1
|
Eckardt NA, Allahverdiyeva Y, Alvarez CE, Büchel C, Burlacot A, Cardona T, Chaloner E, Engel BD, Grossman AR, Harris D, Herrmann N, Hodges M, Kern J, Kim TD, Maurino VG, Mullineaux CW, Mustila H, Nikkanen L, Schlau-Cohen G, Tronconi MA, Wietrzynski W, Yachandra VK, Yano J. Lighting the way: Compelling open questions in photosynthesis research. THE PLANT CELL 2024; 36:3914-3943. [PMID: 39038210 PMCID: PMC11449116 DOI: 10.1093/plcell/koae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/29/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Photosynthesis-the conversion of energy from sunlight into chemical energy-is essential for life on Earth. Yet there is much we do not understand about photosynthetic energy conversion on a fundamental level: how it evolved and the extent of its diversity, its dynamics, and all the components and connections involved in its regulation. In this commentary, researchers working on fundamental aspects of photosynthesis including the light-dependent reactions, photorespiration, and C4 photosynthetic metabolism pose and discuss what they view as the most compelling open questions in their areas of research.
Collapse
Affiliation(s)
| | - Yagut Allahverdiyeva
- Molecular Plant Biology Unit, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Clarisa E Alvarez
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacuticas, University of Rosario, Suipacha 570, 2000 Rosario, Argentina
| | - Claudia Büchel
- Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Adrien Burlacot
- Division of Bioscience and Engineering, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Tanai Cardona
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Emma Chaloner
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Benjamin D Engel
- Biozentrum, University of Basel, Sptialstrasse 41, 4056 Basel, Switzerland
| | - Arthur R Grossman
- Division of Bioscience and Engineering, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Dvir Harris
- Department of Chemistry, Massachusetts Institute of Technology, Massachusetts Ave, Cambridge, MA 02139, USA
| | - Nicolas Herrmann
- Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Michael Hodges
- Université Paris-Saclay, CNRS, INRAE, Université d’Evry, Université de Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Tom Dongmin Kim
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Veronica G Maurino
- Molecular Plant Physiology, Institute for Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Conrad W Mullineaux
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Henna Mustila
- Molecular Plant Biology Unit, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Lauri Nikkanen
- Molecular Plant Biology Unit, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Gabriela Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, Massachusetts Ave, Cambridge, MA 02139, USA
| | - Marcos A Tronconi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacuticas, University of Rosario, Suipacha 570, 2000 Rosario, Argentina
| | | | - Vittal K Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
2
|
Mayo-Pérez S, Gama-Martínez Y, Dávila S, Rivera N, Hernández-Lucas I. LysR-type transcriptional regulators: state of the art. Crit Rev Microbiol 2024; 50:598-630. [PMID: 37635411 DOI: 10.1080/1040841x.2023.2247477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023]
Abstract
The LysR-type transcriptional regulators (LTTRs) are DNA-binding proteins present in bacteria, archaea, and in algae. Knowledge about their distribution, abundance, evolution, structural organization, transcriptional regulation, fundamental roles in free life, pathogenesis, and bacteria-plant interaction has been generated. This review focuses on these aspects and provides a current picture of LTTR biology.
Collapse
Affiliation(s)
- S Mayo-Pérez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Y Gama-Martínez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - S Dávila
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - N Rivera
- IPN: CICATA, Unidad Morelos del Instituto Politécnico Nacional, Atlacholoaya, Mexico
| | - I Hernández-Lucas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
3
|
Mallén-Ponce MJ, Florencio FJ, Huertas MJ. Thioredoxin A regulates protein synthesis to maintain carbon and nitrogen partitioning in cyanobacteria. PLANT PHYSIOLOGY 2024; 195:2921-2936. [PMID: 38386687 PMCID: PMC11288746 DOI: 10.1093/plphys/kiae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
Thioredoxins play an essential role in regulating enzyme activity in response to environmental changes, especially in photosynthetic organisms. They are crucial for metabolic regulation in cyanobacteria, but the key redox-regulated central processes remain to be determined. Physiological, metabolic, and transcriptomic characterization of a conditional mutant of the essential Synechocystis sp. PCC 6803 thioredoxin trxA gene (STXA2) revealed that decreased TrxA levels alter cell morphology and induce a dormant-like state. Furthermore, TrxA depletion in the STXA2 strain inhibited protein synthesis and led to changes in amino acid pools and nitrogen/carbon reserve polymers, accompanied by oxidation of the elongation factor-Tu. Transcriptomic analysis of TrxA depletion in STXA2 revealed a robust transcriptional response. Downregulated genes formed a large cluster directly related to photosynthesis, ATP synthesis, and CO2 fixation. In contrast, upregulated genes were grouped into different clusters related to respiratory electron transport, carotenoid biosynthesis, amino acid metabolism, and protein degradation, among others. These findings highlight the complex regulatory mechanisms that govern cyanobacterial metabolism, where TrxA acts as a critical regulator that orchestrates the transition from anabolic to maintenance metabolism and regulates carbon and nitrogen balance.
Collapse
Affiliation(s)
- Manuel J Mallén-Ponce
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Sevilla, Spain
- Instituto de Bioquímica Vegetal y Fotosíntesis (Universidad de Sevilla, Consejo Superior de Investigaciones Científicas), 41092 Sevilla, Spain
| | - Francisco Javier Florencio
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Sevilla, Spain
- Instituto de Bioquímica Vegetal y Fotosíntesis (Universidad de Sevilla, Consejo Superior de Investigaciones Científicas), 41092 Sevilla, Spain
| | - María José Huertas
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Sevilla, Spain
- Instituto de Bioquímica Vegetal y Fotosíntesis (Universidad de Sevilla, Consejo Superior de Investigaciones Científicas), 41092 Sevilla, Spain
| |
Collapse
|
4
|
Brenes-Álvarez M, Vioque A, Muro-Pastor AM. Nitrogen-regulated antisense transcription in the adaptation to nitrogen deficiency in Nostoc sp. PCC 7120. PNAS NEXUS 2023; 2:pgad187. [PMID: 37361547 PMCID: PMC10287535 DOI: 10.1093/pnasnexus/pgad187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023]
Abstract
Transcriptomic analyses using high-throughput methods have revealed abundant antisense transcription in bacteria. Antisense transcription is often due to the overlap of mRNAs with long 5' or 3' regions that extend beyond the coding sequence. In addition, antisense RNAs that do not contain any coding sequence are also observed. Nostoc sp. PCC 7120 is a filamentous cyanobacterium that, under nitrogen limitation, behaves as a multicellular organism with division of labor among two different cell types that depend on each other, the vegetative CO2-fixing cells and the nitrogen-fixing heterocysts. The differentiation of heterocysts depends on the global nitrogen regulator NtcA and requires the specific regulator HetR. To identify antisense RNAs potentially involved in heterocyst differentiation, we assembled the Nostoc transcriptome using RNA-seq analysis of cells subjected to nitrogen limitation (9 or 24 h after nitrogen removal) in combination with a genome-wide set of transcriptional start sites and a prediction of transcriptional terminators. Our analysis resulted in the definition of a transcriptional map that includes >4,000 transcripts, 65% of which contain regions in antisense orientation to other transcripts. In addition to overlapping mRNAs, we identified nitrogen-regulated noncoding antisense RNAs transcribed from NtcA- or HetR-dependent promoters. As an example of this last category, we further analyzed an antisense (as_gltA) of the gene-encoding citrate synthase and showed that transcription of as_gltA takes place specifically in heterocysts. Since the overexpression of as_gltA reduces citrate synthase activity, this antisense RNA could eventually contribute to the metabolic remodeling that occurs during the differentiation of vegetative cells into heterocysts.
Collapse
Affiliation(s)
| | - Agustín Vioque
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain
| | | |
Collapse
|
5
|
Advances in Genetic Engineering in Improving Photosynthesis and Microalgal Productivity. Int J Mol Sci 2023; 24:ijms24031898. [PMID: 36768215 PMCID: PMC9915242 DOI: 10.3390/ijms24031898] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Even though sunlight energy far outweighs the energy required by human activities, its utilization is a key goal in the field of renewable energies. Microalgae have emerged as a promising new and sustainable feedstock for meeting rising food and feed demand. Because traditional methods of microalgal improvement are likely to have reached their limits, genetic engineering is expected to allow for further increases in the photosynthesis and productivity of microalgae. Understanding the mechanisms that control photosynthesis will enable researchers to identify targets for genetic engineering and, in the end, increase biomass yield, offsetting the costs of cultivation systems and downstream biomass processing. This review describes the molecular events that happen during photosynthesis and microalgal productivity through genetic engineering and discusses future strategies and the limitations of genetic engineering in microalgal productivity. We highlight the major achievements in manipulating the fundamental mechanisms of microalgal photosynthesis and biomass production, as well as promising approaches for making significant contributions to upcoming microalgal-based biotechnology.
Collapse
|
6
|
Santana‐Sánchez A, Nikkanen L, Werner E, Tóth G, Ermakova M, Kosourov S, Walter J, He M, Aro E, Allahverdiyeva Y. Flv3A facilitates O 2 photoreduction and affects H 2 photoproduction independently of Flv1A in diazotrophic Anabaena filaments. THE NEW PHYTOLOGIST 2023; 237:126-139. [PMID: 36128660 PMCID: PMC10092803 DOI: 10.1111/nph.18506] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/10/2022] [Indexed: 05/23/2023]
Abstract
The model heterocyst-forming filamentous cyanobacterium Anabaena sp. PCC 7120 (Anabaena) is a typical example of a multicellular organism capable of simultaneously performing oxygenic photosynthesis in vegetative cells and O2 -sensitive N2 -fixation inside heterocysts. The flavodiiron proteins have been shown to participate in photoprotection of photosynthesis by driving excess electrons to O2 (a Mehler-like reaction). Here, we performed a phenotypic and biophysical characterization of Anabaena mutants impaired in vegetative-specific Flv1A and Flv3A in order to address their physiological relevance in the bioenergetic processes occurring in diazotrophic Anabaena under variable CO2 conditions. We demonstrate that both Flv1A and Flv3A are required for proper induction of the Mehler-like reaction upon a sudden increase in light intensity, which is likely important for the activation of carbon-concentrating mechanisms and CO2 fixation. Under ambient CO2 diazotrophic conditions, Flv3A is responsible for moderate O2 photoreduction, independently of Flv1A, but only in the presence of Flv2 and Flv4. Strikingly, the lack of Flv3A resulted in strong downregulation of the heterocyst-specific uptake hydrogenase, which led to enhanced H2 photoproduction under both oxic and micro-oxic conditions. These results reveal a novel regulatory network between the Mehler-like reaction and the diazotrophic metabolism, which is of great interest for future biotechnological applications.
Collapse
Affiliation(s)
- Anita Santana‐Sánchez
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFI‐20014Finland
| | - Lauri Nikkanen
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFI‐20014Finland
| | - Elisa Werner
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFI‐20014Finland
| | - Gábor Tóth
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFI‐20014Finland
| | - Maria Ermakova
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFI‐20014Finland
| | - Sergey Kosourov
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFI‐20014Finland
| | - Julia Walter
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFI‐20014Finland
| | - Meilin He
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFI‐20014Finland
| | - Eva‐Mari Aro
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFI‐20014Finland
| | - Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFI‐20014Finland
| |
Collapse
|
7
|
Model-Based Design of Synthetic Antisense RNA for Predictable Gene Repression. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2518:111-124. [PMID: 35666442 DOI: 10.1007/978-1-0716-2421-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Our enhanced understanding of RNA folding and function has increased the use of small RNA regulators. Among these RNA regulators, synthetic antisense RNA (asRNA) is designed to contain an RNA sequence complementary to the target mRNA sequence, and the formation of double-stranded RNA (dsRNA) facilitates gene repression due to dsRNA degradation or prevention of ribosome access to the mRNA. Despite the simple complementarity rule, however, predictably tunable repression has been challenging when synthetic asRNAs are used. Here, the protocol for model-based asRNA design is described. This model can predict synthetic asRNA-mediated repression efficiency using two parameters: the change in free energy of complex formation (ΔGCF) and percent mismatch of the target binding region (TBR). The model has been experimentally validated in both Gram-positive and Gram-negative bacteria as well as for target genes in both plasmids and chromosomes. These asRNAs can be created by simply replacing the TBR sequence with one that is complementary to the target mRNA sequence of interest. In principle, this protocol can be applied to design and build asRNAs for predictable gene repression in various contexts, including multiple target genes and organisms, making asRNAs predictably tunable regulators for broad applications.
Collapse
|
8
|
Wang X, Ge H, Zhang Y, Wang Y, Zhang P. Ser/Thr Protein Kinase SpkI Affects Photosynthetic Efficiency in Synechocystis sp. PCC 6803 upon Salt Stress. Life (Basel) 2022; 12:life12050713. [PMID: 35629380 PMCID: PMC9143257 DOI: 10.3390/life12050713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
High salinity is a common environmental factor that limits productivity and growth for photosynthetic organisms. Here, we identified a mutant defected in gene sll1770, which encodes a Ser/Thr protein kinase SpkI, with a significantly low maximal quantum yield of PSII under high salt condition in Synechocystis sp. PCC 6803. Physiological characterization demonstrated that the ΔspkI mutant had normal growth and photosynthesis under control condition. And a significantly higher NPQ capacity was also observed in ΔspkI when grown under control condition. However, when grown under high salt condition, ΔspkI exhibited apparently slower growth as well as decreased net photosynthesis and PSII activity. Western blot analysis demonstrated that the amount of major photosynthetic proteins declined sharply in ΔspkI when cells grown under high salt condition. Redox kinetics measurement suggested that the activities of PSI and cytochrome b6f complex were modified in ΔspkI under high salt condition, which resulted in a more reduced PQ pool in ΔspkI. Chlorophyll fluorescence traces suggested that the OA− reoxidation and state transition was also impaired in ΔspkI under high salt condition. Above all, we propose that Ser/Thr protein kinase SpkI plays a role in maintaining high-effective photosynthesis during high-salt acclimation process in Synechocystis.
Collapse
Affiliation(s)
- Xiaoting Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.W.); (Y.Z.)
| | - Haitao Ge
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (H.G.); (Y.W.)
| | - Ye Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.W.); (Y.Z.)
| | - Yingchun Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (H.G.); (Y.W.)
| | - Pengpeng Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.W.); (Y.Z.)
- Correspondence:
| |
Collapse
|
9
|
Li X, Xue C, Chen H, Zhang H, Wang Q. Small antisense RNA ThfR positively regulates Thf1 in Synechocystis sp. PCC 6803. JOURNAL OF PLANT PHYSIOLOGY 2022; 271:153642. [PMID: 35193088 DOI: 10.1016/j.jplph.2022.153642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Thylakoid formation1 (Thf1), encoded by sll1414 (thf1), is a multifunctional protein conserved in all photosynthetic organisms. thf1 expression is highly induced by high light in Synechocystis during photosynthesis-related stress. In this study, differential RNA sequencing analysis of the Synechocystis sp. PCC 6803 revealed a small antisense RNA (asRNA) gene located on the reverse-complementary strand of the thf1 gene. The full length of this asRNA (designated ThfR) was determined by 5' and 3' RACE analysis. The accumulation of thf1 mRNA was up-regulated synchronously with the ThfR level during survival after high-light stress or nitrogen starvation. Under nitrogen starvation or high-light stress, compared with the wild type, a ThfR overexpression mutant demonstrated relatively more Thf1 protein content, while a ThfR reduced-expression mutant accumulated less Thf1 protein. Furthermore, the overexpression of ThfR enhanced the electron transport rate and the proliferation of cyanobacteria under high-light stress. These results, which we confirmed further using an Escherichia coli sRNA expression platform, suggest that the thf1 gene is positively regulated by ThfR, possibly through protection of the RAUUW element at the RNase E cleavage site. This study represents the first report, to our knowledge, of a cis-transcript antisense RNA that targets thf1 in Synechocystis sp. PCC 6803 and provides evidence that ThfR regulates photosynthesis by positively modulating thf1 under high-light conditions.
Collapse
Affiliation(s)
- Xiang Li
- Hefei National Laboratory for Physical Sciences at Microscale, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230026, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| | - Chunling Xue
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| | - Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| | - Huafeng Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
10
|
Klähn S, Mikkat S, Riediger M, Georg J, Hess WR, Hagemann M. Integrative analysis of the salt stress response in cyanobacteria. Biol Direct 2021; 16:26. [PMID: 34906211 PMCID: PMC8670252 DOI: 10.1186/s13062-021-00316-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022] Open
Abstract
Microorganisms evolved specific acclimation strategies to thrive in environments of high or fluctuating salinities. Here, salt acclimation in the model cyanobacterium Synechocystis sp. PCC 6803 was analyzed by integrating transcriptomic, proteomic and metabolomic data. A dynamic reorganization of the transcriptome occurred during the first hours after salt shock, e.g. involving the upregulation of genes to activate compatible solute biochemistry balancing osmotic pressure. The massive accumulation of glucosylglycerol then had a measurable impact on the overall carbon and nitrogen metabolism. In addition, we observed the coordinated induction of putative regulatory RNAs and of several proteins known for their involvement in other stress responses. Overall, salt-induced changes in the proteome and transcriptome showed good correlations, especially among the stably up-regulated proteins and their transcripts. We define an extended salt stimulon comprising proteins directly or indirectly related to compatible solute metabolism, ion and water movements, and a distinct set of regulatory RNAs involved in post-transcriptional regulation. Our comprehensive data set provides the basis for engineering cyanobacterial salt tolerance and to further understand its regulation.
Collapse
Affiliation(s)
- Stephan Klähn
- Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
| | - Stefan Mikkat
- Core Facility Proteome Analysis, Rostock University Medical Center, Rostock, Germany
| | - Matthias Riediger
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
| | - Jens Georg
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
| | - Wolfgang R. Hess
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
| | - Martin Hagemann
- Department of Plant Physiology, Institute of Biosciences, University of Rostock, A.-Einstein-Str. 3, 18059 Rostock, Germany
- Department Life, Light and Matter, University of Rostock, Rostock, Germany
| |
Collapse
|
11
|
Zhan J, Steglich C, Scholz I, Hess WR, Kirilovsky D. Inverse regulation of light harvesting and photoprotection is mediated by a 3'-end-derived sRNA in cyanobacteria. THE PLANT CELL 2021; 33:358-380. [PMID: 33793852 PMCID: PMC8136909 DOI: 10.1093/plcell/koaa030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Phycobilisomes (PBSs), the principal cyanobacterial antenna, are among the most efficient macromolecular structures in nature, and are used for both light harvesting and directed energy transfer to the photosynthetic reaction center. However, under unfavorable conditions, excess excitation energy needs to be rapidly dissipated to avoid photodamage. The orange carotenoid protein (OCP) senses light intensity and induces thermal energy dissipation under stress conditions. Hence, its expression must be tightly controlled; however, the molecular mechanism of this regulation remains to be elucidated. Here, we describe the discovery of a posttranscriptional regulatory mechanism in Synechocystis sp. PCC 6803 in which the expression of the operon encoding the allophycocyanin subunits of the PBS is directly and in an inverse fashion linked to the expression of OCP. This regulation is mediated by ApcZ, a small regulatory RNA that is derived from the 3'-end of the tetracistronic apcABC-apcZ operon. ApcZ inhibits ocp translation under stress-free conditions. Under most stress conditions, apc operon transcription decreases and ocp translation increases. Thus, a key operon involved in the collection of light energy is functionally connected to the expression of a protein involved in energy dissipation. Our findings support the view that regulatory RNA networks in bacteria evolve through the functionalization of mRNA 3'-UTRs.
Collapse
Affiliation(s)
- Jiao Zhan
- Université Paris-Saclay, Commissariat à l’Énergie Atomiques et aux Énergies Alternatives, Centre National de la Recherche Scientifique (CEA, CNRS), Institute for Integrative Biology of the Cell (I2BC), 91198 Gif sur Yvette, France
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Claudia Steglich
- Faculty of Biology, Institute of Biology III, University of Freiburg, D-79104 Freiburg im Breisgau, Germany
| | - Ingeborg Scholz
- Faculty of Biology, Institute of Biology III, University of Freiburg, D-79104 Freiburg im Breisgau, Germany
| | - Wolfgang R Hess
- Faculty of Biology, Institute of Biology III, University of Freiburg, D-79104 Freiburg im Breisgau, Germany
| | - Diana Kirilovsky
- Université Paris-Saclay, Commissariat à l’Énergie Atomiques et aux Énergies Alternatives, Centre National de la Recherche Scientifique (CEA, CNRS), Institute for Integrative Biology of the Cell (I2BC), 91198 Gif sur Yvette, France
| |
Collapse
|
12
|
Zhang H, Ge H, Zhang Y, Wang Y, Zhang P. Slr0320 Is Crucial for Optimal Function of Photosystem II during High Light Acclimation in Synechocystis sp. PCC 6803. Life (Basel) 2021; 11:life11040279. [PMID: 33810453 PMCID: PMC8065906 DOI: 10.3390/life11040279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 11/16/2022] Open
Abstract
Upon exposure of photosynthetic organisms to high light (HL), several HL acclimation responses are triggered. Herein, we identified a novel gene, slr0320, critical for HL acclimation in Synechocystis sp. PCC 6803. The growth rate of the Δslr0320 mutant was similar to wild type (WT) under normal light (NL) but severely declined under HL. Net photosynthesis of the mutant was lower under HL, but maximum photosystem II (PSII) activity was higher under NL and HL. Immunodetection revealed the accumulation and assembly of PSII were similar between WT and the mutant. Chlorophyll fluorescence traces showed the stable fluorescence of the mutant under light was much higher. Kinetics of single flash-induced chlorophyll fluorescence increase and decay revealed the slower electron transfer from QA to QB in the mutant. These data indicate that, in the Δslr0320 mutant, the number of functional PSIIs was comparable to WT even under HL but the electron transfer between QA and QB was inefficient. Quantitative proteomics and real-time PCR revealed that expression profiles of psbL, psbH and psbI were significantly altered in the Δslr0320 mutant. Thus, Slr0320 protein plays critical roles in optimizing PSII activity during HL acclimation and is essential for PSII electron transfer from QA to QB.
Collapse
Affiliation(s)
- Hao Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (Y.Z.)
| | - Haitao Ge
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (H.G.); (Y.W.)
| | - Ye Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (Y.Z.)
| | - Yingchun Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (H.G.); (Y.W.)
| | - Pengpeng Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (Y.Z.)
- Correspondence:
| |
Collapse
|
13
|
Rachedi R, Foglino M, Latifi A. Stress Signaling in Cyanobacteria: A Mechanistic Overview. Life (Basel) 2020; 10:life10120312. [PMID: 33256109 PMCID: PMC7760821 DOI: 10.3390/life10120312] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 12/22/2022] Open
Abstract
Cyanobacteria are highly diverse, widely distributed photosynthetic bacteria inhabiting various environments ranging from deserts to the cryosphere. Throughout this range of niches, they have to cope with various stresses and kinds of deprivation which threaten their growth and viability. In order to adapt to these stresses and survive, they have developed several global adaptive responses which modulate the patterns of gene expression and the cellular functions at work. Sigma factors, two-component systems, transcriptional regulators and small regulatory RNAs acting either separately or collectively, for example, induce appropriate cyanobacterial stress responses. The aim of this review is to summarize our current knowledge about the diversity of the sensors and regulators involved in the perception and transduction of light, oxidative and thermal stresses, and nutrient starvation responses. The studies discussed here point to the fact that various stresses affecting the photosynthetic capacity are transduced by common mechanisms.
Collapse
|
14
|
Rapid Transcriptional Reprogramming Triggered by Alteration of the Carbon/Nitrogen Balance Has an Impact on Energy Metabolism in Nostoc sp. PCC 7120. Life (Basel) 2020; 10:life10110297. [PMID: 33233741 PMCID: PMC7699953 DOI: 10.3390/life10110297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Nostoc (Anabaena) sp. PCC 7120 is a filamentous cyanobacterial species that fixes N2 to nitrogenous compounds using specialised heterocyst cells. Changes in the intracellular ratio of carbon to nitrogen (C/N balance) is known to trigger major transcriptional reprogramming of the cell, including initiating the differentiation of vegetative cells to heterocysts. Substantial transcriptional analysis has been performed on Nostoc sp. PCC 7120 during N stepdown (low to high C/N), but not during C stepdown (high to low C/N). In the current study, we shifted the metabolic balance of Nostoc sp. PCC 7120 cultures grown at 3% CO2 by introducing them to atmospheric conditions containing 0.04% CO2 for 1 h, after which the changes in gene expression were measured using RNAseq transcriptomics. This analysis revealed strong upregulation of carbon uptake, while nitrogen uptake and metabolism and early stages of heterocyst development were downregulated in response to the shift to low CO2. Furthermore, gene expression changes revealed a decrease in photosynthetic electron transport and increased photoprotection and reactive oxygen metabolism, as well a decrease in iron uptake and metabolism. Differential gene expression was largely attributed to change in the abundances of the metabolites 2-phosphoglycolate and 2-oxoglutarate, which signal a rapid shift from fluent photoassimilation to glycolytic metabolism of carbon after transition to low CO2. This work shows that the C/N balance in Nostoc sp. PCC 7120 rapidly adjusts the metabolic strategy through transcriptional reprogramming, enabling survival in the fluctuating environment.
Collapse
|
15
|
Mironov KS, Kupriyanova EV, Shumskaya M, Los DA. Alcohol stress on cyanobacterial membranes: New insights revealed by transcriptomics. Gene 2020; 764:145055. [PMID: 32882332 DOI: 10.1016/j.gene.2020.145055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/22/2020] [Accepted: 08/12/2020] [Indexed: 11/18/2022]
Abstract
Cyanobacteria are model photosynthetic prokaryotic organisms often used in biotechnology to produce biofuels including alcohols. The effect of alcohols on cyanobacterial cell physiology and specifically on membrane fluidity is poorly understood. Previous research on various primary aliphatic alcohols found that alcohols with a short hydrocarbon chain (C1-C3) do not affect expression of genes related to membrane physical state. In addition, less water-soluble alcohols with a hydrocarbon chain longer than C8 are found to have a reduced ability to reach cellular membranes hence do not drastically change membrane physical state or induce expression of stress-responsive genes. Therefore, hexan-1-ol (C6) is suggested to have the most profound effect on cyanobacterial membrane physical state. Here, we studied the effects of hexan-1-ol on the cyanobacterium Synechocystis sp. PCC 6803 transcriptome. The transcriptome data obtained is compared to the previously reported analysis of gene expression induced by benzyl alcohol and butan-1-ol. The set of genes whose expression is induced after exposure to all three studied alcohols is identified. The expression under alcohol stress for several general stress response operons is analyzed, and examples of antisense interactions of RNA are investigated.
Collapse
Affiliation(s)
- Kirill S Mironov
- Department of Molecular Biosystems, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Science, Botanicheskaya str., 35, Moscow 127276, Russian Federation.
| | - Elena V Kupriyanova
- Department of Molecular Biosystems, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Science, Botanicheskaya str., 35, Moscow 127276, Russian Federation
| | - Maria Shumskaya
- Department of Biology, School of Natural Sciences, Kean University, 1000 Morris Ave, Union, NJ 07083, USA
| | - Dmitry A Los
- Department of Molecular Biosystems, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Science, Botanicheskaya str., 35, Moscow 127276, Russian Federation
| |
Collapse
|
16
|
Nikkanen L, Santana Sánchez A, Ermakova M, Rögner M, Cournac L, Allahverdiyeva Y. Functional redundancy between flavodiiron proteins and NDH-1 in Synechocystis sp. PCC 6803. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1460-1476. [PMID: 32394539 DOI: 10.1111/tpj.14812] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 05/09/2023]
Abstract
In oxygenic photosynthetic organisms, excluding angiosperms, flavodiiron proteins (FDPs) catalyze light-dependent reduction of O2 to H2 O. This alleviates electron pressure on the photosynthetic apparatus and protects it from photodamage. In Synechocystis sp. PCC 6803, four FDP isoforms function as hetero-oligomers of Flv1 and Flv3 and/or Flv2 and Flv4. An alternative electron transport pathway mediated by the NAD(P)H dehydrogenase-like complex (NDH-1) also contributes to redox hemostasis and the photoprotection of photosynthesis. Four NDH-1 types have been characterized in cyanobacteria: NDH-11 and NDH-12 , which function in respiration; and NDH-13 and NDH-14 , which function in CO2 uptake. All four types are involved in cyclic electron transport. Along with single FDP mutants (∆flv1 and Δflv3) and the double NDH-1 mutants (∆d1d2, which is deficient in NDH-11,2 and ∆d3d4, which is deficient in NDH-13,4 ), we studied triple mutants lacking one of Flv1 or Flv3, and NDH-11,2 or NDH-13,4 . We show that the presence of either Flv1/3 or NDH-11,2 , but not NDH-13,4 , is indispensable for survival during changes in growth conditions from high CO2 /moderate light to low CO2 /high light. Our results show functional redundancy between FDPs and NDH-11,2 under the studied conditions. We suggest that ferredoxin probably functions as a primary electron donor to both Flv1/3 and NDH-11,2 , allowing their functions to be dynamically coordinated for efficient oxidation of photosystem I and for photoprotection under variable CO2 and light availability.
Collapse
Affiliation(s)
- Lauri Nikkanen
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Anita Santana Sánchez
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Maria Ermakova
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Matthias Rögner
- Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Laurent Cournac
- Eco&Sols, University of Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| |
Collapse
|
17
|
He P, Cai X, Chen K, Fu X. Identification of small RNAs involved in nitrogen fixation in Anabaena sp. PCC 7120 based on RNA-seq under steady state conditions. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01557-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Abstract
Purpose
Anabaena sp. PCC7120 is a genetically tractable model organism for nitrogen fixation and photosynthesis research. The importance of small regulatory RNAs (sRNAs) as mediators of a number of cellular processes in bacteria has begun to be recognized. Bacterial sRNA binds to target genes through base pairing, and play a regulatory role. Many studies have shown that bacterial sRNA can regulate cell stress response, carbon and nitrogen fixation, and so on. However, little is known about sRNAs in Anabaena sp. PCC 7120 regarded to nitrogen fixation under later steady state.
Methods
To provide a comprehensive study of sRNAs in this model organism, the sRNA (< 200 nt) extracted from Anabaena sp. PCC 7120 under nitrogen step-down treatment of 12 days, together with the sRNA from the control, was analyzed using deep RNA sequencing. Possible target genes regulated by all identified putative sRNAs were predicted by IntaRNA and further analyzed for functional categorizations for biological pathways.
Result
Totally, 14,132 transcripts were produced from the de novo assembly. Among them, transcripts that are located either in the intergenic region or antisense strand were kept, which resulted in 1219 sRNA candidates, for further analysis. RPKM-based differential expression analysis showed that 418 sRNAs were significantly differentially expressed between the samples from control (nitrogen addition, N+) and nitrogen depletion, (N−). Among them, 303 sRNAs were significantly upregulated, whereas 115 sRNAs were significantly downregulated. RT-PCR of 18 randomly chosen sRNAs showed a similar pattern as RNA-seq result, which confirmed the reliability of the RNA-seq data. In addition, the possible target genes regulated by unique sRNAs of Anabaena sp. PCC 7120 under nitrogen addition (N+) condition or that under nitrogen depletion (N−) condition were analyzed for functional categorization and biological pathways, which provided the evidences that sRNAs were indeed involved in many different metabolic pathways.
Conclusion
The information from the present study provides a valuable reference for understanding the sRNA-mediated regulation of the nitrogen fixation in Anabaena PCC 7120 under steady state conditions.
Collapse
|
18
|
Lambrecht SJ, Steglich C, Hess WR. A minimum set of regulators to thrive in the ocean. FEMS Microbiol Rev 2020; 44:232-252. [DOI: 10.1093/femsre/fuaa005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/19/2020] [Indexed: 12/25/2022] Open
Abstract
ABSTRACT
Marine cyanobacteria of the genus Prochlorococcus thrive in high cell numbers throughout the euphotic zones of the world's subtropical and tropical oligotrophic oceans, making them some of the most ecologically relevant photosynthetic microorganisms on Earth. The ecological success of these free-living phototrophs suggests that they are equipped with a regulatory system competent to address many different stress situations. However, Prochlorococcus genomes are compact and streamlined, with the majority encoding only five different sigma factors, five to six two-component systems and eight types of other transcriptional regulators. Here, we summarize the existing information about the functions of these protein regulators, about transcriptomic responses to defined stress conditions, and discuss the current knowledge about riboswitches, RNA-based regulation and the roles of certain metabolites as co-regulators. We focus on the best-studied isolate, Prochlorococcus MED4, but extend to other strains and ecotypes when appropriate, and we include some information gained from metagenomic and metatranscriptomic analyses.
Collapse
Affiliation(s)
- S Joke Lambrecht
- Genetics and Experimental Bioinformatics, Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestr. 1, D-79104 Freiburg, Germany
| | - Claudia Steglich
- Genetics and Experimental Bioinformatics, Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestr. 1, D-79104 Freiburg, Germany
| | - Wolfgang R Hess
- Genetics and Experimental Bioinformatics, Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestr. 1, D-79104 Freiburg, Germany
| |
Collapse
|
19
|
Lejars M, Hajnsdorf E. The world of asRNAs in Gram-negative and Gram-positive bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194489. [PMID: 31935527 DOI: 10.1016/j.bbagrm.2020.194489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/09/2020] [Indexed: 12/19/2022]
Abstract
Bacteria exhibit an amazing diversity of mechanisms controlling gene expression to both maintain essential functions and modulate accessory functions in response to environmental cues. Over the years, it has become clear that bacterial regulation of gene expression is still far from fully understood. This review focuses on antisense RNAs (asRNAs), a class of RNA regulators defined by their location in cis and their perfect complementarity with their targets, as opposed to small RNAs (sRNAs) which act in trans with only short regions of complementarity. For a long time, only few functional asRNAs in bacteria were known and were almost exclusively found on mobile genetic elements (MGEs), thus, their importance among the other regulators was underestimated. However, the extensive application of transcriptomic approaches has revealed the ubiquity of asRNAs in bacteria. This review aims to present the landscape of studied asRNAs in bacteria by comparing 67 characterized asRNAs from both Gram-positive and Gram-negative bacteria. First we describe the inherent ambiguity in the existence of asRNAs in bacteria, second, we highlight their diversity and their involvement in all aspects of bacterial life. Finally we compare their location and potential mode of action toward their target between Gram-negative and Gram-positive bacteria and present tendencies and exceptions that could lead to a better understanding of asRNA functions.
Collapse
Affiliation(s)
- Maxence Lejars
- UMR8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 75005 Paris, France.
| | - Eliane Hajnsdorf
- UMR8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 75005 Paris, France.
| |
Collapse
|
20
|
Muro-Pastor AM, Hess WR. Regulatory RNA at the crossroads of carbon and nitrogen metabolism in photosynthetic cyanobacteria. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1863:194477. [PMID: 31884117 DOI: 10.1016/j.bbagrm.2019.194477] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/16/2019] [Accepted: 12/22/2019] [Indexed: 12/17/2022]
Abstract
Cyanobacteria are photosynthetic bacteria that populate widely different habitats. Accordingly, cyanobacteria exhibit a wide spectrum of lifestyles, physiologies, and morphologies and possess genome sizes and gene numbers which may vary by up to a factor of ten within the phylum. Consequently, large differences exist between individual species in the size and complexity of their regulatory networks. Several non-coding RNAs have been identified that play crucial roles in the acclimation responses of cyanobacteria to changes in the environment. Some of these regulatory RNAs are conserved throughout the cyanobacterial phylum, while others exist only in a few taxa. Here we give an overview on characterized regulatory RNAs in cyanobacteria, with a focus on regulators of photosynthesis, carbon and nitrogen metabolism. However, chances are high that these regulators represent just the tip of the iceberg.
Collapse
Affiliation(s)
- Alicia M Muro-Pastor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, E-41092 Sevilla, Spain
| | - Wolfgang R Hess
- University of Freiburg, Faculty of Biology, Genetics and Experimental Bioinformatics, Schänzlestr. 1, D-79104 Freiburg, Germany; University of Freiburg, Freiburg Institute for Advanced Studies, Albertstr. 19, D-79104 Freiburg, Germany.
| |
Collapse
|
21
|
Olmedo-Verd E, Brenes-Álvarez M, Vioque A, Muro-Pastor AM. A Heterocyst-Specific Antisense RNA Contributes to Metabolic Reprogramming in Nostoc sp. PCC 7120. PLANT & CELL PHYSIOLOGY 2019; 60:1646-1655. [PMID: 31093664 DOI: 10.1093/pcp/pcz087] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 04/28/2019] [Indexed: 06/09/2023]
Abstract
Upon nitrogen deficiency, some filamentous cyanobacteria differentiate specialized cells, called heterocysts, devoted to N2 fixation. Heterocysts appear regularly spaced along the filaments and exhibit structural and metabolic adaptations, such as loss of photosynthetic CO2 fixation or increased respiration, to provide a proper microaerobic environment for its specialized function. Heterocyst development is under transcriptional control of the global nitrogen regulator NtcA and the specific regulator HetR. Transcription of a large number of genes is induced or repressed upon nitrogen deficiency specifically in cells undergoing differentiation. In recent years, the HetR regulon has been described to include heterocyst-specific trans-acting small RNAs and antisense RNAs (asRNAs), suggesting that there is an additional layer of post-transcriptional regulation involved in heterocyst development. Here, we characterize in the cyanobacterium Nostoc (Anabaena) sp. PCC 7120 an asRNA, that we call as_glpX, transcribed within the glpX gene encoding the Calvin cycle bifunctional enzyme sedoheptulose-1,7-bisphosphatase/fructose-1,6-bisphosphatase (SBPase). Transcription of as_glpX is restricted to heterocysts and is induced very early during the process of differentiation. Expression of as_glpX RNA promotes the cleavage of the glpX mRNA by RNase III, resulting in a reduced amount of SBPase. Therefore, the early expression of this asRNA could contribute to the quick shut-down of CO2 fixation in those cells in the filament that are undergoing differentiation into heterocysts. In summary, as_glpX is the first naturally occurring asRNA shown to rapidly and dynamically regulate metabolic transformation in Nostoc heterocysts. The use of antisense transcripts to manipulate gene expression specifically in heterocysts could became a useful tool for metabolic engineering in cyanobacteria.
Collapse
Affiliation(s)
- Elvira Olmedo-Verd
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Américo Vespucio 49, 41092 Sevilla, Spain
| | - Manuel Brenes-Álvarez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Américo Vespucio 49, 41092 Sevilla, Spain
| | - Agustín Vioque
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Américo Vespucio 49, 41092 Sevilla, Spain
| | - Alicia M Muro-Pastor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Américo Vespucio 49, 41092 Sevilla, Spain
| |
Collapse
|
22
|
Santana-Sanchez A, Solymosi D, Mustila H, Bersanini L, Aro EM, Allahverdiyeva Y. Flavodiiron proteins 1-to-4 function in versatile combinations in O 2 photoreduction in cyanobacteria. eLife 2019; 8:e45766. [PMID: 31294693 PMCID: PMC6658166 DOI: 10.7554/elife.45766] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/10/2019] [Indexed: 12/15/2022] Open
Abstract
Flavodiiron proteins (FDPs) constitute a group of modular enzymes widespread in Bacteria, Archaea and Eukarya. Synechocystis sp. PCC 6803 has four FDPs (Flv1-4), which are essential for the photoprotection of photosynthesis. A direct comparison of light-induced O2 reduction (Mehler-like reaction) under high (3% CO2, HC) and low (air level CO2, LC) inorganic carbon conditions demonstrated that the Flv1/Flv3 heterodimer is solely responsible for an efficient steady-state O2 photoreduction under HC, with flv2 and flv4 expression strongly down-regulated. Conversely, under LC conditions, Flv1/Flv3 acts only as a transient electron sink, due to the competing withdrawal of electrons by the highly induced NDH-1 complex. Further, in vivo evidence is provided indicating that Flv2/Flv4 contributes to the Mehler-like reaction when naturally expressed under LC conditions, or, when artificially overexpressed under HC. The O2 photoreduction driven by Flv2/Flv4 occurs down-stream of PSI in a coordinated manner with Flv1/Flv3 and supports slow and steady-state O2 photoreduction.
Collapse
Affiliation(s)
| | - Daniel Solymosi
- Molecular Plant Biology, Department of BiochemistryUniversity of TurkuTurkuFinland
| | - Henna Mustila
- Molecular Plant Biology, Department of BiochemistryUniversity of TurkuTurkuFinland
| | - Luca Bersanini
- Molecular Plant Biology, Department of BiochemistryUniversity of TurkuTurkuFinland
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of BiochemistryUniversity of TurkuTurkuFinland
| | - Yagut Allahverdiyeva
- Molecular Plant Biology, Department of BiochemistryUniversity of TurkuTurkuFinland
| |
Collapse
|
23
|
Brenes‐Álvarez M, Mitschke J, Olmedo‐Verd E, Georg J, Hess WR, Vioque A, Muro‐Pastor AM. Elements of the heterocyst‐specific transcriptome unravelled by co‐expression analysis inNostocsp. PCC 7120. Environ Microbiol 2019; 21:2544-2558. [DOI: 10.1111/1462-2920.14647] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/06/2019] [Accepted: 05/01/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Manuel Brenes‐Álvarez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla E‐41092 Sevilla Spain
| | - Jan Mitschke
- Genetics and Experimental Bioinformatics, Faculty of BiologyUniversity of Freiburg D‐79104 Freiburg Germany
| | - Elvira Olmedo‐Verd
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla E‐41092 Sevilla Spain
| | - Jens Georg
- Genetics and Experimental Bioinformatics, Faculty of BiologyUniversity of Freiburg D‐79104 Freiburg Germany
| | - Wolfgang R. Hess
- Genetics and Experimental Bioinformatics, Faculty of BiologyUniversity of Freiburg D‐79104 Freiburg Germany
- Freiburg Institute for Advanced Studies, University of Freiburg D‐79104 Freiburg Germany
| | - Agustín Vioque
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla E‐41092 Sevilla Spain
| | - Alicia M. Muro‐Pastor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla E‐41092 Sevilla Spain
| |
Collapse
|
24
|
Angeleri M, Muth-Pawlak D, Wilde A, Aro EM, Battchikova N. Global proteome response ofSynechocystis6803 to extreme copper environments applied to control the activity of the induciblepetJpromoter. J Appl Microbiol 2019; 126:826-841. [DOI: 10.1111/jam.14182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/18/2022]
Affiliation(s)
- M. Angeleri
- Molecular Plant Biology; Department of Biochemistry; University of Turku; Turku Finland
| | - D. Muth-Pawlak
- Molecular Plant Biology; Department of Biochemistry; University of Turku; Turku Finland
| | - A. Wilde
- Molecular Genetics of Prokaryotes; University of Freiburg; Freiburg Germany
| | - E.-M. Aro
- Molecular Plant Biology; Department of Biochemistry; University of Turku; Turku Finland
| | - N. Battchikova
- Molecular Plant Biology; Department of Biochemistry; University of Turku; Turku Finland
| |
Collapse
|
25
|
Abstract
As the transcriptional and post-transcriptional regulators of gene expression, small RNAs (sRNAs) play important roles in every domain of life in organisms. It has been discovered gradually that bacteria possess multiple means of gene regulation using RNAs. They have been continuously used as model organisms for photosynthesis, metabolism, biotechnology, evolution, and nitrogen fixation for many decades. Cyanobacteria, one of the most ancient life forms, constitute all kinds of photoautotrophic bacteria and exist in almost any environment on this planet. It is believed that a complex RNA-based regulatory mechanism functions in cyanobacteria to help them adapt to changes and stresses in diverse environments. Although lagging far behind other model microorganisms, such as yeast and Escherichia coli, more and more non-coding regulatory sRNAs have been recognized in cyanobacteria during the past decades. In this article, by focusing on cyanobacterial sRNAs, the approaches for detection and targeting of sRNAs will be summarized, four major mechanisms and regulatory functions will be generalized, eight types of cis-encoded sRNA and four types of trans-encoded sRNAs will be reviewed in detail, and their possible physiological functions will be further discussed.
Collapse
Affiliation(s)
- Jinlu Hu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Qiang Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, China.,University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
26
|
Abstract
ABSTRACT
Although bacterial genomes are usually densely protein-coding, genome-wide mapping approaches of transcriptional start sites revealed that a significant fraction of the identified promoters drive the transcription of noncoding RNAs. These can be
trans
-acting RNAs, mainly originating from intergenic regions and, in many studied examples, possessing regulatory functions. However, a significant fraction of these noncoding RNAs consist of natural antisense transcripts (asRNAs), which overlap other transcriptional units. Naturally occurring asRNAs were first observed to play a role in bacterial plasmid replication and in bacteriophage λ more than 30 years ago. Today’s view is that asRNAs abound in all three domains of life. There are several examples of asRNAs in bacteria with clearly defined functions. Nevertheless, many asRNAs appear to result from pervasive initiation of transcription, and some data point toward global functions of such widespread transcriptional activity, explaining why the search for a specific regulatory role is sometimes futile. In this review, we give an overview about the occurrence of antisense transcription in bacteria, highlight particular examples of functionally characterized asRNAs, and discuss recent evidence pointing at global relevance in RNA processing and transcription-coupled DNA repair.
Collapse
|
27
|
Bi Y, Pei G, Sun T, Chen Z, Chen L, Zhang W. Regulation Mechanism Mediated by Trans-Encoded sRNA Nc117 in Short Chain Alcohols Tolerance in Synechocystis sp. PCC 6803. Front Microbiol 2018; 9:863. [PMID: 29780373 PMCID: PMC5946031 DOI: 10.3389/fmicb.2018.00863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/13/2018] [Indexed: 11/13/2022] Open
Abstract
Microbial small RNAs (sRNAs) play essential roles against many stress conditions in cyanobacteria. However, little is known on their regulatory mechanisms on biofuels tolerance. In our previous sRNA analysis, a trans-encoded sRNA Nc117 was found involved in the tolerance to ethanol and 1-butanol in Synechocystis sp. PCC 6803. However, its functional mechanism is yet to be determined. In this study, functional characterization of sRNA Nc117 was performed. Briefly, the exact length of the trans-encoded sRNA Nc117 was determined to be 102 nucleotides using 3′ RACE, and the positive regulation of Nc117 on short chain alcohols tolerance was further confirmed. Then, computational target prediction and transcriptomic analysis were integrated to explore the potential targets of Nc117. A total of 119 up-regulated and 116 down-regulated genes were identified in nc117 overexpression strain compared with the wild type by comparative transcriptomic analysis, among which the upstream regions of five genes were overlapped with those predicted by computational target approach. Based on the phenotype analysis of gene deletion and overexpression strains under short chain alcohols stress, one gene slr0007 encoding D-glycero-alpha-D-manno-heptose 1-phosphate guanylyltransferase was determined as a potential target of Nc117, suggesting that the synthesis of LPS or S-layer glycoprotein may be responsible for the tolerance enhancement. As the first reported trans-encoded sRNA positively regulating biofuels tolerance in cyanobacteria, this study not only provided evidence for a new regulatory mechanism of trans-encoded sRNA in cyanobacteria, but also valuable information for rational construction of high-tolerant cyanobacterial chassis.
Collapse
Affiliation(s)
- Yanqi Bi
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of the People's Republic of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Guangsheng Pei
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of the People's Republic of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of the People's Republic of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Zixi Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of the People's Republic of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of the People's Republic of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of the People's Republic of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China.,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| |
Collapse
|
28
|
Hu J, Zhan J, Chen H, He C, Cang H, Wang Q. The Small Regulatory Antisense RNA PilR Affects Pilus Formation and Cell Motility by Negatively Regulating pilA11 in Synechocystis sp. PCC 6803. Front Microbiol 2018; 9:786. [PMID: 29740417 PMCID: PMC5924778 DOI: 10.3389/fmicb.2018.00786] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 04/06/2018] [Indexed: 01/19/2023] Open
Abstract
Pili are found on the surface of many bacteria and play important roles in cell motility, pathogenesis, biofilm formation, and sensing and reacting to environmental changes. Cell motility in the model cyanobacterium Synechocystis sp. PCC 6803 relies on expression of the putative pilA9-pilA10-pilA11-slr2018 operon. In this study, we identified the antisense RNA PilR encoded in the noncoding strand of the prepilin-encoding gene pilA11. Analysis of overexpressor [PilR(+)] and suppressor [PilR(-)] mutant strains revealed that PilR is a direct negative regulator of PilA11 protein. Although overexpression of PilR did not affect cell growth, it greatly reduced levels of pilA11 mRNA and protein and decreased both the thickness and number of pili, resulting in limited cell motility and small, distinct colonies. Suppression of PilR had the opposite effect. A hypothetical model on the regulation of pilA9-pilA10-pilA11-slr2018 operon expression by PilR was proposed. These results add a layer of complexity to the mechanisms controlling pilA11 gene expression and cell motility, and provide novel insights into how sRNA and the intergenic region secondary structures can work together to discoordinatly regulate target gene in an operon in cyanobacterium.
Collapse
Affiliation(s)
- Jinlu Hu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Jiao Zhan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Hui Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Chenliu He
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Huaixing Cang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Qiang Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
29
|
Tan X, Hou S, Song K, Georg J, Klähn S, Lu X, Hess WR. The primary transcriptome of the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:218. [PMID: 30127850 PMCID: PMC6091082 DOI: 10.1186/s13068-018-1215-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/25/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND Cyanobacteria have shown promising potential for the production of various biofuels and chemical feedstocks. Synechococcus elongatus UTEX 2973 is a fast-growing strain with pronounced tolerance to high temperatures and illumination. Hence, this strain appears to be ideal for the development of photosynthetic biotechnology. However, molecular insights on how this strain can rapidly accumulate biomass and carbohydrates under high-light and high-temperature conditions are lacking. RESULTS Differential RNA-Sequencing (dRNA-Seq) enabled the genome-wide identification of 4808 transcription start sites (TSSs) in S. elongatus UTEX 2973 using a background reduction algorithm. High light promoted the transcription of genes associated with central metabolic pathways, whereas the highly induced small RNA (sRNA) PsrR1 likely contributed to the repression of phycobilisome genes and the accelerated glycogen accumulation rates measured under this condition. Darkness caused transcriptome remodeling with a decline in the expression of genes for carbon fixation and other major metabolic pathways and an increase in the expression of genes for glycogen catabolism and Calvin cycle inhibitor CP12. Two of the identified TSSs drive the transcription of highly abundant sRNAs in darkness. One of them is widely conserved throughout the cyanobacterial phylum. Its gene is fused to a protein-coding gene in some species, illustrating the evolutionary origin of sRNAs from an mRNA 3'-end. CONCLUSIONS Our comprehensive set of genome-wide mapped TSSs, sRNAs and promoter activities will be valuable for projects requiring precise information about the control of transcription aimed at metabolic engineering and the elucidation of stress acclimation mechanisms in this promising strain.
Collapse
Affiliation(s)
- Xiaoming Tan
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101 China
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Present Address: College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062 China
| | - Shengwei Hou
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Kuo Song
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101 China
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Jens Georg
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Stephan Klähn
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Department of Solar Materials, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Xuefeng Lu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao, 266237 China
| | - Wolfgang R. Hess
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Freiburg Institute for Advanced Studies, University of Freiburg, Albertstraße 19, 79104 Freiburg, Germany
| |
Collapse
|
30
|
Santos-Merino M, Garcillán-Barcia MP, de la Cruz F. Engineering the fatty acid synthesis pathway in Synechococcus elongatus PCC 7942 improves omega-3 fatty acid production. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:239. [PMID: 30202434 PMCID: PMC6123915 DOI: 10.1186/s13068-018-1243-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/27/2018] [Indexed: 05/09/2023]
Abstract
BACKGROUND The microbial production of fatty acids has received great attention in the last few years as feedstock for the production of renewable energy. The main advantage of using cyanobacteria over other organisms is their ability to capture energy from sunlight and to transform CO2 into products of interest by photosynthesis, such as fatty acids. Fatty acid synthesis is a ubiquitous and well-characterized pathway in most bacteria. However, the activity of the enzymes involved in this pathway in cyanobacteria remains poorly explored. RESULTS To characterize the function of some enzymes involved in the saturated fatty acid synthesis in cyanobacteria, we genetically engineered Synechococcus elongatus PCC 7942 by overexpressing or deleting genes encoding enzymes of the fatty acid synthase system and tested the lipid profile of the mutants. These modifications were in turn used to improve alpha-linolenic acid production in this cyanobacterium. The mutant resulting from fabF overexpression and fadD deletion, combined with the overexpression of desA and desB desaturase genes from Synechococcus sp. PCC 7002, produced the highest levels of this omega-3 fatty acid. CONCLUSIONS The fatty acid composition of S. elongatus PCC 7942 can be significantly modified by genetically engineering the expression of genes coding for the enzymes involved in the first reactions of fatty acid synthesis pathway. Variations in fatty acid composition of S. elongatus PCC 7942 mutants did not follow the pattern observed in Escherichia coli derivatives. Some of these modifications can be used to improve omega-3 fatty acid production. This work provides new insights into the saturated fatty acid synthesis pathway and new strategies that might be used to manipulate the fatty acid content of cyanobacteria.
Collapse
Affiliation(s)
- María Santos-Merino
- Instituto de Biomedicina y Biotecnología de Cantabria (Universidad de Cantabria—Consejo Superior de Investigaciones Científicas), Santander, Cantabria Spain
| | - M. Pilar Garcillán-Barcia
- Instituto de Biomedicina y Biotecnología de Cantabria (Universidad de Cantabria—Consejo Superior de Investigaciones Científicas), Santander, Cantabria Spain
| | - Fernando de la Cruz
- Instituto de Biomedicina y Biotecnología de Cantabria (Universidad de Cantabria—Consejo Superior de Investigaciones Científicas), Santander, Cantabria Spain
| |
Collapse
|
31
|
Shimakawa G, Watanabe S, Miyake C. A Carbon Dioxide Limitation-Inducible Protein, ColA, Supports the Growth of Synechococcus sp. PCC 7002. Mar Drugs 2017; 15:md15120390. [PMID: 29244744 PMCID: PMC5742850 DOI: 10.3390/md15120390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/30/2017] [Accepted: 12/09/2017] [Indexed: 11/16/2022] Open
Abstract
A limitation in carbon dioxide (CO₂), which occurs as a result of natural environmental variation, suppresses photosynthesis and has the potential to cause photo-oxidative damage to photosynthetic cells. Oxygenic phototrophs have strategies to alleviate photo-oxidative damage to allow life in present atmospheric CO₂ conditions. However, the mechanisms for CO₂ limitation acclimation are diverse among the various oxygenic phototrophs, and many mechanisms remain to be discovered. In this study, we found that the gene encoding a CO₂ limitation-inducible protein, ColA, is required for the cyanobacterium Synechococcus sp. PCC 7002 (S. 7002) to acclimate to limited CO₂ conditions. An S. 7002 mutant deficient in ColA (ΔcolA) showed lower chlorophyll content, based on the amount of nitrogen, than that in S. 7002 wild-type (WT) under ambient air but not high CO₂ conditions. Both thermoluminescence and protein carbonylation detected in the ambient air grown cells indicated that the lack of ColA promotes oxidative stress in S. 7002. Alterations in the photosynthetic O₂ evolution rate and relative electron transport rate in the short-term response, within an hour, to CO₂ limitation were the same between the WT and ΔcolA. Conversely, these photosynthetic parameters were mostly lower in the long-term response of a few days in ΔcolA than in the WT. These data suggest that ColA is required to sustain photosynthetic activity for living under ambient air in S. 7002. The unique phylogeny of ColA revealed diverse strategies to acclimate to CO₂ limitation among cyanobacteria.
Collapse
Affiliation(s)
- Ginga Shimakawa
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.
| | - Satoru Watanabe
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan.
| | - Chikahiro Miyake
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.
| |
Collapse
|
32
|
6S RNA plays a role in recovery from nitrogen depletion in Synechocystis sp. PCC 6803. BMC Microbiol 2017; 17:229. [PMID: 29216826 PMCID: PMC5721685 DOI: 10.1186/s12866-017-1137-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/27/2017] [Indexed: 12/30/2022] Open
Abstract
Background The 6S RNA is a global transcriptional riboregulator, which is exceptionally widespread among most bacterial phyla. While its role is well-characterized in some heterotrophic bacteria, we subjected a cyanobacterial homolog to functional analysis, thereby extending the scope of 6S RNA action to the special challenges of photoautotrophic lifestyles. Results Physiological characterization of a 6S RNA deletion strain (ΔssaA) demonstrates a delay in the recovery from nitrogen starvation. Significantly decelerated phycobilisome reassembly and glycogen degradation are accompanied with reduced photosynthetic activity compared to the wild type. Transcriptome profiling further revealed that predominantly genes encoding photosystem components, ATP synthase, phycobilisomes and ribosomal proteins were negatively affected in ΔssaA. In vivo pull-down studies of the RNA polymerase complex indicated that the presence of 6S RNA promotes the recruitment of the cyanobacterial housekeeping σ factor SigA, concurrently supporting dissociation of group 2 σ factors during recovery from nitrogen starvation. Conclusions The combination of genetic, physiological and biochemical studies reveals the homologue of 6S RNA as an integral part of the cellular response of Synechocystis sp. PCC 6803 to changing nitrogen availability. According to these results, 6S RNA supports a rapid acclimation to changing nitrogen supply by accelerating the switch from group 2 σ factors SigB, SigC and SigE to SigA-dependent transcription. We therefore introduce the cyanobacterial 6S RNA as a novel candidate regulator of RNA polymerase sigma factor recruitment in Synechocystis sp. PCC 6803. Further studies on mechanistic features of the postulated interaction should shed additional light on the complexity of transcriptional regulation in cyanobacteria. Electronic supplementary material The online version of this article (10.1186/s12866-017-1137-9) contains supplementary material, which is available to authorized users.
Collapse
|
33
|
Pei G, Sun T, Chen S, Chen L, Zhang W. Systematic and functional identification of small non-coding RNAs associated with exogenous biofuel stress in cyanobacterium Synechocystis sp. PCC 6803. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:57. [PMID: 28286552 PMCID: PMC5341163 DOI: 10.1186/s13068-017-0743-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 02/28/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND The unicellular model cyanobacterium Synechocystis sp. PCC 6803 is considered a promising microbial chassis for biofuel production. However, its low tolerance to biofuel toxicity limits its potential application. Although recent studies showed that bacterial small RNAs (sRNAs) play important roles in regulating cellular processes in response to various stresses, the role of sRNAs in resisting exogenous biofuels is yet to be determined. RESULTS Based on genome-wide sRNA sequencing combined with systematic analysis of previous transcriptomic and proteomic data under the same biofuel or environmental perturbations, we report the identification of 133 trans-encoded sRNA transcripts with high-resolution mapping of sRNAs in Synechocystis, including 23 novel sRNAs identified for the first time. In addition, according to quantitative expression analysis and sRNA regulatory network prediction, sRNAs potentially involved in biofuel tolerance were identified and functionally confirmed by constructing sRNA overexpression or suppression strains of Synechocystis. Notably, overexpression of sRNA Nc117 revealed an improved tolerance to ethanol and butanol, while suppression of Nc117 led to increased sensitivity. CONCLUSIONS The study provided the first comprehensive responses to exogenous biofuels at the sRNA level in Synechocystis and opens an avenue to engineering sRNA regulatory elements for improved biofuel tolerance in the cyanobacterium Synechocystis.
Collapse
Affiliation(s)
- Guangsheng Pei
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072 People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, People’s Republic of China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072 People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, People’s Republic of China
| | - Shuo Chen
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, People’s Republic of China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072 People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, People’s Republic of China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072 People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, People’s Republic of China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, People’s Republic of China
| |
Collapse
|
34
|
Bersanini L, Allahverdiyeva Y, Battchikova N, Heinz S, Lespinasse M, Ruohisto E, Mustila H, Nickelsen J, Vass I, Aro EM. Dissecting the Photoprotective Mechanism Encoded by the flv4-2 Operon: a Distinct Contribution of Sll0218 in Photosystem II Stabilization. PLANT, CELL & ENVIRONMENT 2017; 40:378-389. [PMID: 27928824 DOI: 10.1111/pce.12872] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/17/2016] [Accepted: 11/20/2016] [Indexed: 06/06/2023]
Abstract
In Synechocystis sp. PCC 6803, the flv4-2 operon encodes the flavodiiron proteins Flv2 and Flv4 together with a small protein, Sll0218, providing photoprotection for Photosystem II (PSII). Here, the distinct roles of Flv2/Flv4 and Sll0218 were addressed, using a number of flv4-2 operon mutants. In the ∆sll0218 mutant, the presence of Flv2/Flv4 rescued PSII functionality as compared with ∆sll0218-flv2, where neither Sll0218 nor the Flv2/Flv4 heterodimer are expressed. Nevertheless, both the ∆sll0218 and ∆sll0218-flv2 mutants demonstrated deficiency in accumulation of PSII proteins suggesting a role for Sll0218 in PSII stabilization, which was further supported by photoinhibition experiments. Moreover, the accumulation of PSII assembly intermediates occurred in Sll0218-lacking mutants. The YFP-tagged Sll0218 protein localized in a few spots per cell at the external side of the thylakoid membrane, and biochemical membrane fractionation revealed clear enrichment of Sll0218 in the PratA-defined membranes, where the early biogenesis steps of PSII occur. Further, the characteristic antenna uncoupling feature of the ∆flv4-2 operon mutants is shown to be related to PSII destabilization in the absence of Sll0218. It is concluded that the Flv2/Flv4 heterodimer supports PSII functionality, while the Sll0218 protein assists PSII assembly and stabilization, including optimization of light harvesting.
Collapse
Affiliation(s)
- Luca Bersanini
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Yagut Allahverdiyeva
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Natalia Battchikova
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Steffen Heinz
- Molecular Plant Sciences, Ludwig-Maximillians-Universität München, Biozentrum, Grosshaderner Straße 2-4, 82152, Planegg-Martinsried, Germany
| | - Maija Lespinasse
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Essi Ruohisto
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Henna Mustila
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Jörg Nickelsen
- Molecular Plant Sciences, Ludwig-Maximillians-Universität München, Biozentrum, Grosshaderner Straße 2-4, 82152, Planegg-Martinsried, Germany
| | - Imre Vass
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, P.O. Box 521, H-6701, Szeged, Hungary
| | - Eva-Mari Aro
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| |
Collapse
|
35
|
Hu J, Li T, Xu W, Zhan J, Chen H, He C, Wang Q. Small Antisense RNA RblR Positively Regulates RuBisCo in Synechocystis sp. PCC 6803. Front Microbiol 2017; 8:231. [PMID: 28261186 PMCID: PMC5306279 DOI: 10.3389/fmicb.2017.00231] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 02/01/2017] [Indexed: 11/21/2022] Open
Abstract
Small regulatory RNAs (sRNAs) function as transcriptional and post-transcriptional regulators of gene expression in organisms from all domains of life. Cyanobacteria are thought to have developed a complex RNA-based regulatory mechanism. In the current study, by genome-wide analysis of differentially expressed small RNAs in Synechocystis sp. PCC 6803 under high light conditions, we discovered an asRNA (RblR) that is 113nt in length and completely complementary to its target gene rbcL, which encodes the large chain of RuBisCO, the enzyme that catalyzes carbon fixation. Further analysis of the RblR(+)/(−) mutants revealed that RblR acts as a positive regulator of rbcL under various stress conditions; Suppressing RblR adversely affects carbon assimilation and thus the yield, and those phenotypes of both the wild type and the overexpressor could be downgraded to the suppressor level by carbonate depletion, indicated a regulatory role of RblR in CO2 assimilation. In addition, a real-time expression platform in Escherichia coli was setup and which confirmed that RblR promoted the translation of the rbcL mRNA into the RbcL protein. The present study is the first report of a regulatory RNA that targets RbcL in Synechocystis sp. PCC 6803, and provides strong evidence that RblR regulates photosynthesis by positively modulating rbcL expression in Synechocystis.
Collapse
Affiliation(s)
- Jinlu Hu
- School of Life Sciences, Northwestern Polytechnical University Xi'an, China
| | - Tianpei Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, the Chinese Academy of SciencesWuhan, China; University of the Chinese Academy of SciencesBeijing, China
| | - Wen Xu
- Crop Designing Centre, Henan Academy of Agricultural Sciences Zhengzhou, China
| | - Jiao Zhan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, the Chinese Academy of Sciences Wuhan, China
| | - Hui Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, the Chinese Academy of Sciences Wuhan, China
| | - Chenliu He
- Key Laboratory of Algal Biology, Institute of Hydrobiology, the Chinese Academy of Sciences Wuhan, China
| | - Qiang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Chinese Academy of Sciences Wuhan, China
| |
Collapse
|
36
|
Westermark S, Steuer R. Toward Multiscale Models of Cyanobacterial Growth: A Modular Approach. Front Bioeng Biotechnol 2016; 4:95. [PMID: 28083530 PMCID: PMC5183639 DOI: 10.3389/fbioe.2016.00095] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 12/09/2016] [Indexed: 11/29/2022] Open
Abstract
Oxygenic photosynthesis dominates global primary productivity ever since its evolution more than three billion years ago. While many aspects of phototrophic growth are well understood, it remains a considerable challenge to elucidate the manifold dependencies and interconnections between the diverse cellular processes that together facilitate the synthesis of new cells. Phototrophic growth involves the coordinated action of several layers of cellular functioning, ranging from the photosynthetic light reactions and the electron transport chain, to carbon-concentrating mechanisms and the assimilation of inorganic carbon. It requires the synthesis of new building blocks by cellular metabolism, protection against excessive light, as well as diurnal regulation by a circadian clock and the orchestration of gene expression and cell division. Computational modeling allows us to quantitatively describe these cellular functions and processes relevant for phototrophic growth. As yet, however, computational models are mostly confined to the inner workings of individual cellular processes, rather than describing the manifold interactions between them in the context of a living cell. Using cyanobacteria as model organisms, this contribution seeks to summarize existing computational models that are relevant to describe phototrophic growth and seeks to outline their interactions and dependencies. Our ultimate aim is to understand cellular functioning and growth as the outcome of a coordinated operation of diverse yet interconnected cellular processes.
Collapse
Affiliation(s)
- Stefanie Westermark
- Fachinstitut für Theoretische Biologie (ITB), Institut für Biologie, Humboldt-Universität zu Berlin , Berlin , Germany
| | - Ralf Steuer
- Fachinstitut für Theoretische Biologie (ITB), Institut für Biologie, Humboldt-Universität zu Berlin , Berlin , Germany
| |
Collapse
|
37
|
Baumgartner D, Kopf M, Klähn S, Steglich C, Hess WR. Small proteins in cyanobacteria provide a paradigm for the functional analysis of the bacterial micro-proteome. BMC Microbiol 2016; 16:285. [PMID: 27894276 PMCID: PMC5126843 DOI: 10.1186/s12866-016-0896-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/14/2016] [Indexed: 12/21/2022] Open
Abstract
Background Despite their versatile functions in multimeric protein complexes, in the modification of enzymatic activities, intercellular communication or regulatory processes, proteins shorter than 80 amino acids (μ-proteins) are a systematically underestimated class of gene products in bacteria. Photosynthetic cyanobacteria provide a paradigm for small protein functions due to extensive work on the photosynthetic apparatus that led to the functional characterization of 19 small proteins of less than 50 amino acids. In analogy, previously unstudied small ORFs with similar degrees of conservation might encode small proteins of high relevance also in other functional contexts. Results Here we used comparative transcriptomic information available for two model cyanobacteria, Synechocystis sp. PCC 6803 and Synechocystis sp. PCC 6714 for the prediction of small ORFs. We found 293 transcriptional units containing candidate small ORFs ≤80 codons in Synechocystis sp. PCC 6803, also including the known mRNAs encoding small proteins of the photosynthetic apparatus. From these transcriptional units, 146 are shared between the two strains, 42 are shared with the higher plant Arabidopsis thaliana and 25 with E. coli. To verify the existence of the respective μ-proteins in vivo, we selected five genes as examples to which a FLAG tag sequence was added and re-introduced them into Synechocystis sp. PCC 6803. These were the previously annotated gene ssr1169, two newly defined genes norf1 and norf4, as well as nsiR6(nitrogen stress-induced RNA 6) and hliR1(high light-inducible RNA 1) , which originally were considered non-coding. Upon activation of expression via the Cu2+.responsive petE promoter or from the native promoters, all five proteins were detected in Western blot experiments. Conclusions The distribution and conservation of these five genes as well as their regulation of expression and the physico-chemical properties of the encoded proteins underline the likely great bandwidth of small protein functions in bacteria and makes them attractive candidates for functional studies.
Collapse
Affiliation(s)
- Desiree Baumgartner
- University of Freiburg, Faculty of Biology, Genetics and Experimental Bioinformatics, Schänzlestr. 1, D-79104, Freiburg, Germany
| | - Matthias Kopf
- University of Freiburg, Faculty of Biology, Genetics and Experimental Bioinformatics, Schänzlestr. 1, D-79104, Freiburg, Germany.,Present Address: Molecular Health GmbH, Kurfürsten-Anlage 21, 69115, Heidelberg, Germany
| | - Stephan Klähn
- University of Freiburg, Faculty of Biology, Genetics and Experimental Bioinformatics, Schänzlestr. 1, D-79104, Freiburg, Germany
| | - Claudia Steglich
- University of Freiburg, Faculty of Biology, Genetics and Experimental Bioinformatics, Schänzlestr. 1, D-79104, Freiburg, Germany
| | - Wolfgang R Hess
- University of Freiburg, Faculty of Biology, Genetics and Experimental Bioinformatics, Schänzlestr. 1, D-79104, Freiburg, Germany.
| |
Collapse
|
38
|
Shimakawa G, Shaku K, Miyake C. Oxidation of P700 in Photosystem I Is Essential for the Growth of Cyanobacteria. PLANT PHYSIOLOGY 2016; 172:1443-1450. [PMID: 27613853 PMCID: PMC5100761 DOI: 10.1104/pp.16.01227] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/07/2016] [Indexed: 05/21/2023]
Abstract
The photoinhibition of photosystem I (PSI) is lethal to oxygenic phototrophs. Nevertheless, it is unclear how photodamage occurs or how oxygenic phototrophs prevent it. Here, we provide evidence that keeping P700 (the reaction center chlorophyll in PSI) oxidized protects PSI. Previous studies have suggested that PSI photoinhibition does not occur in the two model cyanobacteria, Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942, when photosynthetic CO2 fixation was suppressed under low CO2 partial pressure even in mutants deficient in flavodiiron protein (FLV), which mediates alternative electron flow. The lack of FLV in Synechococcus sp. PCC 7002 (S. 7002), however, is linked directly to reduced growth and PSI photodamage under CO2-limiting conditions. Unlike Synechocystis sp. PCC 6803 and S. elongatus PCC 7942, S. 7002 reduced P700 during CO2-limited illumination in the absence of FLV, resulting in decreases in both PSI and photosynthetic activities. Even at normal air CO2 concentration, the growth of S. 7002 mutant was retarded relative to that of the wild type. Therefore, P700 oxidation is essential for protecting PSI against photoinhibition. Here, we present various strategies to alleviate PSI photoinhibition in cyanobacteria.
Collapse
Affiliation(s)
- Ginga Shimakawa
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe 657-8501, Japan (G.S., K.S., C.M.); and
- Core Research for Environmental Science and Technology, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan (C.M.)
| | - Keiichiro Shaku
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe 657-8501, Japan (G.S., K.S., C.M.); and
- Core Research for Environmental Science and Technology, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan (C.M.)
| | - Chikahiro Miyake
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe 657-8501, Japan (G.S., K.S., C.M.); and
- Core Research for Environmental Science and Technology, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan (C.M.)
| |
Collapse
|
39
|
Orf I, Schwarz D, Kaplan A, Kopka J, Hess WR, Hagemann M, Klähn S. CyAbrB2 Contributes to the Transcriptional Regulation of Low CO2 Acclimation in Synechocystis sp. PCC 6803. PLANT & CELL PHYSIOLOGY 2016; 57:2232-2243. [PMID: 27638927 DOI: 10.1093/pcp/pcw146] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/29/2016] [Indexed: 06/06/2023]
Abstract
Acclimation to low CO2 conditions in cyanobacteria involves the co-ordinated regulation of genes mainly encoding components of the carbon-concentrating mechanism (CCM). Making use of several independent microarray data sets, a core set of CO2-regulated genes was defined for the model strain Synechocystis sp. PCC 6803. On the transcriptional level, the CCM is mainly regulated by the well-characterized transcriptional regulators NdhR (= CcmR) and CmpR. However, the role of an additional regulatory protein, namely cyAbrB2 belonging to the widely distributed AbrB regulator family that was originally characterized in the genus Bacillus, is less defined. Here we present results of transcriptomic and metabolic profiling of the wild type and a ΔcyabrB2 mutant of Synechocystis sp. PCC 6803 after shifts from high CO2 (5% in air, HC) to low CO2 (0.04%, LC). Evaluation of the transcriptomic data revealed that cyAbrB2 is involved in the regulation of several CCM-related genes such as sbtA/B, ndhF3/ndhD3/cupA and cmpABCD under LC conditions, but apparently acts supplementary to NdhR and CmpR. Under HC conditions, cyAbrB2 deletion affects the transcript abundance of PSII subunits, light-harvesting components and Calvin-Benson-Bassham cycle enzymes. These changes are also reflected by down-regulation of primary metabolite pools. The data suggest a role for cyAbrB2 in adjusting primary carbon and nitrogen metabolism to photosynthetic activity under fluctuating environmental conditions. The findings were integrated into the current knowledge about the acquisition of inorganic carbon (Ci), the CCM and parts of its regulation on the transcriptional level.
Collapse
Affiliation(s)
- Isabel Orf
- Max-Planck-Institute of Molecular Plant Physiology, Department of Molecular Physiology: Applied Metabolome Analysis, Potsdam-Golm, Germany
| | - Doreen Schwarz
- Plant Physiology Department, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Joachim Kopka
- Max-Planck-Institute of Molecular Plant Physiology, Department of Molecular Physiology: Applied Metabolome Analysis, Potsdam-Golm, Germany
| | - Wolfgang R Hess
- Genetics & Experimental Bioinformatics, Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Martin Hagemann
- Plant Physiology Department, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Stephan Klähn
- Genetics & Experimental Bioinformatics, Institute of Biology III, University of Freiburg, Freiburg, Germany
| |
Collapse
|
40
|
de Porcellinis AJ, Klähn S, Rosgaard L, Kirsch R, Gutekunst K, Georg J, Hess WR, Sakuragi Y. The Non-Coding RNA Ncr0700/PmgR1 is Required for Photomixotrophic Growth and the Regulation of Glycogen Accumulation in the Cyanobacterium Synechocystis sp. PCC 6803. PLANT & CELL PHYSIOLOGY 2016; 57:2091-2103. [PMID: 27440548 DOI: 10.1093/pcp/pcw128] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/12/2016] [Indexed: 06/06/2023]
Abstract
Carbohydrate metabolism is a tightly regulated process in photosynthetic organisms. In the cyanobacterium Synechocystis sp. PCC 6803, the photomixotrophic growth protein A (PmgA) is involved in the regulation of glucose and storage carbohydrate (i.e. glycogen) metabolism, while its biochemical activity and possible factors acting downstream of PmgA are unknown. Here, a genome-wide microarray analysis of a ΔpmgA strain identified the expression of 36 protein-coding genes and 42 non-coding transcripts as significantly altered. From these, the non-coding RNA Ncr0700 was identified as the transcript most strongly reduced in abundance. Ncr0700 is widely conserved among cyanobacteria. In Synechocystis its expression is inversely correlated with light intensity. Similarly to a ΔpmgA mutant, a Δncr0700 deletion strain showed an approximately 2-fold increase in glycogen content under photoautotrophic conditions and wild-type-like growth. Moreover, its growth was arrested by 38 h after a shift to photomixotrophic conditions. Ectopic expression of Ncr0700 in Δncr0700 and ΔpmgA restored the glycogen content and photomixotrophic growth to wild-type levels. These results indicate that Ncr0700 is required for photomixotrophic growth and the regulation of glycogen accumulation, and acts downstream of PmgA. Hence Ncr0700 is renamed here as PmgR1 for photomixotrophic growth RNA 1.
Collapse
Affiliation(s)
- Alice J de Porcellinis
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, DK-1871, Denmark
- These authors contributed equally to this work
| | - Stephan Klähn
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, Freiburg, D-79104, Germany
- These authors contributed equally to this work
| | - Lisa Rosgaard
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, DK-1871, Denmark
- Present address: R&D Renescience Thermal Power, DONG Energy, Skærbæk-7000 Fredericia, Denmark
| | - Rebekka Kirsch
- Botanical Institute, Christian-Albrechts-University, Am Botanischen Garten 5, Kiel, D-24118, Germany
| | - Kirstin Gutekunst
- Botanical Institute, Christian-Albrechts-University, Am Botanischen Garten 5, Kiel, D-24118, Germany
| | - Jens Georg
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, Freiburg, D-79104, Germany
| | - Wolfgang R Hess
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, Freiburg, D-79104, Germany
| | - Yumiko Sakuragi
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, DK-1871, Denmark
| |
Collapse
|
41
|
Cyanobacterial chassis engineering for enhancing production of biofuels and chemicals. Appl Microbiol Biotechnol 2016; 100:3401-13. [DOI: 10.1007/s00253-016-7374-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 01/29/2016] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
|
42
|
Ramey CJ, Barón-Sola Á, Aucoin HR, Boyle NR. Genome Engineering in Cyanobacteria: Where We Are and Where We Need To Go. ACS Synth Biol 2015; 4:1186-96. [PMID: 25985322 DOI: 10.1021/acssynbio.5b00043] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Genome engineering of cyanobacteria is a promising area of development in order to produce fuels, feedstocks, and value-added chemicals in a sustainable way. Unfortunately, the current state of genome engineering tools for cyanobacteria lags far behind those of model organisms such as Escherichia coli and Saccharomyces cerevisiae. In this review, we present the current state of synthetic biology tools for genome engineering efforts in the most widely used cyanobacteria strains and areas that need concerted research efforts to improve tool development. Cyanobacteria pose unique challenges to genome engineering efforts because their cellular biology differs significantly from other eubacteria; therefore, tools developed for other genera are not directly transferrable. Standardized parts, such as promoters and ribosome binding sites, which control gene expression, require characterization in cyanobacteria in order to have fully predictable results. The application of these tools to genome engineering efforts is also discussed; the ability to do genome-wide searching and to introduce multiple mutations simultaneously is an area that needs additional research in order to enable fast and efficient strain engineering.
Collapse
Affiliation(s)
- C. Josh Ramey
- Chemical and Biological Engineering
Department, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Ángel Barón-Sola
- Chemical and Biological Engineering
Department, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Hanna R. Aucoin
- Chemical and Biological Engineering
Department, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Nanette R. Boyle
- Chemical and Biological Engineering
Department, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
43
|
Wilde A, Hihara Y. Transcriptional and posttranscriptional regulation of cyanobacterial photosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:296-308. [PMID: 26549130 DOI: 10.1016/j.bbabio.2015.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 10/02/2015] [Accepted: 11/03/2015] [Indexed: 12/22/2022]
Abstract
Cyanobacteria are well established model organisms for the study of oxygenic photosynthesis, nitrogen metabolism, toxin biosynthesis, and salt acclimation. However, in comparison to other model bacteria little is known about regulatory networks, which allow cyanobacteria to acclimate to changing environmental conditions. The current work has begun to illuminate how transcription factors modulate expression of different photosynthetic regulons. During the past few years, the research on other regulatory principles like RNA-based regulation showed the importance of non-protein regulators for bacterial lifestyle. Investigations on modulation of photosynthetic components should elucidate the contributions of all factors within the context of a larger regulatory network. Here, we focus on regulation of photosynthetic processes including transcriptional and posttranscriptional mechanisms, citing examples from a limited number of cyanobacterial species. Though, the general idea holds true for most species, important differences exist between various organisms, illustrating diversity of acclimation strategies in the very heterogeneous cyanobacterial clade. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Prof Conrad Mullineaux.
Collapse
Affiliation(s)
- Annegret Wilde
- University of Freiburg, Institute of Biology III, Schänzlestr. 1, 79104 Freiburg, Germany; Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Germany
| | - Yukako Hihara
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| |
Collapse
|
44
|
Klähn S, Orf I, Schwarz D, Matthiessen JKF, Kopka J, Hess WR, Hagemann M. Integrated Transcriptomic and Metabolomic Characterization of the Low-Carbon Response Using an ndhR Mutant of Synechocystis sp. PCC 6803. PLANT PHYSIOLOGY 2015; 169:1540-56. [PMID: 25630438 PMCID: PMC4634042 DOI: 10.1104/pp.114.254045] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 01/27/2015] [Indexed: 05/17/2023]
Abstract
The acquisition and assimilation of inorganic carbon (Ci) represents the largest flux of inorganic matter in photosynthetic organisms; hence, this process is tightly regulated. We examined the Ci-dependent transcriptional and metabolic regulation in wild-type Synechocystis sp. PCC 6803 compared with a mutant defective in the main transcriptional repressor for Ci acquisition genes, the NAD(P)H dehydrogenase transcriptional regulator NdhR. The analysis revealed that many protein-coding transcripts that are normally repressed in the presence of high CO2 (HC) concentrations were strongly expressed in ∆ndhR, whereas other messenger RNAs were strongly down-regulated in mutant cells, suggesting a potential activating role for NdhR. A conserved NdhR-binding motif was identified in the promoters of derepressed genes. Interestingly, the expression of some NdhR-regulated genes remained further inducible under low-CO2 conditions, indicating the involvement of additional NdhR-independent Ci-regulatory mechanisms. Intriguingly, we also observed that the abundance of 52 antisense RNAs and 34 potential noncoding RNAs was affected by Ci supply, although most of these molecules were not regulated through NdhR. Thus, antisense and noncoding RNAs could contribute to NdhR-independent carbon regulation. In contrast to the transcriptome, the metabolome in ∆ndhR cells was similar to that of wild-type cells under HC conditions. This observation and the delayed metabolic responses to the low-CO2 shift in ∆ndhR, specifically the lack of transient increases in the photorespiratory pathway intermediates 2-phosphoglycolate, glycolate, and glycine, suggest that the deregulation of gene expression in the ΔndhR mutant successfully preacclimates cyanobacterial cells to lowered Ci supply under HC conditions.
Collapse
Affiliation(s)
- Stephan Klähn
- Genetics and Experimental Bioinformatics, Institute of Biology III, University of Freiburg, D-79104 Freiburg, Germany (S.K., J.K.F.M., W.R.H.);Max-Planck-Institute of Molecular Plant Physiology, Department of Molecular Physiology: Applied Metabolome Analysis, D-14476 Potsdam-Golm, Germany (I.O., J.K.); andPlant Physiology Department, Institute of Biological Sciences, University of Rostock, D-18059 Rostock, Germany (D.S., M.H.)
| | - Isabel Orf
- Genetics and Experimental Bioinformatics, Institute of Biology III, University of Freiburg, D-79104 Freiburg, Germany (S.K., J.K.F.M., W.R.H.);Max-Planck-Institute of Molecular Plant Physiology, Department of Molecular Physiology: Applied Metabolome Analysis, D-14476 Potsdam-Golm, Germany (I.O., J.K.); andPlant Physiology Department, Institute of Biological Sciences, University of Rostock, D-18059 Rostock, Germany (D.S., M.H.)
| | - Doreen Schwarz
- Genetics and Experimental Bioinformatics, Institute of Biology III, University of Freiburg, D-79104 Freiburg, Germany (S.K., J.K.F.M., W.R.H.);Max-Planck-Institute of Molecular Plant Physiology, Department of Molecular Physiology: Applied Metabolome Analysis, D-14476 Potsdam-Golm, Germany (I.O., J.K.); andPlant Physiology Department, Institute of Biological Sciences, University of Rostock, D-18059 Rostock, Germany (D.S., M.H.)
| | - Jasper K F Matthiessen
- Genetics and Experimental Bioinformatics, Institute of Biology III, University of Freiburg, D-79104 Freiburg, Germany (S.K., J.K.F.M., W.R.H.);Max-Planck-Institute of Molecular Plant Physiology, Department of Molecular Physiology: Applied Metabolome Analysis, D-14476 Potsdam-Golm, Germany (I.O., J.K.); andPlant Physiology Department, Institute of Biological Sciences, University of Rostock, D-18059 Rostock, Germany (D.S., M.H.)
| | - Joachim Kopka
- Genetics and Experimental Bioinformatics, Institute of Biology III, University of Freiburg, D-79104 Freiburg, Germany (S.K., J.K.F.M., W.R.H.);Max-Planck-Institute of Molecular Plant Physiology, Department of Molecular Physiology: Applied Metabolome Analysis, D-14476 Potsdam-Golm, Germany (I.O., J.K.); andPlant Physiology Department, Institute of Biological Sciences, University of Rostock, D-18059 Rostock, Germany (D.S., M.H.)
| | - Wolfgang R Hess
- Genetics and Experimental Bioinformatics, Institute of Biology III, University of Freiburg, D-79104 Freiburg, Germany (S.K., J.K.F.M., W.R.H.);Max-Planck-Institute of Molecular Plant Physiology, Department of Molecular Physiology: Applied Metabolome Analysis, D-14476 Potsdam-Golm, Germany (I.O., J.K.); andPlant Physiology Department, Institute of Biological Sciences, University of Rostock, D-18059 Rostock, Germany (D.S., M.H.)
| | - Martin Hagemann
- Genetics and Experimental Bioinformatics, Institute of Biology III, University of Freiburg, D-79104 Freiburg, Germany (S.K., J.K.F.M., W.R.H.);Max-Planck-Institute of Molecular Plant Physiology, Department of Molecular Physiology: Applied Metabolome Analysis, D-14476 Potsdam-Golm, Germany (I.O., J.K.); andPlant Physiology Department, Institute of Biological Sciences, University of Rostock, D-18059 Rostock, Germany (D.S., M.H.)
| |
Collapse
|
45
|
Battchikova N, Angeleri M, Aro EM. Proteomic approaches in research of cyanobacterial photosynthesis. PHOTOSYNTHESIS RESEARCH 2015; 126:47-70. [PMID: 25359503 DOI: 10.1007/s11120-014-0050-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 10/18/2014] [Indexed: 05/03/2023]
Abstract
Oxygenic photosynthesis in cyanobacteria, algae, and plants is carried out by a fabulous pigment-protein machinery that is amazingly complicated in structure and function. Many different approaches have been undertaken to characterize the most important aspects of photosynthesis, and proteomics has become the essential component in this research. Here we describe various methods which have been used in proteomic research of cyanobacteria, and demonstrate how proteomics is implemented into on-going studies of photosynthesis in cyanobacterial cells.
Collapse
Affiliation(s)
- Natalia Battchikova
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014, Turku, Finland.
| | - Martina Angeleri
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014, Turku, Finland
| | - Eva-Mari Aro
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014, Turku, Finland
| |
Collapse
|
46
|
Cameron JC, Gordon GC, Pfleger BF. Genetic and genomic analysis of RNases in model cyanobacteria. PHOTOSYNTHESIS RESEARCH 2015; 126:171-83. [PMID: 25595545 PMCID: PMC4506261 DOI: 10.1007/s11120-015-0076-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 01/02/2015] [Indexed: 05/20/2023]
Abstract
Cyanobacteria are diverse photosynthetic microbes with the ability to convert CO2 into useful products. However, metabolic engineering of cyanobacteria remains challenging because of the limited resources for modifying the expression of endogenous and exogenous biochemical pathways. Fine-tuned control of protein production will be critical to optimize the biological conversion of CO2 into desirable molecules. Messenger RNAs (mRNAs) are labile intermediates that play critical roles in determining the translation rate and steady-state protein concentrations in the cell. The majority of studies on mRNA turnover have focused on the model heterotrophic bacteria Escherichia coli and Bacillus subtilis. These studies have elucidated many RNA modifying and processing enzymes and have highlighted the differences between these Gram-negative and Gram-positive bacteria, respectively. In contrast, much less is known about mRNA turnover in cyanobacteria. We generated a compendium of the major ribonucleases (RNases) and provide an in-depth analysis of RNase III-like enzymes in commonly studied and diverse cyanobacteria. Furthermore, using targeted gene deletion, we genetically dissected the RNases in Synechococcus sp. PCC 7002, one of the fastest growing and industrially attractive cyanobacterial strains. We found that all three cyanobacterial homologs of RNase III and a member of the RNase II/R family are not essential under standard laboratory conditions, while homologs of RNase E/G, RNase J1/J2, PNPase, and a different member of the RNase II/R family appear to be essential for growth. This work will enhance our understanding of native control of gene expression and will facilitate the development of an RNA-based toolkit for metabolic engineering in cyanobacteria.
Collapse
Affiliation(s)
- Jeffrey C Cameron
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 3629 Engineering Hall, 1415 Engineering Dr., Madison, WI, 53706, USA
| | - Gina C Gordon
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 3629 Engineering Hall, 1415 Engineering Dr., Madison, WI, 53706, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, USA
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 3629 Engineering Hall, 1415 Engineering Dr., Madison, WI, 53706, USA.
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, USA.
| |
Collapse
|
47
|
Kopf M, Hess WR. Regulatory RNAs in photosynthetic cyanobacteria. FEMS Microbiol Rev 2015; 39:301-15. [PMID: 25934122 PMCID: PMC6596454 DOI: 10.1093/femsre/fuv017] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/06/2015] [Accepted: 03/10/2015] [Indexed: 12/02/2022] Open
Abstract
Regulatory RNAs play versatile roles in bacteria in the coordination of gene expression during various physiological processes, especially during stress adaptation. Photosynthetic bacteria use sunlight as their major energy source. Therefore, they are particularly vulnerable to the damaging effects of excess light or UV irradiation. In addition, like all bacteria, photosynthetic bacteria must adapt to limiting nutrient concentrations and abiotic and biotic stress factors. Transcriptome analyses have identified hundreds of potential regulatory small RNAs (sRNAs) in model cyanobacteria such as Synechocystis sp. PCC 6803 or Anabaena sp. PCC 7120, and in environmentally relevant genera such as Trichodesmium, Synechococcus and Prochlorococcus. Some sRNAs have been shown to actually contain μORFs and encode short proteins. Examples include the 40-amino-acid product of the sml0013 gene, which encodes the NdhP subunit of the NDH1 complex. In contrast, the functional characterization of the non-coding sRNA PsrR1 revealed that the 131 nt long sRNA controls photosynthetic functions by targeting multiple mRNAs, providing a paradigm for sRNA functions in photosynthetic bacteria. We suggest that actuatons comprise a new class of genetic elements in which an sRNA gene is inserted upstream of a coding region to modify or enable transcription of that region.
Collapse
Affiliation(s)
- Matthias Kopf
- Faculty of Biology, Institute of Biology III, University of Freiburg, D-79104 Freiburg, Germany
| | - Wolfgang R Hess
- Faculty of Biology, Institute of Biology III, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
48
|
Kopf M, Klähn S, Scholz I, Hess WR, Voß B. Variations in the non-coding transcriptome as a driver of inter-strain divergence and physiological adaptation in bacteria. Sci Rep 2015; 5:9560. [PMID: 25902393 PMCID: PMC5386190 DOI: 10.1038/srep09560] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/05/2015] [Indexed: 12/16/2022] Open
Abstract
In all studied organisms, a substantial portion of the transcriptome consists of non-coding RNAs that frequently execute regulatory functions. Here, we have compared the primary transcriptomes of the cyanobacteria Synechocystis sp. PCC 6714 and PCC 6803 under 10 different conditions. These strains share 2854 protein-coding genes and a 16S rRNA identity of 99.4%, indicating their close relatedness. Conserved major transcriptional start sites (TSSs) give rise to non-coding transcripts within the sigB gene, from the 5′UTRs of cmpA and isiA, and 168 loci in antisense orientation. Distinct differences include single nucleotide polymorphisms rendering promoters inactive in one of the strains, e.g., for cmpR and for the asRNA PsbA2R. Based on the genome-wide mapped location, regulation and classification of TSSs, non-coding transcripts were identified as the most dynamic component of the transcriptome. We identified a class of mRNAs that originate by read-through from an sRNA that accumulates as a discrete and abundant transcript while also serving as the 5′UTR. Such an sRNA/mRNA structure, which we name ‘actuaton’, represents another way for bacteria to remodel their transcriptional network. Our findings support the hypothesis that variations in the non-coding transcriptome constitute a major evolutionary element of inter-strain divergence and capability for physiological adaptation.
Collapse
Affiliation(s)
- Matthias Kopf
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Stephan Klähn
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Ingeborg Scholz
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Wolfgang R Hess
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Björn Voß
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| |
Collapse
|
49
|
Allahverdiyeva Y, Isojärvi J, Zhang P, Aro EM. Cyanobacterial Oxygenic Photosynthesis is Protected by Flavodiiron Proteins. Life (Basel) 2015; 5:716-43. [PMID: 25761262 PMCID: PMC4390876 DOI: 10.3390/life5010716] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/04/2015] [Accepted: 02/25/2015] [Indexed: 12/13/2022] Open
Abstract
Flavodiiron proteins (FDPs, also called flavoproteins, Flvs) are modular enzymes widely present in Bacteria and Archaea. The evolution of cyanobacteria and oxygenic photosynthesis occurred in concert with the modulation of typical bacterial FDPs. Present cyanobacterial FDPs are composed of three domains, the β-lactamase-like, flavodoxin-like and flavin-reductase like domains. Cyanobacterial FDPs function as hetero- and homodimers and are involved in the regulation of photosynthetic electron transport. Whilst Flv2 and Flv4 proteins are limited to specific cyanobacterial species (β-cyanobacteria) and function in photoprotection of Photosystem II, Flv1 and Flv3 proteins, functioning in the "Mehler-like" reaction and safeguarding Photosystem I under fluctuating light conditions, occur in nearly all cyanobacteria and additionally in green algae, mosses and lycophytes. Filamentous cyanobacteria have additional FDPs in heterocyst cells, ensuring a microaerobic environment for the function of the nitrogenase enzyme under the light. Here, the evolution, occurrence and functional mechanisms of various FDPs in oxygenic photosynthetic organisms are discussed.
Collapse
Affiliation(s)
- Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland.
| | - Janne Isojärvi
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland.
| | - Pengpeng Zhang
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland.
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland.
| |
Collapse
|
50
|
Shimakawa G, Shaku K, Nishi A, Hayashi R, Yamamoto H, Sakamoto K, Makino A, Miyake C. FLAVODIIRON2 and FLAVODIIRON4 proteins mediate an oxygen-dependent alternative electron flow in Synechocystis sp. PCC 6803 under CO2-limited conditions. PLANT PHYSIOLOGY 2015; 167:472-80. [PMID: 25540330 PMCID: PMC4326736 DOI: 10.1104/pp.114.249987] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 12/23/2014] [Indexed: 05/22/2023]
Abstract
This study aims to elucidate the molecular mechanism of an alternative electron flow (AEF) functioning under suppressed (CO2-limited) photosynthesis in the cyanobacterium Synechocystis sp. PCC 6803. Photosynthetic linear electron flow, evaluated as the quantum yield of photosystem II [Y(II)], reaches a maximum shortly after the onset of actinic illumination. Thereafter, Y(II) transiently decreases concomitantly with a decrease in the photosynthetic oxygen evolution rate and then recovers to a rate that is close to the initial maximum. These results show that CO2 limitation suppresses photosynthesis and induces AEF. In contrast to the wild type, Synechocystis sp. PCC 6803 mutants deficient in the genes encoding FLAVODIIRON2 (FLV2) and FLV4 proteins show no recovery of Y(II) after prolonged illumination. However, Synechocystis sp. PCC 6803 mutants deficient in genes encoding proteins functioning in photorespiration show AEF activity similar to the wild type. In contrast to Synechocystis sp. PCC 6803, the cyanobacterium Synechococcus elongatus PCC 7942 has no FLV proteins with high homology to FLV2 and FLV4 in Synechocystis sp. PCC 6803. This lack of FLV2/4 may explain why AEF is not induced under CO2-limited photosynthesis in S. elongatus PCC 7942. As the glutathione S-transferase fusion protein overexpressed in Escherichia coli exhibits NADH-dependent oxygen reduction to water, we suggest that FLV2 and FLV4 mediate oxygen-dependent AEF in Synechocystis sp. PCC 6803 when electron acceptors such as CO2 are not available.
Collapse
Affiliation(s)
- Ginga Shimakawa
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Nada, Kobe 657-8501, Japan (G.S., K.Sh., A.N., R.H., K.Sa., C.M.);Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (H.Y.);Department of Agriculture, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan (A.M.); andCore Research for Evolutional Science and Technology, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan (A.M., C.M.)
| | - Keiichiro Shaku
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Nada, Kobe 657-8501, Japan (G.S., K.Sh., A.N., R.H., K.Sa., C.M.);Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (H.Y.);Department of Agriculture, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan (A.M.); andCore Research for Evolutional Science and Technology, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan (A.M., C.M.)
| | - Akiko Nishi
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Nada, Kobe 657-8501, Japan (G.S., K.Sh., A.N., R.H., K.Sa., C.M.);Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (H.Y.);Department of Agriculture, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan (A.M.); andCore Research for Evolutional Science and Technology, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan (A.M., C.M.)
| | - Ryosuke Hayashi
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Nada, Kobe 657-8501, Japan (G.S., K.Sh., A.N., R.H., K.Sa., C.M.);Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (H.Y.);Department of Agriculture, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan (A.M.); andCore Research for Evolutional Science and Technology, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan (A.M., C.M.)
| | - Hiroshi Yamamoto
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Nada, Kobe 657-8501, Japan (G.S., K.Sh., A.N., R.H., K.Sa., C.M.);Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (H.Y.);Department of Agriculture, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan (A.M.); andCore Research for Evolutional Science and Technology, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan (A.M., C.M.)
| | - Katsuhiko Sakamoto
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Nada, Kobe 657-8501, Japan (G.S., K.Sh., A.N., R.H., K.Sa., C.M.);Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (H.Y.);Department of Agriculture, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan (A.M.); andCore Research for Evolutional Science and Technology, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan (A.M., C.M.)
| | - Amane Makino
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Nada, Kobe 657-8501, Japan (G.S., K.Sh., A.N., R.H., K.Sa., C.M.);Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (H.Y.);Department of Agriculture, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan (A.M.); andCore Research for Evolutional Science and Technology, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan (A.M., C.M.)
| | - Chikahiro Miyake
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Nada, Kobe 657-8501, Japan (G.S., K.Sh., A.N., R.H., K.Sa., C.M.);Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (H.Y.);Department of Agriculture, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan (A.M.); andCore Research for Evolutional Science and Technology, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan (A.M., C.M.)
| |
Collapse
|