1
|
Swain BC, Sarkis P, Ung V, Rousseau S, Fernandez L, Meltonyan A, Aho VE, Mercadante D, Mackereth CD, Aznauryan M. Disordered regions of human eIF4B orchestrate a dynamic self-association landscape. Nat Commun 2024; 15:8766. [PMID: 39384813 PMCID: PMC11464913 DOI: 10.1038/s41467-024-53136-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024] Open
Abstract
Eukaryotic translation initiation factor eIF4B is required for efficient cap-dependent translation, it is overexpressed in cancer cells, and may influence stress granule formation. Due to the high degree of intrinsic disorder, eIF4B is rarely observed in cryo-EM structures of translation complexes and only ever by its single structured RNA recognition motif domain, leaving the molecular details of its large intrinsically disordered region (IDR) unknown. By integrating experiments and simulations we demonstrate that eIF4B IDR orchestrates and fine-tunes an intricate transition from monomers to a condensed phase, in which large-size dynamic oligomers form before mesoscopic phase separation. Single-molecule spectroscopy combined with molecular simulations enabled us to characterize the conformational ensembles and underlying intra- and intermolecular dynamics across the oligomerization transition. The observed sensitivity to ionic strength and molecular crowding in the self-association landscape suggests potential regulation of eIF4B nanoscopic and mesoscopic behaviors such as driven by protein modifications, binding partners or changes to the cellular environment.
Collapse
Affiliation(s)
- Bikash Chandra Swain
- University of Bordeaux, Inserm, CNRS, ARNA Laboratory, U1212, UMR 5320, Institut Européen de Chimie et Biologie, F-33600, Pessac, France
| | - Pascale Sarkis
- University of Bordeaux, Inserm, CNRS, ARNA Laboratory, U1212, UMR 5320, Institut Européen de Chimie et Biologie, F-33600, Pessac, France
| | - Vanessa Ung
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Sabrina Rousseau
- University of Bordeaux, Inserm, CNRS, ARNA Laboratory, U1212, UMR 5320, Institut Européen de Chimie et Biologie, F-33600, Pessac, France
| | - Laurent Fernandez
- University of Bordeaux, Inserm, CNRS, ARNA Laboratory, U1212, UMR 5320, Institut Européen de Chimie et Biologie, F-33600, Pessac, France
| | - Ani Meltonyan
- University of Bordeaux, Inserm, CNRS, ARNA Laboratory, U1212, UMR 5320, Institut Européen de Chimie et Biologie, F-33600, Pessac, France
| | - V Esperance Aho
- University of Bordeaux, Inserm, CNRS, ARNA Laboratory, U1212, UMR 5320, Institut Européen de Chimie et Biologie, F-33600, Pessac, France
- Institut de Biologie Structurale (IBS), UMR 5075, F-38044, Grenoble, France
| | - Davide Mercadante
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Cameron D Mackereth
- University of Bordeaux, Inserm, CNRS, ARNA Laboratory, U1212, UMR 5320, F-33000, Bordeaux, France.
| | - Mikayel Aznauryan
- University of Bordeaux, Inserm, CNRS, ARNA Laboratory, U1212, UMR 5320, Institut Européen de Chimie et Biologie, F-33600, Pessac, France.
| |
Collapse
|
2
|
Desroches Altamirano C, Kang MK, Jordan MA, Borianne T, Dilmen I, Gnädig M, von Appen A, Honigmann A, Franzmann TM, Alberti S. eIF4F is a thermo-sensing regulatory node in the translational heat shock response. Mol Cell 2024; 84:1727-1741.e12. [PMID: 38547866 DOI: 10.1016/j.molcel.2024.02.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/18/2023] [Accepted: 02/29/2024] [Indexed: 05/05/2024]
Abstract
Heat-shocked cells prioritize the translation of heat shock (HS) mRNAs, but the underlying mechanism is unclear. We report that HS in budding yeast induces the disassembly of the eIF4F complex, where eIF4G and eIF4E assemble into translationally arrested mRNA ribonucleoprotein particles (mRNPs) and HS granules (HSGs), whereas eIF4A promotes HS translation. Using in vitro reconstitution biochemistry, we show that a conformational rearrangement of the thermo-sensing eIF4A-binding domain of eIF4G dissociates eIF4A and promotes the assembly with mRNA into HS-mRNPs, which recruit additional translation factors, including Pab1p and eIF4E, to form multi-component condensates. Using extracts and cellular experiments, we demonstrate that HS-mRNPs and condensates repress the translation of associated mRNA and deplete translation factors that are required for housekeeping translation, whereas HS mRNAs can be efficiently translated by eIF4A. We conclude that the eIF4F complex is a thermo-sensing node that regulates translation during HS.
Collapse
Affiliation(s)
- Christine Desroches Altamirano
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Moo-Koo Kang
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Mareike A Jordan
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Tom Borianne
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Irem Dilmen
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Maren Gnädig
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Alexander von Appen
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Alf Honigmann
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Titus M Franzmann
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Simon Alberti
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany.
| |
Collapse
|
3
|
Krause L, Willing F, Andreou AZ, Klostermeier D. The domains of yeast eIF4G, eIF4E and the cap fine-tune eIF4A activities through an intricate network of stimulatory and inhibitory effects. Nucleic Acids Res 2022; 50:6497-6510. [PMID: 35689631 PMCID: PMC9226541 DOI: 10.1093/nar/gkac437] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/19/2022] [Accepted: 05/23/2022] [Indexed: 12/13/2022] Open
Abstract
Translation initiation in eukaryotes starts with the recognition of the mRNA 5'-cap by eIF4F, a hetero-trimeric complex of eIF4E, the cap-binding protein, eIF4A, a DEAD-box helicase, and eIF4G, a scaffold protein. eIF4G comprises eIF4E- and eIF4A-binding domains (4E-BD, 4A-BD) and three RNA-binding regions (RNA1-RNA3), and interacts with eIF4A, eIF4E, and with the mRNA. Within the eIF4F complex, the helicase activity of eIF4A is increased. We showed previously that RNA3 of eIF4G is important for the stimulation of the eIF4A conformational cycle and its ATPase and helicase activities. Here, we dissect the interplay between the eIF4G domains and the role of the eIF4E/cap interaction in eIF4A activation. We show that RNA2 leads to an increase in the fraction of eIF4A in the closed state, an increased RNA affinity, and faster RNA unwinding. This stimulatory effect is partially reduced when the 4E-BD is present. eIF4E binding to the 4E-BD then further inhibits the helicase activity and closing of eIF4A, but does not affect the RNA-stimulated ATPase activity of eIF4A. The 5'-cap renders the functional interaction of mRNA with eIF4A less efficient. Overall, the activity of eIF4A at the 5'-cap is thus fine-tuned by a delicately balanced network of stimulatory and inhibitory interactions.
Collapse
Affiliation(s)
- Linda Krause
- Institute for Physical Chemistry, University of Muenster, Corrensstrasse 30, 48149 Muenster, Germany
| | - Florian Willing
- Institute for Physical Chemistry, University of Muenster, Corrensstrasse 30, 48149 Muenster, Germany
| | - Alexandra Zoi Andreou
- Institute for Physical Chemistry, University of Muenster, Corrensstrasse 30, 48149 Muenster, Germany
| | - Dagmar Klostermeier
- Institute for Physical Chemistry, University of Muenster, Corrensstrasse 30, 48149 Muenster, Germany
| |
Collapse
|
4
|
Liu X, Moshiri H, He Q, Sahoo A, Walker SE. Deletion of the N-Terminal Domain of Yeast Eukaryotic Initiation Factor 4B Reprograms Translation and Reduces Growth in Urea. Front Mol Biosci 2022; 8:787781. [PMID: 35047555 PMCID: PMC8762332 DOI: 10.3389/fmolb.2021.787781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/03/2021] [Indexed: 11/24/2022] Open
Abstract
The yeast eukaryotic initiation factor 4B binds the 40S subunit in translation preinitiation complexes (PICs), promoting mRNA recruitment. Recent evidence indicates yeast mRNAs have variable dependence on eIF4B under optimal growth conditions. Given the ability of eIF4B to promote translation as a function of nutrient conditions in mammalian cells, we wondered if eIF4B activities in translation could alter phenotypes in yeast through differential mRNA selection for translation. Here we compared the effects of disrupting yeast eIF4B RNA- and 40S-binding motifs under ∼1400 growth conditions. The RNA-Recognition Motif (RRM) was dispensable for stress responses, but the 40S-binding N-terminal Domain (NTD) promoted growth in response to stressors requiring robust cellular integrity. In particular, the NTD conferred a strong growth advantage in the presence of urea, which may be important for pathogenesis of related fungal species. Ribosome profiling indicated that similar to complete eIF4B deletion, deletion of the NTD dramatically reduced translation, particularly of those mRNAs with long and highly structured 5-prime untranslated regions. This behavior was observed both with and without urea exposure, but the specific mRNA pool associated with ribosomes in response to urea differed. Deletion of the NTD led to relative increases in ribosome association of shorter transcripts with higher dependence on eIF4G, as was noted previously for eIF4B deletion. Gene ontology analysis indicated that proteins encoded by eIF4B NTD-dependent transcripts were associated with the cellular membrane system and the cell wall, while NTD-independent transcripts encoded proteins associated with cytoplasmic proteins and protein synthesis. This analysis highlighted the difference in structure content of mRNAs encoding membrane versus cytoplasmic housekeeping proteins and the variable reliance of specific gene ontology classes on various initiation factors promoting otherwise similar functions. Together our analyses suggest that deletion of the eIF4B NTD prevents cellular stress responses by affecting the capacity to translate a diverse mRNA pool.
Collapse
Affiliation(s)
- Xiaozhuo Liu
- Department of Biological Sciences, SUNY at Buffalo, Buffalo, NY, United States
| | - Houtan Moshiri
- Department of Biological Sciences, SUNY at Buffalo, Buffalo, NY, United States
| | - Qian He
- Department of Biological Sciences, SUNY at Buffalo, Buffalo, NY, United States
| | - Ansuman Sahoo
- Department of Biological Sciences, SUNY at Buffalo, Buffalo, NY, United States
| | - Sarah E Walker
- Department of Biological Sciences, SUNY at Buffalo, Buffalo, NY, United States
| |
Collapse
|
5
|
Gulay S, Gupta N, Lorsch JR, Hinnebusch AG. Distinct interactions of eIF4A and eIF4E with RNA helicase Ded1 stimulate translation in vivo. eLife 2020; 9:58243. [PMID: 32469309 PMCID: PMC7343385 DOI: 10.7554/elife.58243] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
Yeast DEAD-box helicase Ded1 stimulates translation initiation, particularly of mRNAs with structured 5'UTRs. Interactions of the Ded1 N-terminal domain (NTD) with eIF4A, and Ded1-CTD with eIF4G, subunits of eIF4F, enhance Ded1 unwinding activity and stimulation of preinitiation complex (PIC) assembly in vitro. However, the importance of these interactions, and of Ded1-eIF4E association, in vivo were poorly understood. We identified separate amino acid clusters in the Ded1-NTD required for binding to eIF4A or eIF4E in vitro. Disrupting each cluster selectively impairs native Ded1 association with eIF4A or eIF4E, and reduces cell growth, polysome assembly, and translation of reporter mRNAs with structured 5'UTRs. It also impairs Ded1 stimulation of PIC assembly on a structured mRNA in vitro. Ablating Ded1 interactions with eIF4A/eIF4E unveiled a requirement for the Ded1-CTD for robust initiation. Thus, Ded1 function in vivo is stimulated by independent interactions of its NTD with eIF4E and eIF4A, and its CTD with eIF4G.
Collapse
Affiliation(s)
- Suna Gulay
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Neha Gupta
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Jon R Lorsch
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Alan G Hinnebusch
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| |
Collapse
|
6
|
Mishra RK, Datey A, Hussain T. mRNA Recruiting eIF4 Factors Involved in Protein Synthesis and Its Regulation. Biochemistry 2019; 59:34-46. [DOI: 10.1021/acs.biochem.9b00788] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Rishi Kumar Mishra
- Department of Molecular Reproduction, Development and Genetics, Division of Biological Sciences, Indian Institute of Science, Bangalore 560012, India
| | - Ayushi Datey
- Department of Molecular Reproduction, Development and Genetics, Division of Biological Sciences, Indian Institute of Science, Bangalore 560012, India
| | - Tanweer Hussain
- Department of Molecular Reproduction, Development and Genetics, Division of Biological Sciences, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
7
|
Migration of Small Ribosomal Subunits on the 5' Untranslated Regions of Capped Messenger RNA. Int J Mol Sci 2019; 20:ijms20184464. [PMID: 31510048 PMCID: PMC6769788 DOI: 10.3390/ijms20184464] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/01/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022] Open
Abstract
Several control mechanisms of eukaryotic gene expression target the initiation step of mRNA translation. The canonical translation initiation pathway begins with cap-dependent attachment of the small ribosomal subunit (SSU) to the messenger ribonucleic acid (mRNA) followed by an energy-dependent, sequential ‘scanning’ of the 5′ untranslated regions (UTRs). Scanning through the 5′UTR requires the adenosine triphosphate (ATP)-dependent RNA helicase eukaryotic initiation factor (eIF) 4A and its efficiency contributes to the specific rate of protein synthesis. Thus, understanding the molecular details of the scanning mechanism remains a priority task for the field. Here, we studied the effects of inhibiting ATP-dependent translation and eIF4A in cell-free translation and reconstituted initiation reactions programmed with capped mRNAs featuring different 5′UTRs. An aptamer that blocks eIF4A in an inactive state away from mRNA inhibited translation of capped mRNA with the moderately structured β-globin sequences in the 5′UTR but not that of an mRNA with a poly(A) sequence as the 5′UTR. By contrast, the nonhydrolysable ATP analogue β,γ-imidoadenosine 5′-triphosphate (AMP-PNP) inhibited translation irrespective of the 5′UTR sequence, suggesting that complexes that contain ATP-binding proteins in their ATP-bound form can obstruct and/or actively block progression of ribosome recruitment and/or scanning on mRNA. Further, using primer extension inhibition to locate SSUs on mRNA (‘toeprinting’), we identify an SSU complex which inhibits primer extension approximately eight nucleotides upstream from the usual toeprinting stop generated by SSUs positioned over the start codon. This ‘−8 nt toeprint’ was seen with mRNA 5′UTRs of different length, sequence and structure potential. Importantly, the ‘−8 nt toeprint’ was strongly stimulated by the presence of the cap on the mRNA, as well as the presence of eIFs 4F, 4A/4B and ATP, implying active scanning. We assembled cell-free translation reactions with capped mRNA featuring an extended 5′UTR and used cycloheximide to arrest elongating ribosomes at the start codon. Impeding scanning through the 5′UTR in this system with elevated magnesium and AMP-PNP (similar to the toeprinting conditions), we visualised assemblies consisting of several SSUs together with one full ribosome by electron microscopy, suggesting direct detection of scanning intermediates. Collectively, our data provide additional biochemical, molecular and physical evidence to underpin the scanning model of translation initiation in eukaryotes.
Collapse
|
8
|
Yourik P, Aitken CE, Zhou F, Gupta N, Hinnebusch AG, Lorsch JR. Yeast eIF4A enhances recruitment of mRNAs regardless of their structural complexity. eLife 2017; 6:31476. [PMID: 29192585 PMCID: PMC5726853 DOI: 10.7554/elife.31476] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/23/2017] [Indexed: 12/11/2022] Open
Abstract
eIF4A is a DEAD-box RNA-dependent ATPase thought to unwind RNA secondary structure in the 5'-untranslated regions (UTRs) of mRNAs to promote their recruitment to the eukaryotic translation pre-initiation complex (PIC). We show that eIF4A's ATPase activity is markedly stimulated in the presence of the PIC, independently of eIF4E•eIF4G, but dependent on subunits i and g of the heteromeric eIF3 complex. Surprisingly, eIF4A accelerated the rate of recruitment of all mRNAs tested, regardless of their degree of structural complexity. Structures in the 5'-UTR and 3' of the start codon synergistically inhibit mRNA recruitment in a manner relieved by eIF4A, indicating that the factor does not act solely to melt hairpins in 5'-UTRs. Our findings that eIF4A functionally interacts with the PIC and plays important roles beyond unwinding 5'-UTR structure is consistent with a recent proposal that eIF4A modulates the conformation of the 40S ribosomal subunit to promote mRNA recruitment.
Collapse
Affiliation(s)
- Paul Yourik
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Colin Echeverría Aitken
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Fujun Zhou
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Neha Gupta
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Jon R Lorsch
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| |
Collapse
|
9
|
Mechanism and Regulation of Protein Synthesis in Saccharomyces cerevisiae. Genetics 2017; 203:65-107. [PMID: 27183566 DOI: 10.1534/genetics.115.186221] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/24/2016] [Indexed: 12/18/2022] Open
Abstract
In this review, we provide an overview of protein synthesis in the yeast Saccharomyces cerevisiae The mechanism of protein synthesis is well conserved between yeast and other eukaryotes, and molecular genetic studies in budding yeast have provided critical insights into the fundamental process of translation as well as its regulation. The review focuses on the initiation and elongation phases of protein synthesis with descriptions of the roles of translation initiation and elongation factors that assist the ribosome in binding the messenger RNA (mRNA), selecting the start codon, and synthesizing the polypeptide. We also examine mechanisms of translational control highlighting the mRNA cap-binding proteins and the regulation of GCN4 and CPA1 mRNAs.
Collapse
|
10
|
Meng X, Firczuk H, Pietroni P, Westbrook R, Dacheux E, Mendes P, McCarthy JEG. Minimum-noise production of translation factor eIF4G maps to a mechanistically determined optimal rate control window for protein synthesis. Nucleic Acids Res 2016; 45:1015-1025. [PMID: 27928055 PMCID: PMC5314777 DOI: 10.1093/nar/gkw1194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/13/2016] [Accepted: 11/17/2016] [Indexed: 11/14/2022] Open
Abstract
Gene expression noise influences organism evolution and fitness. The mechanisms determining the relationship between stochasticity and the functional role of translation machinery components are critical to viability. eIF4G is an essential translation factor that exerts strong control over protein synthesis. We observe an asymmetric, approximately bell-shaped, relationship between the average intracellular abundance of eIF4G and rates of cell population growth and global mRNA translation, with peak rates occurring at normal physiological abundance. This relationship fits a computational model in which eIF4G is at the core of a multi-component–complex assembly pathway. This model also correctly predicts a plateau-like response of translation to super-physiological increases in abundance of the other cap-complex factors, eIF4E and eIF4A. Engineered changes in eIF4G abundance amplify noise, demonstrating that minimum stochasticity coincides with physiological abundance of this factor. Noise is not increased when eIF4E is overproduced. Plasmid-mediated synthesis of eIF4G imposes increased global gene expression stochasticity and reduced viability because the intrinsic noise for this factor influences total cellular gene noise. The naturally evolved eIF4G gene expression noise minimum maps within the optimal activity zone dictated by eIF4G's mechanistic role. Rate control and noise are therefore interdependent and have co-evolved to share an optimal physiological abundance point.
Collapse
Affiliation(s)
- Xiang Meng
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Gibbet Hill, Coventry CV4 7AL, UK
| | - Helena Firczuk
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Gibbet Hill, Coventry CV4 7AL, UK
| | - Paola Pietroni
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Gibbet Hill, Coventry CV4 7AL, UK
| | - Richard Westbrook
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Gibbet Hill, Coventry CV4 7AL, UK
| | - Estelle Dacheux
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Gibbet Hill, Coventry CV4 7AL, UK
| | - Pedro Mendes
- Center for Quantitative Medicine, UConn Health, 263 Farmington Avenue, CT 06030-6033, USA
| | - John E G McCarthy
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Gibbet Hill, Coventry CV4 7AL, UK
| |
Collapse
|
11
|
Andreou AZ, Harms U, Klostermeier D. eIF4B stimulates eIF4A ATPase and unwinding activities by direct interaction through its 7-repeats region. RNA Biol 2016; 14:113-123. [PMID: 27858515 DOI: 10.1080/15476286.2016.1259782] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Eukaryotic translation initiation starts with binding of the eIF4F complex to the 5'-m7G cap of the mRNA. Recruitment of the 43S pre-initiation complex (PIC), formed by the 40S ribosomal subunit and other translation initiation factors, leads to formation of the 48S PIC that then scans the 5'-untranslated region (5'-UTR) toward the start codon. The eIF4F complex consists of eIF4E, the cap binding protein, eIF4A, a DEAD-box RNA helicase that is believed to unwind secondary structures in the 5'-UTR during scanning, and eIF4G, a scaffold protein that binds to both eIF4E and eIF4A. The ATPase and helicase activities of eIF4A are jointly stimulated by eIF4G and the translation initiation factor eIF4B. Yeast eIF4B mediates recruitment of the 43S PIC to the cap-bound eIF4F complex by interacting with the 40S subunit and possibly with eIF4A. However, a direct interaction between yeast eIF4A and eIF4B has not been demonstrated yet. Here we show that eIF4B binds to eIF4A in the presence of RNA and ADPNP, independent of the presence of eIF4G. A stretch of seven moderately conserved repeats, the r1-7 region, is responsible for complex formation, for modulation of the conformational energy landscape of eIF4A by eIF4B, and for stimulating the RNA-dependent ATPase- and ATP-dependent RNA unwinding activities of eIF4A. The isolated r1-7 region only slightly stimulates eIF4A conformational changes and activities, suggesting that communication of the repeats with other regions of eIF4B is required for full stimulation of eIF4A activity, for recruitment of the PIC to the mRNA and for translation initiation.
Collapse
Affiliation(s)
| | - Ulf Harms
- a University of Muenster, Institute for Physical Chemistry , Muenster , Germany
| | - Dagmar Klostermeier
- a University of Muenster, Institute for Physical Chemistry , Muenster , Germany
| |
Collapse
|
12
|
The molecular choreography of protein synthesis: translational control, regulation, and pathways. Q Rev Biophys 2016; 49:e11. [PMID: 27658712 DOI: 10.1017/s0033583516000056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Translation of proteins by the ribosome regulates gene expression, with recent results underscoring the importance of translational control. Misregulation of translation underlies many diseases, including cancer and many genetic diseases. Decades of biochemical and structural studies have delineated many of the mechanistic details in prokaryotic translation, and sketched the outlines of eukaryotic translation. However, translation may not proceed linearly through a single mechanistic pathway, but likely involves multiple pathways and branchpoints. The stochastic nature of biological processes would allow different pathways to occur during translation that are biased by the interaction of the ribosome with other translation factors, with many of the steps kinetically controlled. These multiple pathways and branchpoints are potential regulatory nexus, allowing gene expression to be tuned at the translational level. As research focus shifts toward eukaryotic translation, certain themes will be echoed from studies on prokaryotic translation. This review provides a general overview of the dynamic data related to prokaryotic and eukaryotic translation, in particular recent findings with single-molecule methods, complemented by biochemical, kinetic, and structural findings. We will underscore the importance of viewing the process through the viewpoints of regulation, translational control, and heterogeneous pathways.
Collapse
|
13
|
Abstract
The original purification of the heterotrimeric eIF4F was published over 30 years ago (Grifo, J. A., Tahara, S. M., Morgan, M. A., Shatkin, A. J., and Merrick, W. C. (1983) J. Biol. Chem. 258, 5804-5810). Since that time, numerous studies have been performed with the three proteins specifically required for the translation initiation of natural mRNAs, eIF4A, eIF4B, and eIF4F. These have involved enzymatic and structural studies of the proteins and a number of site-directed mutagenesis studies. The regulation of translation exhibited through the mammalian target of rapamycin (mTOR) pathway is predominately seen as the phosphorylation of 4E-BP, an inhibitor of protein synthesis that functions by binding to the cap binding subunit of eIF4F (eIF4E). A hypothesis that requires the disassembly of eIF4F during translation initiation to yield free subunits (eIF4A, eIF4E, and eIF4G) is presented.
Collapse
Affiliation(s)
- William C Merrick
- From the Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4935
| |
Collapse
|
14
|
Browning KS, Bailey-Serres J. Mechanism of cytoplasmic mRNA translation. THE ARABIDOPSIS BOOK 2015; 13:e0176. [PMID: 26019692 PMCID: PMC4441251 DOI: 10.1199/tab.0176] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Protein synthesis is a fundamental process in gene expression that depends upon the abundance and accessibility of the mRNA transcript as well as the activity of many protein and RNA-protein complexes. Here we focus on the intricate mechanics of mRNA translation in the cytoplasm of higher plants. This chapter includes an inventory of the plant translational apparatus and a detailed review of the translational processes of initiation, elongation, and termination. The majority of mechanistic studies of cytoplasmic translation have been carried out in yeast and mammalian systems. The factors and mechanisms of translation are for the most part conserved across eukaryotes; however, some distinctions are known to exist in plants. A comprehensive understanding of the complex translational apparatus and its regulation in plants is warranted, as the modulation of protein production is critical to development, environmental plasticity and biomass yield in diverse ecosystems and agricultural settings.
Collapse
Affiliation(s)
- Karen S. Browning
- Department of Molecular Biosciences and Institute for Cell and Molecular Biology, University of Texas at Austin, Austin TX 78712-0165
- Both authors contributed equally to this work
| | - Julia Bailey-Serres
- Department of Botany and Plant Sciences and Center for Plant Cell Biology, University of California, Riverside, CA, 92521 USA
- Both authors contributed equally to this work
| |
Collapse
|
15
|
Fraser CS. Quantitative studies of mRNA recruitment to the eukaryotic ribosome. Biochimie 2015; 114:58-71. [PMID: 25742741 DOI: 10.1016/j.biochi.2015.02.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/20/2015] [Indexed: 12/20/2022]
Abstract
The process of peptide bond synthesis by ribosomes is conserved between species, but the initiation step differs greatly between the three kingdoms of life. This is illustrated by the evolution of roughly an order of magnitude more initiation factor mass found in humans compared with bacteria. Eukaryotic initiation of translation is comprised of a number of sub-steps: (i) recruitment of an mRNA and initiator methionyl-tRNA to the 40S ribosomal subunit; (ii) migration of the 40S subunit along the 5' UTR to locate the initiation codon; and (iii) recruitment of the 60S subunit to form the 80S initiation complex. Although the mechanism and regulation of initiation has been studied for decades, many aspects of the pathway remain unclear. In this review, I will focus discussion on what is known about the mechanism of mRNA selection and its recruitment to the 40S subunit. I will summarize how the 43S preinitiation complex (PIC) is formed and stabilized by interactions between its components. I will discuss what is known about the mechanism of mRNA selection by the eukaryotic initiation factor 4F (eIF4F) complex and how the selected mRNA is recruited to the 43S PIC. The regulation of this process by secondary structure located in the 5' UTR of an mRNA will also be discussed. Finally, I present a possible kinetic model with which to explain the process of mRNA selection and recruitment to the eukaryotic ribosome.
Collapse
Affiliation(s)
- Christopher S Fraser
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA.
| |
Collapse
|
16
|
Gallie DR. The role of the poly(A) binding protein in the assembly of the Cap-binding complex during translation initiation in plants. ACTA ACUST UNITED AC 2014; 2:e959378. [PMID: 26779409 DOI: 10.4161/2169074x.2014.959378] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/19/2014] [Accepted: 06/17/2014] [Indexed: 12/30/2022]
Abstract
Translation initiation in eukaryotes requires the involvement of multiple initiation factors (eIFs) that facilitate the binding of the 40 S ribosomal subunit to an mRNA and assemble the 80 S ribosome at the correct initiation codon. eIF4F, composed of eIF4E, eIF4A, and eIF4G, binds to the 5'-cap structure of an mRNA and prepares an mRNA for recruitment of a 40 S subunit. eIF4B promotes the ATP-dependent RNA helicase activity of eIF4A and eIF4F needed to unwind secondary structure present in a 5'-leader that would otherwise impede scanning of the 40 S subunit during initiation. The poly(A) binding protein (PABP), which binds the poly(A) tail, interacts with eIF4G and eIF4B to promote circularization of an mRNA and stimulates translation by promoting 40 S subunit recruitment. Thus, these factors serve essential functions in the early steps of protein synthesis. Their assembly and function requires multiple interactions that are competitive in nature and determine the nature of interactions between the termini of an mRNA. In this review, the domain organization and partner protein interactions are presented for the factors in plants which share similarities with those in animals and yeast but differ in several important respects. The functional consequences of their interactions on factor activity are also discussed.
Collapse
Affiliation(s)
- Daniel R Gallie
- Department of Biochemistry; University of California ; Riverside, CA USA
| |
Collapse
|
17
|
Harms U, Andreou AZ, Gubaev A, Klostermeier D. eIF4B, eIF4G and RNA regulate eIF4A activity in translation initiation by modulating the eIF4A conformational cycle. Nucleic Acids Res 2014; 42:7911-22. [PMID: 24848014 PMCID: PMC4081068 DOI: 10.1093/nar/gku440] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Eukaryotic translation initiation factor eIF4A is a DEAD-box helicase that resolves secondary structure elements in the 5'-UTR of mRNAs during ribosome scanning. Its RNA-stimulated ATPase and ATP-dependent helicase activities are enhanced by other translation initiation factors, but the underlying mechanisms are unclear. DEAD-box proteins alternate between open and closed conformations during RNA unwinding. The transition to the closed conformation is linked to duplex destabilization. eIF4A is a special DEAD-box protein that can adopt three different conformations, an open state in the absence of ligands, a half-open state stabilized by the translation initiation factor eIF4G and a closed state in the presence of eIF4G and eIF4B. We show here that eIF4A alone does not measurably sample the closed conformation. The translation initiation factors eIF4B and eIF4G accelerate the eIF4A conformational cycle. eIF4G increases the rate of closing more than the opening rate, and eIF4B selectively increases the closing rate. Strikingly, the rate constants and the effect of eIF4B are different for different RNAs, and are related to the presence of single-stranded regions. Modulating the kinetics of the eIF4A conformational cycle is thus central for the multi-layered regulation of its activity, and for its role as a regulatory hub in translation initiation.
Collapse
Affiliation(s)
- Ulf Harms
- University of Muenster, Institute for Physical Chemistry, Corrensstrasse 30, D-48149 Muenster, Germany
| | - Alexandra Zoi Andreou
- University of Muenster, Institute for Physical Chemistry, Corrensstrasse 30, D-48149 Muenster, Germany
| | - Airat Gubaev
- University of Muenster, Institute for Physical Chemistry, Corrensstrasse 30, D-48149 Muenster, Germany
| | - Dagmar Klostermeier
- University of Muenster, Institute for Physical Chemistry, Corrensstrasse 30, D-48149 Muenster, Germany
| |
Collapse
|
18
|
Abstract
In eukaryotes, the translation initiation codon is generally identified by the scanning mechanism, wherein every triplet in the messenger RNA leader is inspected for complementarity to the anticodon of methionyl initiator transfer RNA (Met-tRNAi). Binding of Met-tRNAi to the small (40S) ribosomal subunit, in a ternary complex (TC) with eIF2-GTP, is stimulated by eukaryotic initiation factor 1 (eIF1), eIF1A, eIF3, and eIF5, and the resulting preinitiation complex (PIC) joins the 5' end of mRNA preactivated by eIF4F and poly(A)-binding protein. RNA helicases remove secondary structures that impede ribosome attachment and subsequent scanning. Hydrolysis of eIF2-bound GTP is stimulated by eIF5 in the scanning PIC, but completion of the reaction is impeded at non-AUG triplets. Although eIF1 and eIF1A promote scanning, eIF1 and possibly the C-terminal tail of eIF1A must be displaced from the P decoding site to permit base-pairing between Met-tRNAi and the AUG codon, as well as to allow subsequent phosphate release from eIF2-GDP. A second GTPase, eIF5B, catalyzes the joining of the 60S subunit to produce an 80S initiation complex that is competent for elongation.
Collapse
Affiliation(s)
- Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892;
| |
Collapse
|
19
|
Zhou F, Walker SE, Mitchell SF, Lorsch JR, Hinnebusch AG. Identification and characterization of functionally critical, conserved motifs in the internal repeats and N-terminal domain of yeast translation initiation factor 4B (yeIF4B). J Biol Chem 2013; 289:1704-22. [PMID: 24285537 DOI: 10.1074/jbc.m113.529370] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
eIF4B has been implicated in attachment of the 43 S preinitiation complex (PIC) to mRNAs and scanning to the start codon. We recently determined that the internal seven repeats (of ∼26 amino acids each) of Saccharomyces cerevisiae eIF4B (yeIF4B) compose the region most critically required to enhance mRNA recruitment by 43 S PICs in vitro and stimulate general translation initiation in yeast. Moreover, although the N-terminal domain (NTD) of yeIF4B contributes to these activities, the RNA recognition motif is dispensable. We have now determined that only two of the seven internal repeats are sufficient for wild-type (WT) yeIF4B function in vivo when all other domains are intact. However, three or more repeats are needed in the absence of the NTD or when the functions of eIF4F components are compromised. We corroborated these observations in the reconstituted system by demonstrating that yeIF4B variants with only one or two repeats display substantial activity in promoting mRNA recruitment by the PIC, whereas additional repeats are required at lower levels of eIF4A or when the NTD is missing. These findings indicate functional overlap among the 7-repeats and NTD domains of yeIF4B and eIF4A in mRNA recruitment. Interestingly, only three highly conserved positions in the 26-amino acid repeat are essential for function in vitro and in vivo. Finally, we identified conserved motifs in the NTD and demonstrate functional overlap of two such motifs. These results provide a comprehensive description of the critical sequence elements in yeIF4B that support eIF4F function in mRNA recruitment by the PIC.
Collapse
Affiliation(s)
- Fujun Zhou
- From the Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892 and
| | | | | | | | | |
Collapse
|
20
|
Andreou AZ, Klostermeier D. eIF4B and eIF4G jointly stimulate eIF4A ATPase and unwinding activities by modulation of the eIF4A conformational cycle. J Mol Biol 2013; 426:51-61. [PMID: 24080224 DOI: 10.1016/j.jmb.2013.09.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/22/2013] [Accepted: 09/23/2013] [Indexed: 01/07/2023]
Abstract
Eukaryotic translation initiation factor 4A (eIF4A) is a DEAD-box protein that participates in translation initiation. As an ATP-dependent RNA helicase, it is thought to resolve secondary structure elements from the 5'-untranslated region of mRNAs to enable ribosome scanning. The RNA-stimulated ATPase and ATP-dependent helicase activities of eIF4A are enhanced by auxiliary proteins, but the underlying mechanisms are still largely unknown. Here, we have dissected the effect of eIF4B and eIF4G on eIF4A RNA-dependent ATPase- and RNA helicase activities and on eIF4A conformation. We show for the first time that yeast eIF4B, like its mammalian counterpart, can stimulate RNA unwinding by eIF4A, although it does not affect the eIF4A conformation. The eIF4G middle domain enhances this stimulatory effect and promotes the formation of a closed eIF4A conformation in the presence of ATP and RNA. The closed state of eIF4A has been inferred but has not been observed experimentally before. eIF4B and eIF4G jointly stimulate ATP hydrolysis and RNA unwinding by eIF4A and favor the formation of the closed eIF4A conformer. Our results reveal distinct functions of eIF4B and eIF4G in synergistically stimulating the eIF4A helicase activity in the mRNA scanning process.
Collapse
Affiliation(s)
- Alexandra Zoi Andreou
- University of Muenster, Institute for Physical Chemistry, Corrensstrasse 30, D-48149 Muenster, Germany
| | - Dagmar Klostermeier
- University of Muenster, Institute for Physical Chemistry, Corrensstrasse 30, D-48149 Muenster, Germany.
| |
Collapse
|
21
|
Gordon BS, Kelleher AR, Kimball SR. Regulation of muscle protein synthesis and the effects of catabolic states. Int J Biochem Cell Biol 2013; 45:2147-57. [PMID: 23769967 DOI: 10.1016/j.biocel.2013.05.039] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/29/2013] [Accepted: 05/31/2013] [Indexed: 12/20/2022]
Abstract
Protein synthesis and degradation are dynamically regulated processes that act in concert to control the accretion or loss of muscle mass. The present article focuses on the mechanisms involved in the impairment of protein synthesis that are associated with skeletal muscle atrophy. The vast majority of mechanisms known to regulate protein synthesis involve modulation of the initiation phase of mRNA translation, which comprises a series of reactions that result in the binding of initiator methionyl-tRNAi and mRNA to the 40S ribosomal subunit. The function of the proteins involved in both events has been shown to be repressed under atrophic conditions such as sepsis, cachexia, chronic kidney disease, sarcopenia, and disuse atrophy. The basis for the inhibition of protein synthesis under such conditions is likely to be multifactorial and includes insulin/insulin-like growth factor 1 resistance, pro-inflammatory cytokine expression, malnutrition, corticosteroids, and/or physical inactivity. The present article provides an overview of the existing literature regarding mechanisms and signaling pathways involved in the regulation of mRNA translation as they apply to skeletal muscle wasting, as well as the efficacy of potential clinical interventions such as nutrition and exercise in the maintenance of skeletal muscle protein synthesis under atrophic conditions. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.
Collapse
Affiliation(s)
- Bradley S Gordon
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | |
Collapse
|