rev 2022; 11:9. [PMID: 35509672 PMCID: PMC9022729 DOI: 10.12703/r/11-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an intractable cancer and a leading cause of cancer deaths worldwide. Over 90% of patients die within 1 year of diagnosis. Deaths from PDAC are increasing and it remains a cancer of substantial unmet need. A number of factors contribute to its poor prognosis: namely, late presentation, early metastases and limited systemic therapy options because of chemoresistance. A variety of research approaches underway are aimed at improving patient survival. Here, we review high-risk groups and efforts for early detection. We examine recent developments in the understanding of complex molecular and metabolic alterations which accompany PDAC. We explore artificial intelligence and biological targets for therapy and examine the role of tumour stroma and the immune microenvironment. We also review recent developments with respect to the PDAC microbiome. It is hoped that current research efforts will translate into earlier diagnosis, improvements in treatment and better outcomes for patients.
Collapse
Affiliation(s)
- Martyn C Stott
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Sherrington Building, Liverpool, UK
| | - Lucy Oldfield
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Sherrington Building, Liverpool, UK
| | - Jessica Hale
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Sherrington Building, Liverpool, UK
| | - Eithne Costello
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Sherrington Building, Liverpool, UK
| | - Christopher M Halloran
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Sherrington Building, Liverpool, UK
| |
Collapse
|
5
|
Gopinath P, Natarajan A, Sathyanarayanan A, Veluswami S, Gopisetty G. The multifaceted role of Matricellular Proteins in health and cancer, as biomarkers and therapeutic targets. Gene 2022; 815:146137. [PMID: 35007686 DOI: 10.1016/j.gene.2021.146137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/07/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023]
Abstract
The extracellular matrix (ECM) is composed of a mesh of proteins, proteoglycans, growth factors, and other secretory components. It constitutes the tumor microenvironment along with the endothelial cells, cancer-associated fibroblasts, adipocytes, and immune cells. The proteins of ECM can be functionally classified as adhesive proteins and matricellular proteins (MCP). In the tumor milieu, the ECM plays a major role in tumorigenesis and therapeutic resistance. The current review encompasses thrombospondins, osteonectin, osteopontin, tenascin C, periostin, the CCN family, laminin, biglycan, decorin, mimecan, and galectins. The matrix metalloproteinases (MMPs) are also discussed as they are an integral part of the ECM with versatile functions in the tumor stroma. In this review, the role of these proteins in tumor initiation, growth, invasion and metastasis have been highlighted, with emphasis on their contribution to tumor therapeutic resistance. Further, their potential as biomarkers and therapeutic targets based on existing evidence are discussed. Owing to the recent advancements in protein targeting, the possibility of agents to modulate MCPs in cancer as therapeutic options are discussed.
Collapse
Affiliation(s)
- Prarthana Gopinath
- Department of Molecular Oncology, Cancer Institute WIA, Chennai, Tamil Nadu, India
| | - Aparna Natarajan
- Department of Molecular Oncology, Cancer Institute WIA, Chennai, Tamil Nadu, India
| | | | - Sridevi Veluswami
- Deaprtment of Surgical Oncology, Cancer Institute (WIA), Chennai, Tamil Nadu, India
| | - Gopal Gopisetty
- Department of Molecular Oncology, Cancer Institute WIA, Chennai, Tamil Nadu, India.
| |
Collapse
|
6
|
Liang Y, Yang L, Xie J. The Role of the Hedgehog Pathway in Chemoresistance of Gastrointestinal Cancers. Cells 2021; 10:cells10082030. [PMID: 34440799 PMCID: PMC8391142 DOI: 10.3390/cells10082030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/24/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
The hedgehog pathway, which plays a significant role in embryonic development and stem cell regulation, is activated in gastrointestinal cancers. Chemotherapy is widely used in cancer treatment. However, chemoresistance becomes a substantial obstacle in cancer therapy. This review focuses on the recent advances in the hedgehog pathway's roles in drug resistance of gastrointestinal cancers and the novel drugs and strategies targeting hedgehog signaling.
Collapse
Affiliation(s)
- Yabing Liang
- Inner Mongolia Key Laboratory of Medical Cell Biology, Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Hohhot 010050, China;
| | - Ling Yang
- Inner Mongolia Key Laboratory of Medical Cell Biology, Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Hohhot 010050, China;
- Correspondence: (L.Y.); (J.X.)
| | - Jingwu Xie
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Correspondence: (L.Y.); (J.X.)
| |
Collapse
|
7
|
Stassen OMJA, Ristori T, Sahlgren CM. Notch in mechanotransduction - from molecular mechanosensitivity to tissue mechanostasis. J Cell Sci 2020; 133:133/24/jcs250738. [PMID: 33443070 DOI: 10.1242/jcs.250738] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tissue development and homeostasis are controlled by mechanical cues. Perturbation of the mechanical equilibrium triggers restoration of mechanostasis through changes in cell behavior, while defects in these restorative mechanisms lead to mechanopathologies, for example, osteoporosis, myopathies, fibrosis or cardiovascular disease. Therefore, sensing mechanical cues and integrating them with the biomolecular cell fate machinery is essential for the maintenance of health. The Notch signaling pathway regulates cell and tissue fate in nearly all tissues. Notch activation is directly and indirectly mechanosensitive, and regulation of Notch signaling, and consequently cell fate, is integral to the cellular response to mechanical cues. Fully understanding the dynamic relationship between molecular signaling, tissue mechanics and tissue remodeling is challenging. To address this challenge, engineered microtissues and computational models play an increasingly large role. In this Review, we propose that Notch takes on the role of a 'mechanostat', maintaining the mechanical equilibrium of tissues. We discuss the reciprocal role of Notch in the regulation of tissue mechanics, with an emphasis on cardiovascular tissues, and the potential of computational and engineering approaches to unravel the complex dynamic relationship between mechanics and signaling in the maintenance of cell and tissue mechanostasis.
Collapse
Affiliation(s)
- Oscar M J A Stassen
- Faculty of Science and Engineering, Biosciences, Åbo Akademi University, 20500 Turku, Finland.,Turku Bioscience Centre, Åbo Akademi University and University of Turku, 20520 Turku, Finland.,Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Tommaso Ristori
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.,Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Cecilia M Sahlgren
- Faculty of Science and Engineering, Biosciences, Åbo Akademi University, 20500 Turku, Finland .,Turku Bioscience Centre, Åbo Akademi University and University of Turku, 20520 Turku, Finland.,Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
8
|
Haque I, Kawsar HI, Motes H, Sharma M, Banerjee S, Banerjee SK, Godwin AK, Huang CH. Downregulation of miR-506-3p Facilitates EGFR-TKI Resistance through Induction of Sonic Hedgehog Signaling in Non-Small-Cell Lung Cancer Cell Lines. Int J Mol Sci 2020; 21:E9307. [PMID: 33291316 PMCID: PMC7729622 DOI: 10.3390/ijms21239307] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 02/08/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutation eventually develop resistance to EGFR-targeted tyrosine kinase inhibitors (TKIs). Treatment resistance remains the primary obstacle to the successful treatment of NSCLC. Although drug resistance mechanisms have been studied extensively in NSCLC, the regulation of these mechanisms has not been completely understood. Recently, increasing numbers of microRNAs (miRNAs) are implicated in EGFR-TKI resistance, indicating that miRNAs may serve as novel targets and may hold promise as predictive biomarkers for anti-EGFR therapy. MicroRNA-506 (miR-506) has been identified as a tumor suppressor in many cancers, including lung cancer; however, the role of miR-506 in lung cancer chemoresistance has not yet been addressed. Here we report that miR-506-3p expression was markedly reduced in erlotinib-resistant (ER) cells. We identified Sonic Hedgehog (SHH) as a novel target of miR-506-3p, aberrantly activated in ER cells. The ectopic overexpression of miR-506-3p in ER cells downregulates SHH signaling, increases E-cadherin expression, and inhibits the expression of vimentin, thus counteracting the epithelial-mesenchymal transition (EMT)-mediated chemoresistance. Our results advanced our understanding of the molecular mechanisms underlying EGFR-TKI resistance and indicated that the miR-506/SHH axis might represent a novel therapeutic target for future EGFR mutated lung cancer treatment.
Collapse
Affiliation(s)
- Inamul Haque
- Cancer Research Unit, Veterans Affairs Medical Center, Kansas City, MO 64128, USA; (H.M.); (S.B.); (S.K.B.)
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Hameem I. Kawsar
- Division of Medical Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Hannah Motes
- Cancer Research Unit, Veterans Affairs Medical Center, Kansas City, MO 64128, USA; (H.M.); (S.B.); (S.K.B.)
- Kirksville College of Osteopathic Medicine, Andrew Taylor Still University, Jefferson St, Kirksville, MO 63501, USA
| | - Mukut Sharma
- Research Service, Veterans Affairs Medical Center, Kansas City, MO 64128, USA;
| | - Snigdha Banerjee
- Cancer Research Unit, Veterans Affairs Medical Center, Kansas City, MO 64128, USA; (H.M.); (S.B.); (S.K.B.)
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Sushanta K. Banerjee
- Cancer Research Unit, Veterans Affairs Medical Center, Kansas City, MO 64128, USA; (H.M.); (S.B.); (S.K.B.)
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Andrew K. Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Chao H. Huang
- Cancer Research Unit, Veterans Affairs Medical Center, Kansas City, MO 64128, USA; (H.M.); (S.B.); (S.K.B.)
- Division of Medical Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| |
Collapse
|
9
|
Guo Y, Tong Y, Zhu H, Xiao Y, Guo H, Shang L, Zheng W, Ma S, Liu X, Bai Y. Quercetin suppresses pancreatic ductal adenocarcinoma progression via inhibition of SHH and TGF-β/Smad signaling pathways. Cell Biol Toxicol 2020; 37:479-496. [PMID: 33070227 DOI: 10.1007/s10565-020-09562-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is an aggressive type of malignant tumor with a poor prognosis and high mortality. Aberrant activation of hedgehog signaling plays a crucial role in the maintenance and progression of PDA. Here, we report that the dietary bioflavonoid quercetin has therapeutic potential for PDA by targeting sonic hedgehog (SHH) signaling. The effects of quercetin on the proliferation, apoptosis, migration, and invasion of pancreatic cancer cells (PCCs) and tumor growth and metastasis in PDA xenograft mouse models were evaluated. Additionally, SHH signaling activity was determined. Quercetin significantly inhibited PCC proliferation by downregulating c-Myc expression. In addition, quercetin suppressed epithelial-mesenchymal transition (EMT) by reducing TGF-β1 level, which resulted in inhibition of PCC migration and invasion. Moreover, quercetin induced PCC apoptosis through mitochondrial and death receptor pathways. In nude mouse models, PDA growth and metastasis were reduced by quercetin treatment. Mechanically, quercetin exerts its therapeutic effects on PDA by decreasing SHH activity. Interestingly, quercetin-induced SHH inactivation is mainly dependent on Gli2, but not Gli1. Enhance SHH activity by recombinant Shh protein abolished the quercetin-mediated inhibition of PCC proliferation, migration, and invasion. Furthermore, Shh activated TGF-β1/Smad2/3 signaling and promoted EMT by inducing the expression of Zeb2 and Snail1 that eventually resulted in a partial reversal of quercetin-mediated inhibition of PCC migration and invasion. We conclude that quercetin inhibited the growth, migration, and invasion and induced apoptosis of PCCs by antagonizing SHH and TGF-β/Smad signaling pathways. Thus, quercetin may be a potential candidate for PDA treatment.
Collapse
Affiliation(s)
- Yangyang Guo
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yu Tong
- Department of Laboratory Medicine, People's Hospital of Wenzhou City, Wenzhou, 325000, China
| | - Hengyue Zhu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.,Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yanyi Xiao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Hangcheng Guo
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Lumeng Shang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.,Department of Laboratory Medicine, People's Hospital of Wenzhou City, Wenzhou, 325000, China
| | - Wenjing Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.,Department of Laboratory Medicine, People's Hospital of Wenzhou City, Wenzhou, 325000, China
| | - Shumei Ma
- Platform for Radiation Protection and Emergency Preparedness, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325000, China.,Center for Health Assessment, Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiaodong Liu
- Platform for Radiation Protection and Emergency Preparedness, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325000, China. .,Center for Health Assessment, Wenzhou Medical University, Wenzhou, 325000, China.
| | - Yongheng Bai
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China. .,Center for Health Assessment, Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
10
|
Leask A. Conjunction junction, what's the function? CCN proteins as targets in fibrosis and cancers. Am J Physiol Cell Physiol 2020; 318:C1046-C1054. [PMID: 32130070 PMCID: PMC7311738 DOI: 10.1152/ajpcell.00028.2020] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 12/11/2022]
Abstract
Cellular communication network (CCN) proteins are matricellular proteins that coordinate signaling among extracellular matrix, secreted proteins, and cell surface receptors. Their specific in vivo function is context-dependent, but they play profound roles in pathological conditions, such as fibrosis and cancers. Anti-CCN therapies are in clinical consideration. Only recently, however, has the function of these complex molecules begun to emerge. This review summarizes and interprets our current knowledge regarding these fascinating molecules and provides experimental evidence for their utility as therapeutic targets.
Collapse
Affiliation(s)
- Andrew Leask
- School of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
11
|
Abou-Kheir W, Mukherji D, Hadadeh O, Saleh E, Bahmad HF, Kanso M, Khalifeh M, Shamseddine A, Tamraz S, Jaafar R, Dagher C, Khalifeh I, Faraj W. CYR61/CCN1 expression in resected pancreatic ductal adenocarcinoma: A retrospective pilot study of the interaction between the tumors and their surrounding microenvironment. Heliyon 2020; 6:e03842. [PMID: 32395647 PMCID: PMC7205742 DOI: 10.1016/j.heliyon.2020.e03842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/10/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND CCN1 is an extracellular matrix-associated protein thought to be implicated in tumor-stromal interaction in several solid tumors. The aim of our pilot study was to evaluate the correlation between CCN1 expression in stromal cells, pancreatic intraepithelial neoplasia (PanIN) and pancreatic ductal adenocarcinoma cells in resected pancreatic ductal adenocarcinoma (PDAC) specimens, and correlate that clinically. METHODS A total of 42 paraffin-embedded PDAC tumor specimens were stained for CCN1 and evaluated via immunohistochemical (IHC) analysis. Statistical analysis was performed to correlate between CCN1 expression profiles in tumor tissues and clinicopathological parameters of patients. RESULTS Our results showed CCN1 (CYR61) gene was highly expressed in PDAC tissues relative to other organ specific tumor tissues. Also, moderate and overexpression of CCN1 in PanIN was associated with PanIN grade 3 tissues. A statistically significant association was found between PanIN CCN1 scores on one hand and cancer stage, cancer grade, and CCN1 expression among ductal tumor cells and adjacent stromal cells on the other hand. DISCUSSION The associations demonstrated suggest that CCN1 might be contributing to a substantial role in the interaction between the pancreatic tumors on one hand and their surrounding microenvironment and their precursors on the other hand; hence, it might serve as a potential therapeutic target for PDAC.
Collapse
Affiliation(s)
- Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Deborah Mukherji
- Department of Internal Medicine, Division of Hematology/Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ola Hadadeh
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Eman Saleh
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hisham F. Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Mariam Kanso
- Department of Surgery, Division of General Surgery, Liver Transplantation and Hepatopancreaticobiliary (HPB) Unit, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mohamad Khalifeh
- Department of Surgery, Division of General Surgery, Liver Transplantation and Hepatopancreaticobiliary (HPB) Unit, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ali Shamseddine
- Department of Internal Medicine, Division of Hematology/Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Sally Tamraz
- Department of Internal Medicine, Division of Hematology/Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Rola Jaafar
- Department of Surgery, Division of General Surgery, Liver Transplantation and Hepatopancreaticobiliary (HPB) Unit, American University of Beirut Medical Center, Beirut, Lebanon
| | - Christelle Dagher
- Department of Internal Medicine, Division of Hematology/Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ibrahim Khalifeh
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Walid Faraj
- Department of Surgery, Division of General Surgery, Liver Transplantation and Hepatopancreaticobiliary (HPB) Unit, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
12
|
Gerarduzzi C, Hartmann U, Leask A, Drobetsky E. The Matrix Revolution: Matricellular Proteins and Restructuring of the Cancer Microenvironment. Cancer Res 2020; 80:2705-2717. [PMID: 32193287 DOI: 10.1158/0008-5472.can-18-2098] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/04/2019] [Accepted: 03/17/2020] [Indexed: 11/16/2022]
Abstract
The extracellular matrix (ECM) surrounding cells is indispensable for regulating their behavior. The dynamics of ECM signaling are tightly controlled throughout growth and development. During tissue remodeling, matricellular proteins (MCP) are secreted into the ECM. These factors do not serve classical structural roles, but rather regulate matrix proteins and cell-matrix interactions to influence normal cellular functions. In the tumor microenvironment, it is becoming increasingly clear that aberrantly expressed MCPs can support multiple hallmarks of carcinogenesis by interacting with various cellular components that are coupled to an array of downstream signals. Moreover, MCPs also reorganize the biomechanical properties of the ECM to accommodate metastasis and tumor colonization. This realization is stimulating new research on MCPs as reliable and accessible biomarkers in cancer, as well as effective and selective therapeutic targets.
Collapse
Affiliation(s)
- Casimiro Gerarduzzi
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada. .,Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Ursula Hartmann
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Andrew Leask
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Elliot Drobetsky
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
13
|
Ilhan M, Kucukkose C, Efe E, Gunyuz ZE, Firatligil B, Dogan H, Ozuysal M, Yalcin-Ozuysal O. Pro-metastatic functions of Notch signaling is mediated by CYR61 in breast cells. Eur J Cell Biol 2020; 99:151070. [PMID: 32005345 DOI: 10.1016/j.ejcb.2020.151070] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/25/2019] [Accepted: 01/16/2020] [Indexed: 12/14/2022] Open
Abstract
Metastasis is the main cause of cancer related deaths, and unfolding the molecular mechanisms underlying metastatic progression is critical for the development of novel therapeutic approaches. Notch is one of the key signaling pathways involved in breast tumorigenesis and metastasis. Notch activation induces pro-metastatic processes such as migration, invasion and epithelial to mesenchymal transition (EMT). However, molecular mediators working downstream of Notch in these processes are not fully elucidated. CYR61 is a secreted protein implicated in metastasis, and its inhibition by a monoclonal antibody suppresses metastasis in xenograft breast tumors, indicating the clinical importance of CYR61 targeting. Here, we aimed to investigate whether CYR61 works downstream of Notch in inducing pro-metastatic phenotypes in breast cells. We showed that CYR61 expression is positively regulated by Notch activity in breast cells. Notch1-induced migration, invasion and anchorage independent growth of a normal breast cell line, MCF10A, were abrogated by CYR61 silencing. Furthermore, upregulation of core EMT markers upon Notch1-activation was impaired in the absence of CYR61. However, reduced migration and invasion of highly metastatic cell line, MDA MB 231, cells upon Notch inhibition was not dependent on CYR61 downregulation. In conclusion, we showed that in normal breast cell line MCF10A, CYR61 is a mediator of Notch1-induced pro-metastatic phenotypes partly via induction of EMT. Our results imply CYR61 as a prominent therapeutic candidate for a subpopulation of breast tumors with high Notch activity.
Collapse
Affiliation(s)
- Mustafa Ilhan
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430, Izmir, Turkey
| | - Cansu Kucukkose
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430, Izmir, Turkey
| | - Eda Efe
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430, Izmir, Turkey
| | - Zehra Elif Gunyuz
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430, Izmir, Turkey
| | - Burcu Firatligil
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430, Izmir, Turkey
| | - Hulya Dogan
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430, Izmir, Turkey
| | - Mustafa Ozuysal
- Department of Computer Engineering, Izmir Institute of Technology, 35430, Izmir, Turkey
| | - Ozden Yalcin-Ozuysal
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430, Izmir, Turkey.
| |
Collapse
|
14
|
Su RL, Qiao Y, Guo RF, Lv YY. Cyr61 overexpression induced by interleukin 8 via NF-kB signaling pathway and its role in tumorigenesis of gastric carcinoma in vitro. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:3197-3207. [PMID: 31934164 PMCID: PMC6949833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 05/27/2019] [Indexed: 06/10/2023]
Abstract
Cyr61 (CCN1) is a multifunctional matricellular protein in bridging inflammation and cancer, involved in many biological functions such as tumorigenesis and carcinogenesis. The role of Cyr61 in gastric cancer (GC) has not been fully understood and needs to be investigated and clarified. We examined Cyr61 expression in 6 GC cell lines and stable transfection of recombinants in to BGC823 specifically down regulated the Cyr61 mRNA and protein expression shown by the analysis with western blot, RT-PCR, western blot and immunofluorescence assay. The cells treated with siRNA shown markedly reduced activity in growth, migration and invasion compared with parental BGC823 cells as well as mock transfectants. The Cyr61 deficient cells demonstrated significantly inhibited colony formation in soft agar and reduced tumorigenicity was showed in nude mice, NF-kB pathway evidently inactivated respectively. However, under the stimulation of IL-8, the siRNA-treated cells can restore the capacity of proliferation and invasion. IL-8 can induce the high expression of Cyr61 and MMP11 through NF-kB signal pathway. Silencing of Cyr61 can inhibit or minimize the proliferation and invasiveness of gastric cancer cell. The results imply that Cyr61 enhance the proliferation and invasion of gastric cancer cells and this process is partially modulated by the IL-8 up-regulation. Cyr61 may mediate the proliferation and development of gastric carcinoma.
Collapse
Affiliation(s)
- Ri-La Su
- Department of Oncology, Inner Mongolia People’s HospitalHohhot, China
| | - Ying Qiao
- Department of HIV Diseases, The Second Hospital of HohhotChina
| | - Rui-Fang Guo
- Department of Nutrition, Inner Mongolia People’s HospitalHohhot, China
| | - You-Yong Lv
- Beijing Institute for Cancer Research, Peking University School of OncologyBeijing, China
| |
Collapse
|
15
|
Chaqour B. Caught between a "Rho" and a hard place: are CCN1/CYR61 and CCN2/CTGF the arbiters of microvascular stiffness? J Cell Commun Signal 2019; 14:21-29. [PMID: 31376071 DOI: 10.1007/s12079-019-00529-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 07/26/2019] [Indexed: 12/18/2022] Open
Abstract
The extracellular matrix (ECM) is a deformable dynamic structure that dictates the behavior, function and integrity of blood vessels. The composition, density, chemistry and architecture of major globular and fibrillar proteins of the matrisome regulate the mechanical properties of the vasculature (i.e., stiffness/compliance). ECM proteins are linked via integrins to a protein adhesome directly connected to the actin cytoskeleton and various downstream signaling pathways that enable the cells to respond to external stimuli in a coordinated manner and maintain optimal tissue stiffness. However, cardiovascular risk factors such as diabetes, dyslipidemia, hypertension, ischemia and aging compromise the mechanical balance of the vascular wall. Stiffening of large blood vessels is associated with well-known qualitative and quantitative changes of fibrillar and fibrous macromolecules of the vascular matrisome. However, the mechanical properties of the thin-walled microvasculature are essentially defined by components of the subendothelial matrix. Cellular communication network (CCN) 1 and 2 proteins (aka Cyr61 and CTGF, respectively) of the CCN protein family localize in and act on the pericellular matrix of microvessels and constitute primary candidate markers and regulators of microvascular compliance. CCN1 and CCN2 bind various integrin and non-integrin receptors and initiate signaling pathways that regulate connective tissue remodeling and response to injury, the associated mechanoresponse of vascular cells, and the subsequent inflammatory response. The CCN1 and CCN2 genes are themselves responsive to mechanical stimuli in vascular cells, wherein mechanotransduction signaling converges into the common Rho GTPase pathway, which promotes actomyosin-based contractility and cellular stiffening. However, CCN1 and CCN2 each exhibit unique functional attributes in these processes. A better understanding of their synergistic or antagonistic effects on the maintenance (or loss) of microvascular compliance in physiological and pathological situations will assist more broadly based studies of their functional properties and translational value.
Collapse
Affiliation(s)
- Brahim Chaqour
- Department of Cell Biology and Department of Ophthalmology, State University of New York - SUNY Downstate Medical Center, 450 Clarkson Avenue, MSC 5, Brooklyn, NY, 11203, USA.
| |
Collapse
|
16
|
Das A, Narayanam MK, Paul S, Mukhnerjee P, Ghosh S, Dastidar DG, Chakrabarty S, Ganguli A, Basu B, Pal M, Chatterji U, Banerjee SK, Karmakar P, Kumar D, Chakrabarti G. A novel triazole, NMK-T-057, induces autophagic cell death in breast cancer cells by inhibiting γ-secretase-mediated activation of Notch signaling. J Biol Chem 2019; 294:6733-6750. [PMID: 30824542 DOI: 10.1074/jbc.ra119.007671] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Indexed: 01/05/2023] Open
Abstract
Notch signaling is reported to be deregulated in several malignancies, including breast, and the enzyme γ-secretase plays an important role in the activation and nuclear translocation of Notch intracellular domain (NICD). Hence, pharmacological inhibition of γ-secretase might lead to the subsequent inhibition of Notch signaling in cancer cells. In search of novel γ-secretase inhibitors (GSIs), we screened a series of triazole-based compounds for their potential to bind γ-secretase and observed that 3-(3'4',5'-trimethoxyphenyl)-5-(N-methyl-3'-indolyl)-1,2,4-triazole compound (also known as NMK-T-057) can bind to γ-secretase complex. Very interestingly, NMK-T-057 was found to inhibit proliferation, colony-forming ability, and motility in various breast cancer (BC) cells such as MDA-MB-231, MDA-MB-468, 4T1 (triple-negative cells), and MCF-7 (estrogen receptor (ER)/progesterone receptor (PR)-positive cell line) with negligible cytotoxicity against noncancerous cells (MCF-10A and peripheral blood mononuclear cells). Furthermore, significant induction of apoptosis and inhibition of epithelial-to-mesenchymal transition (EMT) and stemness were also observed in NMK-T-057-treated BC cells. The in silico study revealing the affinity of NMK-T-057 toward γ-secretase was further validated by a fluorescence-based γ-secretase activity assay, which confirmed inhibition of γ-secretase activity in NMK-T-057-treated BC cells. Interestingly, it was observed that NMK-T-057 induced significant autophagic responses in BC cells, which led to apoptosis. Moreover, NMK-T-057 was found to inhibit tumor progression in a 4T1-BALB/c mouse model. Hence, it may be concluded that NMK-T-057 could be a potential drug candidate against BC that can trigger autophagy-mediated cell death by inhibiting γ-secretase-mediated activation of Notch signaling.
Collapse
Affiliation(s)
- Amlan Das
- From the Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology and .,Department of Chemistry, National Institute of Technology, Ravangla, South Sikkim 737139, India
| | - Maruthi Kumar Narayanam
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India.,Department of Molecular and Medical Pharmacology and Crump Institute for Molecular Imaging, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, and
| | - Santanu Paul
- From the Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology and
| | - Pritha Mukhnerjee
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Suvranil Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Road, Scheme VIIM, Kankurgachi, Kolkata 700054, West Bengal, India
| | - Debabrata Ghosh Dastidar
- From the Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology and.,Division of Pharmaceutics, Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F Nilgunj Road, Panihati, Kolkata 700114, West Bengal, India
| | - Subhendu Chakrabarty
- From the Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology and
| | - Arnab Ganguli
- From the Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology and
| | - Biswarup Basu
- Department of Experimental Hematology and Neuroendocrinology, Chittaranjan National Cancer Institute, 37 Shyama Prasad Mukherjee Road, Kolkata 700026, West Bengal, India
| | - Mahadeb Pal
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Road, Scheme VIIM, Kankurgachi, Kolkata 700054, West Bengal, India
| | - Urmi Chatterji
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Sushanta K Banerjee
- Cancer Research Unit, Veterans Affairs Medical Center, Kansas City, Missouri 64128.,Departments of Anatomy and Cell Biology and Pathology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Parimal Karmakar
- Department of Life Science and Biotechnology, Jadavpur University, 188 Raja S. C. Mullick Road, Kolkata 700032, Western Bengal, India
| | - Dalip Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India,
| | - Gopal Chakrabarti
- From the Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology and
| |
Collapse
|
17
|
Maity G, Ghosh A, Gupta V, Haque I, Sarkar S, Das A, Dhar K, Bhavanasi S, Gunewardena SS, Von Hoff DD, Mallik S, Kambhampati S, Banerjee SK, Banerjee S. CYR61/CCN1 Regulates dCK and CTGF and Causes Gemcitabine-resistant Phenotype in Pancreatic Ductal Adenocarcinoma. Mol Cancer Ther 2019; 18:788-800. [PMID: 30787177 DOI: 10.1158/1535-7163.mct-18-0899] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/30/2018] [Accepted: 01/30/2019] [Indexed: 02/03/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) develops extrinsic- and intrinsic-resistant phenotypes to prevent chemotherapies from entering into the cells by promoting desmoplastic reactions (DR) and metabolic malfunctions of the drugs. It is well established that these responses are also associated with pancreatic cancer cells' gemcitabine resistance. However, the mechanism by which these resistant pathways function in the pancreatic cancer cells remains poorly understood. In these studies, we show that CYR61/CCN1 signaling plays a vital role in making pancreatic cancer cells resistant to gemcitabine in vitro and also in a tumor xenograft model. We proved that the catastrophic effect of gemcitabine could significantly be increased in gemcitabine-resistant PDAC cells when CYR61/CCN1 is depleted, while this effect can be suppressed in gemcitabine-sensitive neoplastic cells by treating them with CYR61/CCN1 recombinant protein. Ironically, nontransformed pancreatic cells, which are sensitive to gemcitabine, cannot be resistant to gemcitabine by CYR61/CCN1 protein treatment, showing a unique feature of CYR61/CCN signaling that only influences PDAC cells to become resistant. Furthermore, we demonstrated that CYR61/CCN1 suppresses the expression of the gemcitabine-activating enzyme deoxycytidine kinase (dCK) while it induces the expression of a DR-promoting factor CTGF (connective tissue growth factor) in pancreatic cancer cells in vitro and in vivo Thus, the previously described mechanisms (dCK and CTGF pathways) for gemcitabine resistance may be two novel targets for CYR61/CCN1 to protect pancreatic cancer cells from gemcitabine. Collectively, these studies reveal a novel paradigm in which CYR61/CCN1regulates both extrinsic and intrinsic gemcitabine resistance in PDAC cells by employing unique signaling pathways.
Collapse
Affiliation(s)
- Gargi Maity
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Arnab Ghosh
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri.
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Vijayalaxmi Gupta
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri
- Department of Ob/Gyn, University of Kansas Medical Center, Kansas City, Kansas
| | - Inamul Haque
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Sandipto Sarkar
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Amlan Das
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri
| | - Kakali Dhar
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri
| | - Sneha Bhavanasi
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri
| | - Sumedha S Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Daniel D Von Hoff
- The Translational Genomics Research Institute (TGen), Phoenix, Arizona
| | - Sanku Mallik
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota
| | - Suman Kambhampati
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri
- The Sarah Cannon Cancer Center at HCA Midwest Health, Kansas City, Missouri
| | - Sushanta K Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri.
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Snigdha Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri.
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
18
|
Molecular signatures for CCN1, p21 and p27 in progressive mantle cell lymphoma. J Cell Commun Signal 2018; 13:421-434. [PMID: 30465121 DOI: 10.1007/s12079-018-0494-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 11/01/2018] [Indexed: 01/17/2023] Open
Abstract
Mantle cell lymphoma (MCL) is a comparatively rare non-Hodgkin's lymphoma characterised by overexpression of cyclin D1. Many patients present with or progress to advanced stage disease within 3 years. MCL is considered an incurable disease with median survival between 3 and 4 years. We have investigated the role(s) of CCN1 (CYR61) and cell cycle regulators in progressive MCL. We have used the human MCL cell lines REC1 < G519 < JVM2 as a model for disease aggression. The magnitude of CCN1 expression in human MCL cells is REC1 > G519 > JVM2 cells by RQ-PCR, depicting a decrease in CCN1 expression with disease progression. Investigation of CCN1 isoform expression by western blotting showed that whilst expression of full-length CCN1 was barely altered in the cell lines, expression of truncated forms (18-20 and 28-30 kDa) decreased with disease progression. We have then demonstrated that cyclin D1 and cyclin dependent kinase inhibitors (p21CIP1and p27KIP1) are also involved in disease progression. Cyclin D1 was highly expressed in REC1 cells (OD: 1.0), reduced to one fifth in G519 cells (OD: 0.2) and not detected by western blotting in JVM2 cells. p27KIP1 followed a similar profile of expression as cyclin D1. Conversely, p21CIP1 was absent in the REC1 cells and showed increasing expression in G519 and JVM2 cells. Subcellular localization detected p21CIP1/ p27KIP1 primarily within the cytoplasm and absent from the nucleus, consistent with altered roles in treatment resistance. Dysregulation of the CCN1 truncated forms are associated with MCL progression. In conjunction with reduced expression of cyclin D1 and increased expression of p21, this molecular signature may depict aggressive disease and treatment resistance.
Collapse
|
19
|
Yin Y, Liu L, Zhao Z, Yin L, Bauer N, Nwaeburu CC, Gladkich J, Gross W, Hackert T, Sticht C, Gretz N, Strobel O, Herr I. Simvastatin inhibits sonic hedgehog signaling and stemness features of pancreatic cancer. Cancer Lett 2018; 426:14-24. [PMID: 29627496 DOI: 10.1016/j.canlet.2018.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/07/2018] [Accepted: 04/01/2018] [Indexed: 12/18/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) has poor therapeutic options. Recent patient studies indicate that cholesterol-lowering statins have anti-tumor capacities. We examined several established and primary PDA and normal cell lines as well as PDA patient tissues (n = 68). We found that simvastatin inhibited viability, stemness, tumor growth and metastasis and that it enhanced the efficacy of gemcitabine. These changes were associated with modulation of Shh-related gene expression. Overexpression of Shh prevented the anti-cancer effect of simvastatin, and inhibition of Shh mimicked the simvastatin effect. In PDA tissues, expression levels of Shh, downstream mediators of Shh and progression markers, namely, cMet, CxCR4 and Vimentin, were lower when patients were prescribed statin medication prior to surgery. These results suggested that statins are cost effective and well-tolerated drugs for prevention and co-treatment of PDA.
Collapse
Affiliation(s)
- Yefeng Yin
- Molecular OncoSurgery, Germany; Section Surgical Research, Germany; Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany.
| | - Li Liu
- Molecular OncoSurgery, Germany; Section Surgical Research, Germany; Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany.
| | - Zhefu Zhao
- Molecular OncoSurgery, Germany; Section Surgical Research, Germany; Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany.
| | - Libo Yin
- Molecular OncoSurgery, Germany; Section Surgical Research, Germany; Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany.
| | - Nathalie Bauer
- Molecular OncoSurgery, Germany; Section Surgical Research, Germany; Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany.
| | - Clifford C Nwaeburu
- Molecular OncoSurgery, Germany; Section Surgical Research, Germany; Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany.
| | - Jury Gladkich
- Molecular OncoSurgery, Germany; Section Surgical Research, Germany; Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany.
| | - Wolfgang Gross
- Molecular OncoSurgery, Germany; Section Surgical Research, Germany; Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany.
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Carsten Sticht
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Germany.
| | - Norbert Gretz
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Germany.
| | - Oliver Strobel
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany.
| | - Ingrid Herr
- Molecular OncoSurgery, Germany; Section Surgical Research, Germany; Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
20
|
Maity G, Haque I, Ghosh A, Dhar G, Gupta V, Sarkar S, Azeem I, McGregor D, Choudhary A, Campbell DR, Kambhampati S, Banerjee SK, Banerjee S. The MAZ transcription factor is a downstream target of the oncoprotein Cyr61/CCN1 and promotes pancreatic cancer cell invasion via CRAF-ERK signaling. J Biol Chem 2018; 293:4334-4349. [PMID: 29414775 PMCID: PMC5868262 DOI: 10.1074/jbc.ra117.000333] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/01/2018] [Indexed: 01/18/2023] Open
Abstract
Myc-associated zinc-finger protein (MAZ) is a transcription factor with dual roles in transcription initiation and termination. Deregulation of MAZ expression is associated with the progression of pancreatic ductal adenocarcinoma (PDAC). However, the mechanism of action of MAZ in PDAC progression is largely unknown. Here, we present evidence that MAZ mRNA expression and protein levels are increased in human PDAC cell lines, tissue samples, a subcutaneous tumor xenograft in a nude mouse model, and spontaneous cancer in the genetically engineered PDAC mouse model. We also found that MAZ is predominantly expressed in pancreatic cancer stem cells. Functional analysis indicated that MAZ depletion in PDAC cells inhibits invasive phenotypes such as the epithelial-to-mesenchymal transition, migration, invasion, and the sphere-forming ability of PDAC cells. Mechanistically, we detected no direct effects of MAZ on the expression of K-Ras mutants, but MAZ increased the activity of CRAF-ERK signaling, a downstream signaling target of K-Ras. The MAZ-induced activation of CRAF-ERK signaling was mediated via p21-activated protein kinase (PAK) and protein kinase B (AKT/PKB) signaling cascades and promoted PDAC cell invasiveness. Moreover, we found that the matricellular oncoprotein cysteine-rich angiogenic inducer 61 (Cyr61/CCN1) regulates MAZ expression via Notch-1-sonic hedgehog signaling in PDAC cells. We propose that Cyr61/CCN1-induced expression of MAZ promotes invasive phenotypes of PDAC cells not through direct K-Ras activation but instead through the activation of CRAF-ERK signaling. Collectively, these results highlight key molecular players in PDAC invasiveness and may help inform therapeutic strategies to improve clinical management and outcomes of PDAC.
Collapse
Affiliation(s)
- Gargi Maity
- From the Cancer Research Unit, Veterans Affairs Medical Center
- the Department of Pathology and Laboratory Medicine, and
| | - Inamul Haque
- From the Cancer Research Unit, Veterans Affairs Medical Center
- the Department of Pathology and Laboratory Medicine, and
| | - Arnab Ghosh
- From the Cancer Research Unit, Veterans Affairs Medical Center
- the Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Gopal Dhar
- From the Cancer Research Unit, Veterans Affairs Medical Center
| | | | - Sandipto Sarkar
- From the Cancer Research Unit, Veterans Affairs Medical Center
- the Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Imaan Azeem
- From the Cancer Research Unit, Veterans Affairs Medical Center
| | - Douglas McGregor
- From the Cancer Research Unit, Veterans Affairs Medical Center
- the Department of Pathology and Laboratory Medicine, and
- the Pathology Department, Veterans Affairs Medical Center, Kansas City, Missouri 64128
| | - Abhishek Choudhary
- the Gastroenterology Department, Veterans Affairs Medical Center, Kansas City, Missouri 64128
| | - Donald R Campbell
- From the Cancer Research Unit, Veterans Affairs Medical Center
- the University of Missouri Kansas City and Saint Luke's Hospital of Kansas City, Kansas City, Missouri, and
| | - Suman Kambhampati
- From the Cancer Research Unit, Veterans Affairs Medical Center
- the Sarah Cannon Cancer Center at HCA Midwest Health, Kansas City, Missouri 64131
| | - Sushanta K Banerjee
- From the Cancer Research Unit, Veterans Affairs Medical Center,
- the Department of Pathology and Laboratory Medicine, and
- the Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Snigdha Banerjee
- From the Cancer Research Unit, Veterans Affairs Medical Center,
- the Department of Pathology and Laboratory Medicine, and
| |
Collapse
|
21
|
Wei J, Yu G, Shao G, Sun A, Chen M, Yang W, Lin Q. CYR61 (CCN1) is a metastatic biomarker of gastric cardia adenocarcinoma. Oncotarget 2018; 7:31067-78. [PMID: 27105510 PMCID: PMC5058739 DOI: 10.18632/oncotarget.8845] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/31/2016] [Indexed: 12/14/2022] Open
Abstract
Gastric cardia adenocarcinoma (GCA) is the most aggressive subtype of gastric cancer with a high metastatic rate. In this report, we collected tumor tissue samples from 214 GCA cases and examined expression of CYR61, a target gene product of the Hippo-YAP/TAZ pathway, in the GCA tumors by immunohistochemical (IHC) staining using the tissue microarray assay (TMA). The results have shown that CYR61 is overexpressed in 44% of the GCA tumor samples. Expression of CYR61 is inversely correlated with cumulative survival of GCA patients (p<0.001) and significantly associated only with metastatic pathological categories (with N category, p=0.052; with TNM stage, p=0.001). Furthermore, knockdown of CYR61 in gastric cancer AGS cells impairs the cancer cell migration and invasion, suggesting a driver role of CYR61 in metastasis. Thus, our studies have established CYR61 as a metastatic biomarker for prediction of poor prognosis of GCA and provided a potential molecular target for anti-metastatic therapy of GCA.
Collapse
Affiliation(s)
- Jing Wei
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | | | - Genbao Shao
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Aiqin Sun
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Miao Chen
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.,The Affiliated Hospital, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wannian Yang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qiong Lin
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
22
|
Ghosh P, Banerjee S, Maity G, De A, Banerjee SK. Detection of CCN1 and CCN5 mRNA in Human Cancer Samples Using a Modified In Situ Hybridization Technique. Methods Mol Biol 2018; 1489:495-504. [PMID: 27734400 DOI: 10.1007/978-1-4939-6430-7_41] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
In situ hybridization is an ideal tool for the detection and localization of mRNA expression of specific gene(s) in tissue sections and cell lines for prognosis, predictive markers, and highlighted potential therapeutic targets. Given the importance of CCN1 and CCN5 in breast and pancreatic cancer progression, these two secretory proteins could be novel therapeutic targets. Thus, evaluating the distribution of mRNA of these targets using in situ hybridization could be important preclinical tools. This chapter describes a detailed in situ hybridization technique for the detection of CCN1 and CCN5 in formalin-fixed, paraffin-embedded patient samples of breast and pancreatic cancers.
Collapse
Affiliation(s)
- Priyanka Ghosh
- Cancer Research Unit, VA Medical Center, Kansas City, MO, USA.,Division of Hematology and Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Snigdha Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, MO, USA.,Division of Hematology and Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Gargi Maity
- Cancer Research Unit, VA Medical Center, Kansas City, MO, USA.,Division of Hematology and Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Pathology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Archana De
- Cancer Research Unit, VA Medical Center, Kansas City, MO, USA
| | - Sushanta K Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, MO, USA. .,Division of Hematology and Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA. .,Department of Pathology, University of Kansas Medical Center, Kansas City, KS, USA. .,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
23
|
Eibl G, Rozengurt E. KRAS, YAP, and obesity in pancreatic cancer: A signaling network with multiple loops. Semin Cancer Biol 2017; 54:50-62. [PMID: 29079305 DOI: 10.1016/j.semcancer.2017.10.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/22/2017] [Indexed: 02/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) continues to be a lethal disease with no efficacious treatment modalities. The incidence of PDAC is expected to increase, at least partially because of the obesity epidemic. Increased efforts to prevent or intercept this disease are clearly needed. Mutations in KRAS are initiating events in pancreatic carcinogenesis supported by genetically engineered mouse models of the disease. However, oncogenic KRAS is not entirely sufficient for the development of fully invasive PDAC. Additional genetic mutations and/or environmental, nutritional, and metabolic stressors, e.g. inflammation and obesity, are required for efficient PDAC formation with activation of KRAS downstream effectors. Multiple factors "upstream" of KRAS associated with obesity, including insulin resistance, inflammation, changes in gut microbiota and GI peptides, can enhance/modulate downstream signals. Multiple signaling networks and feedback loops "downstream" of KRAS have been described that respond to obesogenic diets. We propose that KRAS mutations potentiate a signaling network that is promoted by environmental factors. Specifically, we envisage that KRAS mutations increase the intensity and duration of the growth-promoting signaling network. As the transcriptional activator YAP plays a critical role in the network, we conclude that the rationale for targeting the network (at different points), e.g. with FDA approved drugs such as statins and metformin, is therefore compelling.
Collapse
Affiliation(s)
- Guido Eibl
- Departments of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; CURE: Digestive Diseases Research Center, University of California at Los Angeles, Los Angeles, CA, United States.
| | - Enrique Rozengurt
- Departments of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; CURE: Digestive Diseases Research Center, University of California at Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
24
|
Notch signaling pathway networks in cancer metastasis: a new target for cancer therapy. Med Oncol 2017; 34:180. [DOI: 10.1007/s12032-017-1039-6] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/13/2017] [Indexed: 12/19/2022]
|
25
|
Deficiency of CCN5/WISP-2-Driven Program in breast cancer Promotes Cancer Epithelial cells to mesenchymal stem cells and Breast Cancer growth. Sci Rep 2017; 7:1220. [PMID: 28450698 PMCID: PMC5430628 DOI: 10.1038/s41598-017-00916-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/16/2017] [Indexed: 12/31/2022] Open
Abstract
Breast cancer progression and relapse is conceivably due to tumor initiating cells (TICs)/cancer stem cells. EMT (epithelial-mesenchymal-transition)-signaling regulates TICs’ turnover. However, the mechanisms associated with this episode are unclear. We show that, in triple-negative-breast cancer (TNBC) cells enriched with TICs, CCN5 significantly blocks cellular growth via apoptosis, reversing EMT-signaling and impairing mammosphere formation, thereby blocking the tumor-forming ability and invasive capacity of these cells. To corroborate these findings, we isolated tumor-initiating side populations (SP) and non-side population (NSP or main population) from MCF-7 cell line, and evaluated the impact of CCN5 on these subpopulations. CCN5 was overexpressed in the NSP but downregulated in the SP. Characteristically, NSP cells are ER-α positive and epithelial type with little tumorigenic potency, while SP cells are very similar to triple-negative ones that do not express ER-α- and Her-2 and are highly tumorigenic in xenograft models. The overexpression of CCN5 in SP results in EMT reversion, ER-α upregulation and delays in tumor growth in xenograft models. We reasoned that CCN5 distinguishes SP and NSP and could reprogram SP to NSP transition, thereby delaying tumor growth in the xenograft model. Collectively, we reveal how CCN5-signaling underlies the driving force to prevent TNBC growth and progression.
Collapse
|
26
|
Gao J, Long B, Wang Z. Role of Notch signaling pathway in pancreatic cancer. Am J Cancer Res 2017; 7:173-186. [PMID: 28337369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 10/12/2016] [Indexed: 09/28/2022] Open
Abstract
Pancreatic cancer (PC) is one of the highly aggressive malignancies in the United States. It has been shown that multiple signaling pathways are involved in the pathogenesis of PC, such as JNK, PI3K/AKT, Rho GTPase, Hedgehog (Hh) and Skp2. In recent years, accumulated evidence has demonstrated that Notch signaling pathway plays critical roles in the development and progression of PC. Therefore, in this review we discuss the recent literature regarding the function and regulation of Notch in the pathogenesis of PC. Moreover, we describe that Notch signaling pathway could be down-regulated by its inhibitors or natural compounds, which could be a novel approach for the treatment of PC patients.
Collapse
Affiliation(s)
- Jiankun Gao
- Sichuan College of Tranditional Chinese Medicine Mianyang, Sichuan, China
| | - Bo Long
- Department of Infectious Diseases, Mianyang 404 Hospital Mianyang, Sichuan, China
| | - Zhiwei Wang
- The Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow UniversitySuzhou 215123, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical SchoolMA 02215, USA
| |
Collapse
|
27
|
Thakur R, Mishra DP. Matrix reloaded: CCN, tenascin and SIBLING group of matricellular proteins in orchestrating cancer hallmark capabilities. Pharmacol Ther 2016; 168:61-74. [DOI: 10.1016/j.pharmthera.2016.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
LaFoya B, Munroe JA, Mia MM, Detweiler MA, Crow JJ, Wood T, Roth S, Sharma B, Albig AR. Notch: A multi-functional integrating system of microenvironmental signals. Dev Biol 2016; 418:227-41. [PMID: 27565024 PMCID: PMC5144577 DOI: 10.1016/j.ydbio.2016.08.023] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/15/2016] [Accepted: 08/19/2016] [Indexed: 12/20/2022]
Abstract
The Notch signaling cascade is an evolutionarily ancient system that allows cells to interact with their microenvironmental neighbors through direct cell-cell interactions, thereby directing a variety of developmental processes. Recent research is discovering that Notch signaling is also responsive to a broad variety of stimuli beyond cell-cell interactions, including: ECM composition, crosstalk with other signaling systems, shear stress, hypoxia, and hyperglycemia. Given this emerging understanding of Notch responsiveness to microenvironmental conditions, it appears that the classical view of Notch as a mechanism enabling cell-cell interactions, is only a part of a broader function to integrate microenvironmental cues. In this review, we summarize and discuss published data supporting the idea that the full function of Notch signaling is to serve as an integrator of microenvironmental signals thus allowing cells to sense and respond to a multitude of conditions around them.
Collapse
Affiliation(s)
- Bryce LaFoya
- Biomolecular Sciences PhD Program, Boise State University, Boise, ID 83725, USA
| | - Jordan A Munroe
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Masum M Mia
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Michael A Detweiler
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Jacob J Crow
- Biomolecular Sciences PhD Program, Boise State University, Boise, ID 83725, USA
| | - Travis Wood
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Steven Roth
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Bikram Sharma
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Allan R Albig
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA; Biomolecular Sciences PhD Program, Boise State University, Boise, ID 83725, USA.
| |
Collapse
|
29
|
Di Y, Zhang Y, Hui L, Yang H, Yang Y, Wang A, Chen X. Cysteine‑rich 61 RNA interference inhibits pathological angiogenesis via the phosphatidylinositol 3‑kinase/Akt‑vascular endothelial growth factor signaling pathway in endothelial cells. Mol Med Rep 2016; 14:4321-4327. [PMID: 27666419 DOI: 10.3892/mmr.2016.5772] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 11/18/2015] [Indexed: 11/05/2022] Open
Abstract
Hypoxia is a key factor in the pathogenesis of angiogenesis, and cysteine‑rich 61 (CCN1), an angiogenic factor, is involved in the development of pathological angiogenesis. The aim of the present study was to investigate the mechanism of CCN1 RNA interference (RNAi)‑induced inhibition of hypoxia‑induced pathological angiogenesis in endothelial cells. Human umbilical vein endothelial cells (HUVECs) were cultured under hypoxic conditions in vitro. The effects of inhibiting phosphoinositide 3‑kinase (PI3K)/Akt signaling using LY294002 were investigated in hypoxic HUVECs. The proliferation and apoptosis of HUVECs under hypoxia were assessed using CCN1 RNAi. The CCN1‑PI3K/Akt‑vascular endothelial growth factor (VEGF) pathway was analyzed under hypoxic conditions using reverse transcription‑quantitative polymerase chain reaction and western blotting. CCN1 RNAi inhibited the proliferation and induced the apoptosis of the HUVECs under hypoxia, with hypoxia significantly increasing the mRNA and protein expression levels of CCN1, Akt and VEGF. By contrast, CCN1 RNAi reduced the mRNA and protein expression levels of CCN1, Akt and VEGF in the HUVECs (P<0.05). Furthermore, LY294002 reduced the mRNA and protein expression levels of CCN1 in the hypoxic cells (P<0.05). These data indicated that CCN1 inhibits apoptosis and promotes proliferation in HUVECs. Therefore, CCN1 RNAi may offer a novel therapeutic strategy, which may aid in the treatment of pathological angiogenesis via inhibition of the PI3K/Akt‑VEGF pathway.
Collapse
Affiliation(s)
- Yu Di
- Department of Ophthalmology, Shengjing Affiliated Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yiou Zhang
- Graduate School, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Linping Hui
- Laboratory Center, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Hongwei Yang
- Department of Ophthalmology, Shengjing Affiliated Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yang Yang
- Department of Ophthalmology, Shengjing Affiliated Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Aiyuan Wang
- Department of Ophthalmology, Shengjing Affiliated Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xiaolong Chen
- Department of Ophthalmology, Shengjing Affiliated Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
30
|
Iser IC, Pereira MB, Lenz G, Wink MR. The Epithelial-to-Mesenchymal Transition-Like Process in Glioblastoma: An Updated Systematic Review and In Silico Investigation. Med Res Rev 2016; 37:271-313. [DOI: 10.1002/med.21408] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/31/2016] [Accepted: 08/09/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Isabele C. Iser
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular; Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA; Porto Alegre RS Brazil
| | - Mariana B. Pereira
- Departamento de Biofísica e Centro de Biotecnologia; Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - Guido Lenz
- Departamento de Biofísica e Centro de Biotecnologia; Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - Márcia R. Wink
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular; Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA; Porto Alegre RS Brazil
| |
Collapse
|
31
|
Human pancreatic cancer progression: an anarchy among CCN-siblings. J Cell Commun Signal 2016; 10:207-216. [PMID: 27541366 DOI: 10.1007/s12079-016-0343-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 07/27/2016] [Indexed: 02/07/2023] Open
Abstract
Decades of basic and translational studies have identified the mechanisms by which pancreatic cancer cells use molecular pathways to hijack the normal homeostasis of the pancreas, promoting pancreatic cancer initiation, progression, and metastasis, as well as drug resistance. These molecular pathways were explored to develop targeted therapies to prevent or cure this fatal disease. Regrettably, the studies found that majority of the molecular events that dictate carcinogenic growth in the pancreas are non-actionable (potential non-responder groups of targeted therapy). In this review we discuss exciting discoveries on CCN-siblings that reveal how CCN-family members contribute to the different aspects of the development of pancreatic cancer with special emphasis on therapy.
Collapse
|
32
|
CCN family of proteins: critical modulators of the tumor cell microenvironment. J Cell Commun Signal 2016; 10:229-240. [PMID: 27517291 DOI: 10.1007/s12079-016-0346-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 08/02/2016] [Indexed: 02/07/2023] Open
Abstract
The CCN family of proteins consisting of CCN1 (Cyr61), CCN2 (CTGF), CCN3 (NOV), CCN4 (WISP-1), CCN5 (WISP-2) and CCN6 (WISP-3) are considered matricellular proteins operating essentially in the extracellular microenvironment between cells. Evidence has also been gradually building since their first discovery of additional intracellular roles although the major activity is triggered at the cell membrane. The proteins consist of 4 motifs, a signal peptide (for secretion} followed consecutively by the IGFBP, VWC, TSP1 and CT (C-terminal cysteine knot domain) motifs, which signify their potential binding partners and functional connections to a variety of key regulators of physiological processes. With respect to cancer it is now clear that, whereas certain members can facilitate tumor behavior and progression, others can competitively counter the process. It is therefore clear that the net outcome of biological interactions in the matrix and what gets signaled or inhibited can be a function of the interplay of these CCN 1-6 proteins. Because the CCN proteins further interact with other key proteins, like growth factors in the matrix, the balance is not only important but can vary dynamically with the physiological states of tumor cells and the surrounding normal cells. The tumor niche with its many cell players has surfaced as a critical determinant of tumor behavior, invasiveness, and metastasis. It is in this context that CCN proteins should be investigated with the potential of being recognized and validated for future therapeutic approaches.
Collapse
|
33
|
Kipkeew F, Kirsch M, Klein D, Wuelling M, Winterhager E, Gellhaus A. CCN1 (CYR61) and CCN3 (NOV) signaling drives human trophoblast cells into senescence and stimulates migration properties. Cell Adh Migr 2016; 10:163-78. [PMID: 26744771 DOI: 10.1080/19336918.2016.1139265] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
During placental development, continuous invasion of trophoblasts into the maternal compartment depends on the support of proliferating extravillous trophoblasts (EVTs). Unlike tumor cells, EVTs escape from the cell cycle before invasion into the decidua and spiral arteries. This study focused on the regulation properties of glycosylated and non-glycosylated matricellular CCN1 and CCN3, primarily for proliferation control in the benign SGHPL-5 trophoblast cell line, which originates from the first-trimester placenta. Treating SGHPL-5 trophoblast cells with the glycosylated forms of recombinant CCN1 and CCN3 decreased cell proliferation by bringing about G0/G1 cell cycle arrest, which was accompanied by the upregulation of activated Notch-1 and its target gene p21. Interestingly, both CCN proteins increased senescence-associated β-galactosidase activity and the expression of the senescence marker p16. The migration capability of SGHPL-5 cells was mostly enhanced in response to CCN1 and CCN3, by the activation of FAK and Akt kinase but not by the activation of ERK1/2. In summary, both CCN proteins play a key role in regulating trophoblast cell differentiation by inducing senescence and enhancing migration properties. Reduced levels of CCN1 and CCN3, as found in early-onset preeclampsia, could contribute to a shift from invasive to proliferative EVTs and may explain their shallow invasion properties in this disease.
Collapse
Affiliation(s)
- Friederike Kipkeew
- a Department of Molecular Biology , University of Duisburg-Essen , Essen , Germany
| | - Manuela Kirsch
- b Department of Gynecology and Obstetrics , University of Duisburg-Essen , Essen , Germany
| | - Diana Klein
- c Institute of Cell Biology, University of Duisburg-Essen , Essen , Germany
| | - Manuela Wuelling
- d Department of Developmental Biology , University of Duisburg-Essen , Essen , Germany
| | - Elke Winterhager
- a Department of Molecular Biology , University of Duisburg-Essen , Essen , Germany
| | - Alexandra Gellhaus
- a Department of Molecular Biology , University of Duisburg-Essen , Essen , Germany.,b Department of Gynecology and Obstetrics , University of Duisburg-Essen , Essen , Germany
| |
Collapse
|
34
|
Kimura TE, Duggirala A, Smith MC, White S, Sala-Newby GB, Newby AC, Bond M. The Hippo pathway mediates inhibition of vascular smooth muscle cell proliferation by cAMP. J Mol Cell Cardiol 2016; 90:1-10. [PMID: 26625714 PMCID: PMC4727789 DOI: 10.1016/j.yjmcc.2015.11.024] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/05/2015] [Accepted: 11/20/2015] [Indexed: 12/30/2022]
Abstract
AIMS Inhibition of vascular smooth muscle cell (VSMC) proliferation by intracellular cAMP prevents excessive neointima formation and hence angioplasty restenosis and vein-graft failure. These protective effects are mediated via actin-cytoskeleton remodelling and subsequent regulation of gene expression by mechanisms that are incompletely understood. Here we investigated the role of components of the growth-regulatory Hippo pathway, specifically the transcription factor TEAD and its co-factors YAP and TAZ in VSMC. METHODS AND RESULTS Elevation of cAMP using forskolin, dibutyryl-cAMP or the physiological agonists, Cicaprost or adenosine, significantly increased phosphorylation and nuclear export YAP and TAZ and inhibited TEAD-luciferase report gene activity. Similar effects were obtained by inhibiting RhoA activity with C3-transferase, its downstream kinase, ROCK, with Y27632, or actin-polymerisation with Latrunculin-B. Conversely, expression of constitutively-active RhoA reversed the inhibitory effects of forskolin on TEAD-luciferase. Forskolin significantly inhibited the mRNA expression of the pro-mitogenic genes, CCN1, CTGF, c-MYC and TGFB2 and this was reversed by expression of constitutively-active YAP or TAZ phospho-mutants. Inhibition of YAP and TAZ function with RNAi or Verteporfin significantly reduced VSMC proliferation. Furthermore, the anti-mitogenic effects of forskolin were reversed by overexpression of constitutively-active YAP or TAZ. CONCLUSION Taken together, these data demonstrate that cAMP-induced actin-cytoskeleton remodelling inhibits YAP/TAZ-TEAD dependent expression of pro-mitogenic genes in VSMC. This mechanism contributes novel insight into the anti-mitogenic effects of cAMP in VSMC and suggests a new target for intervention.
Collapse
Affiliation(s)
- Tomomi E Kimura
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol BS2 8HW, UK
| | - Aparna Duggirala
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol BS2 8HW, UK
| | - Madeleine C Smith
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol BS2 8HW, UK
| | - Stephen White
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol BS2 8HW, UK
| | - Graciela B Sala-Newby
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol BS2 8HW, UK
| | - Andrew C Newby
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol BS2 8HW, UK
| | - Mark Bond
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol BS2 8HW, UK.
| |
Collapse
|
35
|
Upregulation of PTEN suppresses invasion in Tca8113 tongue cancer cells through repression of epithelial-mesenchymal transition (EMT). Tumour Biol 2015; 37:6681-9. [PMID: 26649861 DOI: 10.1007/s13277-015-4486-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/23/2015] [Indexed: 12/19/2022] Open
Abstract
We previously discovered that the expression of the tumor suppressor phosphatase and tensin homolog (PTEN) was downregulated in the majority patients with tongue squamous cell carcinoma (TSCC). The aim of this study was to investigate the role of PTEN overexpression in the regulation of epithelial-mesenchymal transition (EMT) of the tongue squamous carcinoma cell line Tca8113 as well as explore the underlying mechanism. GV230 (containing the PTEN gene) and empty vectors were transfected into Tca8113 cells. After stable transfection, the messenger RNA (mRNA) and protein levels of PTEN were validated using quantitative real-time PCR (qPCR) and Western blot analysis. The growth and cell cycle were analyzed using Cell Counting Kit-8 (CCK-8) and flow cytometry, respectively. The invasion ability was measured with a transwell assay. The effects of PTEN overexpression on EMT and Hedgehog signaling were assessed by comparing Tca8113-PTEN cells with control and negative control cell groups. We found that PTEN expression was significantly upregulated after transfection. Meanwhile, upregulated PTEN inhibited the proliferation and invasion of Tca8113 cells. In addition, we observed changes in the EMT- and Hedgehog-associated proteins. These data demonstrated that PTEN upregulation could reduce invasion by inhibiting the process of EMT in Tca8113 cells, which might be related to the Hedgehog signaling pathway.
Collapse
|
36
|
Aspirin blocks growth of breast tumor cells and tumor-initiating cells and induces reprogramming factors of mesenchymal to epithelial transition. J Transl Med 2015; 95:702-17. [PMID: 25867761 DOI: 10.1038/labinvest.2015.49] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/10/2015] [Accepted: 02/16/2015] [Indexed: 12/19/2022] Open
Abstract
Acetylsalicylic acid (ASA), also known as aspirin, a classic, nonsteroidal, anti-inflammatory drug (NSAID), is widely used to relieve minor aches and pains and to reduce fever. Epidemiological studies and other experimental studies suggest that ASA use reduces the risk of different cancers including breast cancer (BC) and may be used as a chemopreventive agent against BC and other cancers. These studies have raised the tempting possibility that ASA could serve as a preventive medicine for BC. However, lack of in-depth knowledge of the mechanism of action of ASA reshapes the debate of risk and benefit of using ASA in prevention of BC. Our studies, using in vitro and in vivo tumor xenograft models, show a strong beneficial effect of ASA in the prevention of breast carcinogenesis. We find that ASA not only prevents breast tumor cell growth in vitro and tumor growth in nude mice xenograft model through the induction of apoptosis, but also significantly reduces the self-renewal capacity and growth of breast tumor-initiating cells (BTICs)/breast cancer stem cells (BCSCs) and delays the formation of a palpable tumor. Moreover, ASA regulates other pathophysiological events in breast carcinogenesis, such as reprogramming the mesenchymal to epithelial transition (MET) and delaying in vitro migration in BC cells. The tumor growth-inhibitory and reprogramming roles of ASA could be mediated through inhibition of TGF-β/SMAD4 signaling pathway that is associated with growth, motility, invasion, and metastasis in advanced BCs. Collectively, ASA has a therapeutic or preventive potential by attacking possible target such as TGF-β in breast carcinogenesis.
Collapse
|
37
|
Chen CY, Su CM, Huang YL, Tsai CH, Fuh LJ, Tang CH. CCN1 induces oncostatin M production in osteoblasts via integrin-dependent signal pathways. PLoS One 2014; 9:e106632. [PMID: 25187949 PMCID: PMC4154729 DOI: 10.1371/journal.pone.0106632] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 08/11/2014] [Indexed: 11/19/2022] Open
Abstract
Inflammatory response and articular destruction are common symptoms of osteoarthritis. Cysteine-rich 61 (CCN1 or Cyr61), a secreted protein from the CCN family, is associated with the extracellular matrix involved in many cellular activities like growth and differentiation. Yet the mechanism of CCN1 interacting with arthritic inflammatory response is unclear. This study finds CCN1 increasing expression of oncostatin m (OSM) in human osteoblastic cells. Pretreatment of αvβ3 monoclonal antibody and inhibitors of focal adhesion kinase (FAK), c-Src, phosphatidylinositol 3-kinase (PI3K), and NF-κB inhibited CCN1-induced OSM expression in osteoblastic cells. Stimulation of cells with CCN1 increased phosphorylation of FAK, c-Src, PI3K, and NF-κB via αvβ3 receptor; CCN1 treatment of osteoblasts increased NF-κB-luciferase activity and p65 binding to NF-κB element on OSM promoter. Results indicate CCN1 heightening OSM expression via αvβ3 receptor, FAK, c-Src, PI3K, and NF-κB signal pathway in osteoblastic cells, suggesting CCN1 as a novel target in arthritis treatment.
Collapse
Affiliation(s)
- Cheng-Yu Chen
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Chen-Ming Su
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Yuan-Li Huang
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Chun-Hao Tsai
- Department of Medicine and Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Lih-Jyh Fuh
- Department of Prosthodontics, China Medical University Hospital, Taichung, Taiwan
- * E-mail: (CHT); (LJF)
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- * E-mail: (CHT); (LJF)
| |
Collapse
|
38
|
Haque I, Banerjee S, De A, Maity G, Sarkar S, Majumdar M, Jha SS, McGragor D, Banerjee SK. CCN5/WISP-2 promotes growth arrest of triple-negative breast cancer cells through accumulation and trafficking of p27(Kip1) via Skp2 and FOXO3a regulation. Oncogene 2014; 34:3152-63. [PMID: 25132260 DOI: 10.1038/onc.2014.250] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 04/18/2014] [Accepted: 07/03/2014] [Indexed: 02/07/2023]
Abstract
The matricellular protein CCN5/WISP-2 represents a promising target in triple-negative breast cancer (TNBC) because treatment or induced activation of CCN5 in TNBC cells promotes cell growth arrest at the G0/G1 phase, reduces cell proliferation and delays tumor growth in the xenograft model. Our studies found that the p27(Kip1) tumor suppressor protein is upregulated and relocalized to the nucleus from cytoplasm by CCN5 in these cells and that these two events (upregulation and relocalization of p27(Kip1)) are critical for CCN5-induced growth inhibition of TNBC cells. In the absence of CCN5, p27(Kip1) resides mostly in the cytoplasm, which is associated with the aggressive nature of cancer cells. Mechanistically, CCN5 inhibits Skp2 expression, which seems to stabilize the p27(Kip1) protein in these cells. On the other hand, CCN5 also recruits FOXO3a to mediate the transcriptional regulation of p27(Kip1). The recruitment of FOXO3a is achieved by the induction of its expression and activity through shifting from cytoplasm to the nucleus. Our data indicate that CCN5 blocks PI3K/AKT signaling to dephosphorylate at S318, S253 and Thr32 in FOXO3a for nuclear relocalization and activation of FOXO3a. Moreover, inhibition of α6β1 receptors diminishes CCN5 action on p27(Kip1) in TNBC cells. Collectively, these data suggest that CCN5 effectively inhibits TNBC growth through the accumulation and trafficking of p27(Kip1) via Skp2 and FOXO3a regulation, and thus, activation of CCN5 may have the therapeutic potential to kill TNBC.
Collapse
Affiliation(s)
- I Haque
- 1] Cancer Research Unit, V.A. Medical Center, Kansas City, MO, USA [2] Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Center, Kansas City, MO, USA
| | - S Banerjee
- 1] Cancer Research Unit, V.A. Medical Center, Kansas City, MO, USA [2] Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Center, Kansas City, MO, USA
| | - A De
- Cancer Research Unit, V.A. Medical Center, Kansas City, MO, USA
| | - G Maity
- 1] Cancer Research Unit, V.A. Medical Center, Kansas City, MO, USA [2] Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Center, Kansas City, MO, USA
| | - S Sarkar
- 1] Cancer Research Unit, V.A. Medical Center, Kansas City, MO, USA [2] Department of Anatomy and Cell Biology and Department of Pathology, University of Kansas Medical Center, Kansas City, MO, USA
| | - M Majumdar
- Cancer Research Unit, V.A. Medical Center, Kansas City, MO, USA
| | - S S Jha
- Cancer Research Unit, V.A. Medical Center, Kansas City, MO, USA
| | - D McGragor
- Cancer Research Unit, V.A. Medical Center, Kansas City, MO, USA
| | - S K Banerjee
- 1] Cancer Research Unit, V.A. Medical Center, Kansas City, MO, USA [2] Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Center, Kansas City, MO, USA [3] Department of Anatomy and Cell Biology and Department of Pathology, University of Kansas Medical Center, Kansas City, MO, USA
| |
Collapse
|
39
|
Maity G, Mehta S, Haque I, Dhar K, Sarkar S, Banerjee SK, Banerjee S. Pancreatic tumor cell secreted CCN1/Cyr61 promotes endothelial cell migration and aberrant neovascularization. Sci Rep 2014; 4:4995. [PMID: 24833309 PMCID: PMC4023131 DOI: 10.1038/srep04995] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 04/29/2014] [Indexed: 12/22/2022] Open
Abstract
The complex signaling networks between cancer cells and adjacent endothelial cells make it challenging to unravel how cancer cells send extracellular messages to promote aberrant vascularization or tumor angiogenesis. Here, in vitro and in vivo models show that pancreatic cancer cell generated unique microenvironments can underlie endothelial cell migration and tumor angiogenesis. Mechanistically, we find that pancreatic cancer cell secreted CCN1/Cyr61 matricellular protein rewires the microenvironment to promote endothelial cell migration and tumor angiogenesis. This event can be overcome by Sonic Hedgehog (SHh) antibody treatment. Collectively, these studies identify a novel CCN1 signaling program in pancreatic cancer cells which activates SHh through autocrine-paracrine circuits to promote endothelial cell migration and tumor angiogenesis and suggests that CCN1 signaling of pancreatic cancer cells is vital for the regulation of tumor angiogenesis. Thus CCN1 signaling could be an ideal target for tumor vascular disruption in pancreatic cancer.
Collapse
Affiliation(s)
- Gargi Maity
- 1] Cancer Research Unit, Kansas City VA Medical Center, Kansas City, MO [2] Division of Hematology and Oncology, University of Kansas Medical Center, Kansas City, Kansas [3]
| | - Smita Mehta
- 1] Cancer Research Unit, Kansas City VA Medical Center, Kansas City, MO [2]
| | - Inamul Haque
- 1] Cancer Research Unit, Kansas City VA Medical Center, Kansas City, MO [2] Division of Hematology and Oncology, University of Kansas Medical Center, Kansas City, Kansas
| | - Kakali Dhar
- 1] Cancer Research Unit, Kansas City VA Medical Center, Kansas City, MO [2]
| | - Sandipto Sarkar
- 1] Cancer Research Unit, Kansas City VA Medical Center, Kansas City, MO [2] Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Sushanta K Banerjee
- 1] Cancer Research Unit, Kansas City VA Medical Center, Kansas City, MO [2] Division of Hematology and Oncology, University of Kansas Medical Center, Kansas City, Kansas [3] Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas [4] Department of Pathology, University of Kansas Medical Center, Kansas City, Kansas
| | - Snigdha Banerjee
- 1] Cancer Research Unit, Kansas City VA Medical Center, Kansas City, MO [2] Division of Hematology and Oncology, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
40
|
Zhang W, Nandakumar N, Shi Y, Manzano M, Smith A, Graham G, Gupta S, Vietsch EE, Laughlin SZ, Wadhwa M, Chetram M, Joshi M, Wang F, Kallakury B, Toretsky J, Wellstein A, Yi C. Downstream of mutant KRAS, the transcription regulator YAP is essential for neoplastic progression to pancreatic ductal adenocarcinoma. Sci Signal 2014; 7:ra42. [PMID: 24803537 PMCID: PMC4175524 DOI: 10.1126/scisignal.2005049] [Citation(s) in RCA: 286] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor survival rates and frequently carries oncogenic KRAS mutation. However, KRAS has thus far not been a viable therapeutic target. We found that the abundance of YAP mRNA, which encodes Yes-associated protein (YAP), a protein regulated by the Hippo pathway during tissue development and homeostasis, was increased in human PDAC tissue compared with that in normal pancreatic epithelia. In genetically engineered Kras(G12D) and Kras(G12D):Trp53(R172H) mouse models, pancreas-specific deletion of Yap halted the progression of early neoplastic lesions to PDAC without affecting normal pancreatic development and endocrine function. Although Yap was dispensable for acinar to ductal metaplasia (ADM), an initial step in the progression to PDAC, Yap was critically required for the proliferation of mutant Kras or Kras:Trp53 neoplastic pancreatic ductal cells in culture and for their growth and progression to invasive PDAC in mice. Yap functioned as a critical transcriptional switch downstream of the oncogenic KRAS-mitogen-activated protein kinase (MAPK) pathway, promoting the expression of genes encoding secretory factors that cumulatively sustained neoplastic proliferation, a tumorigenic stromal response in the tumor microenvironment, and PDAC progression in Kras and Kras:Trp53 mutant pancreas tissue. Together, our findings identified Yap as a critical oncogenic KRAS effector and a promising therapeutic target for PDAC and possibly other types of KRAS-mutant cancers.
Collapse
Affiliation(s)
- Weiying Zhang
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Nivedita Nandakumar
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Yuhao Shi
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Mark Manzano
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Alias Smith
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Garrett Graham
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Swati Gupta
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Eveline E. Vietsch
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Sean Z. Laughlin
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Mandheer Wadhwa
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Mahandranauth Chetram
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Mrinmayi Joshi
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Fen Wang
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Bhaskar Kallakury
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Jeffrey Toretsky
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Anton Wellstein
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Chunling Yi
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
41
|
The homeobox only protein homeobox (HOPX) and colorectal cancer. Int J Mol Sci 2013; 14:23231-43. [PMID: 24287901 PMCID: PMC3876040 DOI: 10.3390/ijms141223231] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/31/2013] [Accepted: 11/01/2013] [Indexed: 12/13/2022] Open
Abstract
The HOP (homeobox only protein) homeobox (HOPX) is most closely related to the homeobox protein that contains a homeobox-like domain but lacks certain conserved residues required for DNA binding. Here, we review the current understanding of HOPX in the progression of colorectal cancer (CRC). HOPX was initially reported as a differentiation marker and is expressed in various normal tissues. In the colon, HOPX is expressed uniquely in the quiescent stem cell, +4, and in differentiated mucosal cells of the colon. HOPX expression is markedly suppressed in a subset of cancers, mainly in an epigenetic manner. CRC may include separate entities which are differentially characterized by HOPX expression from a prognostic point of view. HOPX itself can regulate epigenetics, and defective expression of HOPX can result in loss of tumor suppressive function and differentiation phenotype. These findings indicate that HOPX may be both a central regulator of epigenetic dynamics and a critical determinant for differentiation in human cells. HOPX downstream targets were identified in CRC cell lines and hold promise as candidates for therapeutic targets of CRC, such as EphA2 or AP-1. Further analysis will elucidate and confirm the precise role of such proteins in CRC progression.
Collapse
|
42
|
Cui L, Xie R, Dang S, Zhang Q, Mao S, Chen J, Qu J, Zhang J. NOV promoted the growth and migration of pancreatic cancer cells. Tumour Biol 2013; 35:3195-201. [PMID: 24258112 DOI: 10.1007/s13277-013-1418-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 11/12/2013] [Indexed: 11/28/2022] Open
Abstract
NOV, a member of the CCN (Cyr61, CTGF and NOV) family, is involved in diverse biological processes, such as cell adhesion, proliferation and angiogenesis. However, its function in pancreatic cancer remains poorly understood. Here, we found that the expression of NOV was up-regulated in pancreatic cancer tissues. Moreover, over-expression of NOV in pancreatic cancer cells promoted cell proliferation and migration, while knock down the expression of NOV impaired the tumorigenecity of pancreatic cancer cells in vitro and in vivo. Mechanistically, NOV induced epithelial-mesenchymal transition (EMT) and regulated the expression of multiple EMT marker. Taken together, our study suggested the important role of NOV in pancreatic cancer and NOV might be an important therapeutic target.
Collapse
Affiliation(s)
- Lei Cui
- General Surgery Department, Affiliated hospital, Jiangsu University, Zhenjiang, Jiangsu, China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Milovancev M, Hilgart-Martiszus I, McNamara MJ, Goodall CP, Seguin B, Bracha S, Wickramasekara SI. Comparative analysis of the surface exposed proteome of two canine osteosarcoma cell lines and normal canine osteoblasts. BMC Vet Res 2013; 9:116. [PMID: 23758893 PMCID: PMC3684535 DOI: 10.1186/1746-6148-9-116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 06/05/2013] [Indexed: 11/10/2022] Open
Abstract
Background Osteosarcoma (OSA) is the most common primary bone tumor of dogs and carries a poor prognosis despite aggressive treatment. An improved understanding of the biology of OSA is critically needed to allow for development of novel diagnostic, prognostic, and therapeutic tools. The surface-exposed proteome (SEP) of a cancerous cell includes a multifarious array of proteins critical to cellular processes such as proliferation, migration, adhesion, and inter-cellular communication. The specific aim of this study was to define a SEP profile of two validated canine OSA cell lines and a normal canine osteoblast cell line utilizing a biotinylation/streptavidin system to selectively label, purify, and identify surface-exposed proteins by mass spectrometry (MS) analysis. Additionally, we sought to validate a subset of our MS-based observations via quantitative real-time PCR, Western blot and semi-quantitative immunocytochemistry. Our hypothesis was that MS would detect differences in the SEP composition between the OSA and the normal osteoblast cells. Results Shotgun MS identified 133 putative surface proteins when output from all samples were combined, with good consistency between biological replicates. Eleven of the MS-detected proteins underwent analysis of gene expression by PCR, all of which were actively transcribed, but varied in expression level. Western blot of whole cell lysates from all three cell lines was effective for Thrombospondin-1, CYR61 and CD44, and indicated that all three proteins were present in each cell line. Semi-quantitative immunofluorescence indicated that CD44 was expressed at much higher levels on the surface of the OSA than the normal osteoblast cell lines. Conclusions The results of the present study identified numerous differences, and similarities, in the SEP of canine OSA cell lines and normal canine osteoblasts. The PCR, Western blot, and immunocytochemistry results, for the subset of proteins evaluated, were generally supportive of the mass spectrometry data. These methods may be applied to other cell lines, or other biological materials, to highlight unique and previously unrecognized differences between samples. While this study yielded data that may prove useful for OSA researchers and clinicians, further refinements of the described techniques are expected to yield greater accuracy and produce a more thorough SEP analysis.
Collapse
Affiliation(s)
- Milan Milovancev
- Department of Clinical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Leask A. Sonic advance: CCN1 regulates sonic hedgehog in pancreatic cancer. J Cell Commun Signal 2013; 7:61-2. [PMID: 23255052 PMCID: PMC3590359 DOI: 10.1007/s12079-012-0187-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 12/06/2012] [Indexed: 12/30/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fifth leading cause of cancer internationally. As the precise molecular pathways that regulate pancreatic cancer are incompletely understood, appropriate targets for drug intervention remain elusive. It is being increasingly appreciated that the cellular microenvironment plays an important role in driving tumor growth and metastasis. CCN1, a member of the CCN family of secreted matricellular proteins, is overexpressed in pancreatic cancer, and may represent a novel target for therapy. Sonic hedgehog (SHh) is responsible for PDAC cell proliferation, epithelial-mesenchymal transition (EMT), maintenance of cancer stemness, migration, invasion, and metastatic growth; in a recent report, it was shown that CCN1 is a potent regulator of SHh expression via Notch-1. CCN1 activity was mediated, at least in part, through altering proteosome activity. These results suggest that CCN1 may be an ideal target for treating PDAC.
Collapse
Affiliation(s)
- Andrew Leask
- Department of Dentistry, Schulich School of Medicine and Dentistry, Dental Sciences Building, University of Western Ontario, London, ON, Canada, N6A 5C1,
| |
Collapse
|