1
|
Hämäläinen L, Bart G, Takabe P, Rauhala L, Deen A, Pasonen-Seppänen S, Kärkkäinen E, Kärnä R, Kumlin T, Tammi MI, Tammi RH. The calcium-activated chloride channel-associated protein rCLCA2 is expressed throughout rat epidermis, facilitates apoptosis and is downmodulated by UVB. Histochem Cell Biol 2021; 155:605-615. [PMID: 33486586 PMCID: PMC8134295 DOI: 10.1007/s00418-021-01962-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2021] [Indexed: 12/19/2022]
Abstract
The rodent chloride channel regulatory proteins mCLCA2 and its porcine and human homologues pCLCA2 and hCLCA2 are expressed in keratinocytes but their localization and significance in the epidermis have remained elusive. hCLCA2 regulates cancer cell migration, invasion and apoptosis, and its loss predicts poor prognosis in many tumors. Here, we studied the influences of epidermal maturation and UV-irradiation (UVR) on rCLCA2 (previous rCLCA5) expression in cultured rat epidermal keratinocytes (REK) and correlated the results with mCLCA2 expression in mouse skin in vivo. Furthermore, we explored the influence of rCLCA2 silencing on UVR-induced apoptosis. rClca2 mRNA was strongly expressed in REK cells, and its level in organotypic cultures remained unchanged during the epidermal maturation process from a single cell layer to fully differentiated, stratified cultures. Immunostaining confirmed its uniform localization throughout the epidermal layers in REK cultures and in rat skin. A single dose of UVR modestly downregulated rClca2 expression in organotypic REK cultures. The immunohistochemical staining showed that CLCA2 localized in basal and spinous layers also in mouse skin, and repeated UVR induced its partial loss. Interestingly, silencing of rCLCA2 reduced the number of apoptotic cells induced by UVR, suggesting that by facilitating apoptosis, CLCA2 may protect keratinocytes against the risk of malignancy posed by UVB-induced corrupt DNA.
Collapse
Affiliation(s)
- L Hämäläinen
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O. Box 1627, N70211, Kuopio, Finland.
| | - G Bart
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O. Box 1627, N70211, Kuopio, Finland
| | - P Takabe
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O. Box 1627, N70211, Kuopio, Finland
| | - L Rauhala
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O. Box 1627, N70211, Kuopio, Finland
| | - A Deen
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O. Box 1627, N70211, Kuopio, Finland
| | - S Pasonen-Seppänen
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O. Box 1627, N70211, Kuopio, Finland
| | - E Kärkkäinen
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O. Box 1627, N70211, Kuopio, Finland
| | - R Kärnä
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O. Box 1627, N70211, Kuopio, Finland
| | - T Kumlin
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, N70211, Kuopio, Finland
| | - M I Tammi
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O. Box 1627, N70211, Kuopio, Finland
| | - R H Tammi
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O. Box 1627, N70211, Kuopio, Finland
| |
Collapse
|
2
|
Yamazaki J. [Functional Expression of a Ca(2+)-activated Cl(-) Channel Modulator Involved in Ion Transport and Epithelial Cell Differentiation]. YAKUGAKU ZASSHI 2016; 136:485-90. [PMID: 26935091 DOI: 10.1248/yakushi.15-00246-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cl(-)-permeable channels and transporters expressed on the cell membranes of various mammalian cell types play pivotal roles in the transport of electrolytes and water, pH regulation, cell volume and membrane excitability, and are therefore expected to be useful molecular targets for drug discovery. Both TMEM16A (a possible candidate for Ca(2+)-regulated Cl(-) channels recently identified) and cystic fibrosis transmembrane conductance regulator (CFTR) (or cAMP-regulated Cl(-) channels) have been known to be involved in Cl(-) secretion and reabsorption in the rat salivary gland. Crosstalk between two types of regulatory pathways through these two types of channels has also been described. Previously, we demonstrated that CLCA, a Ca(2+)-activated Cl(-) channel modulator, was involved in Cl(-) absorption in rat salivary ducts. In addition to Ca(2+), basal NF-κB activity in a mouse keratinocyte line was shown to be involved in the transcriptional regulation of CLCA. Conversely, a truncated isoform of CLCA was found in undifferentiated epithelial cells present in the rat epidermal basal layers. Under regulation by Ca(2+) and PKC, the surface expression of β1-integrin and cell adhesion were decreased in the CLCA-overexpressing cells. Knockdown of this isoform elevated the expression of β1-integrin in rat epidermis in vivo. These results indicate that the specific differentiation-dependent localization of CLCA, and transcriptional regulation through Ca(2+), are likely to affect ion permeability and the adhesive potential of epithelial cells. In summary, these types of Cl(-) channels and their modulators may function in a coordinated manner in regulating the functions of epithelial cells under different physiological conditions.
Collapse
Affiliation(s)
- Jun Yamazaki
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College
| |
Collapse
|
3
|
Lee RM, Han KH, Han JS. rbCLCA1 is a putative metalloprotease family member: localization and catalytic domain identification. Amino Acids 2015; 48:707-720. [PMID: 26510883 DOI: 10.1007/s00726-015-2119-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 10/12/2015] [Indexed: 11/29/2022]
Abstract
Here, we identify the rat brain (rb) CLCA1 metalloprotease motif and its role in rbCLCA1 processing. GFP tagging or c-myc tagging adjacent to the rbCLCA1 signal sequence was used to detect rbCLCA1 expression and localization patterns if they matched those of other CLCA family members. Immunoblot analysis revealed that massive deletion of the metalloprotease motif affects the protein cleavage process by restricting two cleavage products to only one product. rbCLCA1 as well as the mutant proteins H155A, E156Q, H159A, D166A, E167A, E170A, and D171A overexpressed in HEK293T cells showed plasma membrane localization; and intracellular localizations of H159A and E167A were observed in permeabilized and non-permeabilized conditions. C-terminally GFP-tagged rbCLCA1 showed either ER localization or overall signal within the cells rather than on the cell surface. Cell surface biotinylation analysis was used to show that rbCLCA1, H155A, E156Q, D166A, E170A, and D171A reach the cell surface while little H159A and E167A reach the cell surface. Taken together, our findings indicate that the amino acids H159 and E167 in the rbCLCA1 metalloprotease motif are important in rbCLCA1 processing for localization to the cell surface. Our data demonstrate that rbCLCA1 localization is dependent on the H159 and E167, suggesting either the metalloprotease motif including H159 and E167 may be the key site for rbCLCA1 cellular processing or that a novel rbCLCA1 regulation mechanism exists with a metalloprotease activity.
Collapse
Affiliation(s)
- Ra Mi Lee
- Department of Biochemistry and Molecular Cell Biology, College of Veterinary Medicine, Konkuk University, 120 Neungdongro, Gwangjingu, Seoul, 05029, Republic of Korea.,The Institute for the 3Rs and Veterinary Science Research Institute, College of Veterinary Medicine, Konkuk University, 120 Neungdongro, Gwangjingu, Seoul, 05029, Republic of Korea
| | - Kyu Ho Han
- Department of Food Science, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Jin Soo Han
- The Institute for the 3Rs and Veterinary Science Research Institute, College of Veterinary Medicine, Konkuk University, 120 Neungdongro, Gwangjingu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
4
|
NF-κB-regulated transcriptional control of CLCA in a differentiated mouse keratinocyte line. J Dermatol Sci 2015; 78:189-96. [PMID: 25828855 DOI: 10.1016/j.jdermsci.2015.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/13/2015] [Accepted: 03/05/2015] [Indexed: 12/28/2022]
Abstract
BACKGROUND CLCA was postulated to be a calcium-activated chloride channel accessory protein. Recent reports indicate that CLCA isoforms are likely to be expressed in different layers of the stratified epithelium of the skin. OBJECTIVE The present study investigated the transcriptional mechanism by which murine CLCA2 (mCLCA2) is expressed in the transformed keratinocyte line Pam212 that can differentiate. METHODS A luciferase reporter assay, chromatin immunoprecipitation (ChIP) assay, reverse transcription-PCR, and immunocytochemistry were performed using Pam212 cells. RESULTS Promoter activity of mCLCA2 was inhibited profoundly by site-directed mutagenesis of a putative nuclear factor-κB (NF-κB) binding site and by treatment with siRNA against p65. ChIP and transcription factor assays showed the specific association of endogenously activated p65 protein with the NF-κB binding domain. As confirmed by the nuclear translocation of p65, tumor necrosis factor α and caffeic acid phenethyl ester (CAPE) increased and decreased mCLCA2 promoter activity, respectively, but exhibited modest effects on endogenous mCLCA2 expression in cells in culture medium containing 0.05 mM Ca(2+). When the Ca(2+) concentration was raised to 1.0mM, the mRNA and protein levels of mCLCA2 increased as well as those of the differentiation markers keratin 1 (K1) and K10. CAPE profoundly suppressed only the Ca(2+)-triggered expression of mCLCA2, not K1 or K10. Immunohistochemistry of native skin and organotypic 3D cultures confirmed the distribution of the CLCA2 homolog in differentiated cells. CONCLUSION The present study revealed for the first time that basal NF-κB activity is involved in the Ca(2+)-dependent regulation of mCLCA2 expression in a mouse keratinocyte line.
Collapse
|
5
|
Bart G, Hämäläinen L, Rauhala L, Salonen P, Kokkonen M, Dunlop T, Pehkonen P, Kumlin T, Tammi M, Pasonen-Seppänen S, Tammi R. rClca2is associated with epidermal differentiation and is strongly downregulated by ultraviolet radiation. Br J Dermatol 2014; 171:376-87. [DOI: 10.1111/bjd.13038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2014] [Indexed: 12/18/2022]
Affiliation(s)
- G. Bart
- Institute of Biomedicine; University of Eastern Finland; P.O. Box 1627 FI-70211 Kuopio Finland
| | - L. Hämäläinen
- Institute of Biomedicine; University of Eastern Finland; P.O. Box 1627 FI-70211 Kuopio Finland
| | - L. Rauhala
- Institute of Biomedicine; University of Eastern Finland; P.O. Box 1627 FI-70211 Kuopio Finland
| | - P. Salonen
- Institute of Biomedicine; University of Eastern Finland; P.O. Box 1627 FI-70211 Kuopio Finland
| | - M. Kokkonen
- Institute of Biomedicine; University of Eastern Finland; P.O. Box 1627 FI-70211 Kuopio Finland
| | - T.W. Dunlop
- Institute of Biomedicine; University of Eastern Finland; P.O. Box 1627 FI-70211 Kuopio Finland
| | - P. Pehkonen
- Institute of Biomedicine; University of Eastern Finland; P.O. Box 1627 FI-70211 Kuopio Finland
| | - T. Kumlin
- Department of Environmental Science; University of Eastern Finland; P.O. Box 1627 FI-70211 Kuopio Finland
| | - M.I. Tammi
- Institute of Biomedicine; University of Eastern Finland; P.O. Box 1627 FI-70211 Kuopio Finland
| | - S. Pasonen-Seppänen
- Institute of Biomedicine; University of Eastern Finland; P.O. Box 1627 FI-70211 Kuopio Finland
| | - R.H. Tammi
- Institute of Biomedicine; University of Eastern Finland; P.O. Box 1627 FI-70211 Kuopio Finland
| |
Collapse
|
6
|
Hata S, Okamura K, Hatta M, Ishikawa H, Yamazaki J. Proteolytic and non-proteolytic activation of keratinocyte-derived latent TGF-β1 induces fibroblast differentiation in a wound-healing model using rat skin. J Pharmacol Sci 2014; 124:230-43. [PMID: 24492413 DOI: 10.1254/jphs.13209fp] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Transforming growth factor-β1 (TGF-β1) reportedly causes the differentiation of fibroblasts to myofibroblasts during wound healing. We investigated the mechanism underlying the activation of latent TGF-β1 released by keratinocytes in efforts to identify promising pharmacological approaches for the prevention of hypertrophic scar formation. A three-dimensional collagen gel matrix culture was prepared using rat keratinocytes and dermal fibroblasts. Stratified keratinocytes promoted the TGF receptor-dependent increase in α-smooth muscle actin (α-SMA) immunostaining and mRNA levels in fibroblasts. Latent TGF-β1 was found to be localized suprabasally and secreted. α-SMA expression was inhibited by an anti-αv-integrin antibody and a matrix metalloproteinase (MMP) inhibitor, GM6001. In a two-dimensional fibroblast culture, α-SMA expression depended on the production of endogenous TGF-β1 and required αv-integrin or MMP for the response to recombinant latent TGF-β1. In keratinocyte-conditioned medium, MMP-dependent latent TGF-β1 secretion was detected. Applying this medium to the fibroblast culture enhanced α-SMA production. This effect was decreased by GM6001, the anti-αv-integrin antibody, or the preabsorption of latent TGF-β1. These results indicate that keratinocytes secrete latent TGF-β1, which is liberated to fibroblasts over distance and is activated to produce α-SMA with the aid of a positive-feedback loop. MMP inhibition was effective for targeting both keratinocytes and fibroblasts in this model.
Collapse
Affiliation(s)
- Shozaburo Hata
- Department of Oral Growth & Development, Fukuoka Dental College, Japan
| | | | | | | | | |
Collapse
|