1
|
Yamazoe Y, Yamamura Y, Yoshinari K. Construction of a fused grid-based CYP2C8-Template system and the application. Drug Metab Pharmacokinet 2024; 55:100492. [PMID: 38609777 DOI: 10.1016/j.dmpk.2023.100492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/03/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
A ligand-accessible space in the CYP2C8 active site was reconstituted as a fused grid-based Template∗ with the use of structural data of the ligands. An evaluation system of CYP2C8-mediated metabolism has been developed on Template with the introduction of the idea of Trigger-residue initiated ligand-movement and fastening. Reciprocal comparison of the data of simulation on Template with experimental results suggested a unified way of the interaction of CYP2C8 and its ligands through the simultaneous plural-contact with Rear-wall of Template. CYP2C8 was expected to have a room for ligands between vertically standing parallel walls termed Facial-wall and Rear-wall. Both the walls were separated by a distance corresponding to 1.5-Ring (grid) diameter size, which was termed Width-gauge. The ligand sittings were stabilized through contacts with Facial-wall and the left-side borders of Template including specific Position 29, left-side border of Rings I/J, or Left-end, after Trigger-residue initiated ligand-movement. Trigger-residue movement is suggested to force ligands to stay firmly in the active site and then to initiate CYP2C8 reactions. Simulation experiments for over 350 reactions of CYP2C8 ligands supported the system established.
Collapse
Affiliation(s)
- Yasushi Yamazoe
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, 980-8578, Japan; Division of Risk Assessment, National Institute of Health Sciences, Tonomachi 3-25-26, Kawasaki-ku, Kawasaki, 210-9501, Japan.
| | - Yoshiya Yamamura
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan; Non-Clinical Regulatory Science, Applied Research & Operations, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba, Ibaraki, 305-8585, Japan
| | - Kouichi Yoshinari
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| |
Collapse
|
2
|
Ridhwan MJM, Bakar SIA, Latip NA, Ghani NA, Ismail NH. A Comprehensive Analysis of Human CYP3A4 Crystal Structures as a Potential Tool for Molecular Docking-Based Site of Metabolism and Enzyme Inhibition Studies. JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY 2022; 21:259-285. [DOI: 10.1142/s2737416522300012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The notable ability of human liver cytochrome P450 3A4 (CYP3A4) to metabolize diverse xenobiotics encourages researchers to explore in-depth the mechanism of enzyme action. Numerous CYP3A4 protein crystal structures have been deposited in protein data bank (PDB) and are majorly used in molecular docking analysis. The quality of the molecular docking results depends on the three-dimensional CYP3A4 protein crystal structures from the PDB. Present review endeavors to provide a brief outline of some technical parameters of CYP3A4 PDB entries as valuable information for molecular docking research. PDB entries between 22 April 2004 and 2 June 2021 were compiled and the active sites were thoroughly observed. The present review identified 76 deposited PDB entries and described basic information that includes CYP3A4 from human genetic, Escherichia coli (E. coli) use for protein expression, crystal structure obtained from X-ray diffraction method, taxonomy ID 9606, Uniprot ID P08684, ligand–protein structure description, co-crystal ligand, protein site deposit and resolution ranges between 1.7[Formula: see text]Å and 2.95[Formula: see text]Å. The observation of protein–ligand interactions showed the various residues on the active site depending on the ligand. The residues Ala305, Ser119, Ala370, Phe304, Phe108, Phe213 and Phe215 have been found to frequently interact with ligands from CYP3A4 PDB. Literature surveys of 17 co-crystal ligands reveal multiple mechanisms that include competitive inhibition, noncompetitive inhibition, mixed-mode inhibition, mechanism-based inhibition, substrate with metabolite, inducer, or combination modes of action. This overview may help researchers choose a trustworthy CYP3A4 protein structure from the PDB database to apply the protein in molecular docking analysis for drug discovery.
Collapse
Affiliation(s)
- Mohamad Jemain Mohamad Ridhwan
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Shah Alam 40450, Selangor, Malaysia
- Atta-ur-Rahman Institute for Natural Products Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam 42300, Selangor, Malaysia
| | - Syahrul Imran Abu Bakar
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Shah Alam 40450, Selangor, Malaysia
- Atta-ur-Rahman Institute for Natural Products Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam 42300, Selangor, Malaysia
| | - Normala Abd Latip
- Atta-ur-Rahman Institute for Natural Products Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam 42300, Selangor, Malaysia
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Puncak Alam 42300, Selangor, Malaysia
| | - Nurunajah Ab Ghani
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Shah Alam 40450, Selangor, Malaysia
- Atta-ur-Rahman Institute for Natural Products Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam 42300, Selangor, Malaysia
| | - Nor Hadiani Ismail
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Shah Alam 40450, Selangor, Malaysia
- Atta-ur-Rahman Institute for Natural Products Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam 42300, Selangor, Malaysia
| |
Collapse
|
3
|
Tong L, Xiao X, Li M, Fang S, Ma E, Yu X, Zhu Y, Wu C, Tian D, Yang F, Sun J, Qu J, Zheng N, Liao S, Tai W, Feng S, Zhang L, Li Y, Wang L, Han X, Sun S, Yang L, Zhong H, Zhao J, Liu W, Liu X, Wang P, Li L, Zhao G, Zhang R, Cheng G. A glucose-like metabolite deficient in diabetes inhibits cellular entry of SARS-CoV-2. Nat Metab 2022; 4:547-558. [PMID: 35534727 DOI: 10.1038/s42255-022-00567-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 03/29/2022] [Indexed: 12/28/2022]
Abstract
The severity and mortality of COVID-19 are associated with pre-existing medical comorbidities such as diabetes mellitus. However, the underlying causes for increased susceptibility to viral infection in patients with diabetes is not fully understood. Here we identify several small-molecule metabolites from human blood with effective antiviral activity against SARS-CoV-2, one of which, 1,5-anhydro-D-glucitol (1,5-AG), is associated with diabetes mellitus. The serum 1,5-AG level is significantly lower in patients with diabetes. In vitro, the level of SARS-CoV-2 replication is higher in the presence of serum from patients with diabetes than from healthy individuals and this is counteracted by supplementation of 1,5-AG to the serum from patients. Diabetic (db/db) mice undergo SARS-CoV-2 infection accompanied by much higher viral loads and more severe respiratory tissue damage when compared to wild-type mice. Sustained supplementation of 1,5-AG in diabetic mice reduces SARS-CoV-2 loads and disease severity to similar levels in nondiabetic mice. Mechanistically, 1,5-AG directly binds the S2 subunit of the SARS-CoV-2 spike protein, thereby interrupting spike-mediated virus-host membrane fusion. Our results reveal a mechanism that contributes to COVID-19 pathogenesis in the diabetic population and suggest that 1,5-AG supplementation may be beneficial to diabetic patients against severe COVID-19.
Collapse
Affiliation(s)
- Liangqin Tong
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China
| | - Xiaoping Xiao
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China
| | - Min Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Shisong Fang
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Enhao Ma
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Xi Yu
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Yibin Zhu
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Chunli Wu
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Deyu Tian
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Fan Yang
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jing Qu
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Nianzhen Zheng
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shumin Liao
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wanbo Tai
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China
| | - Shengyong Feng
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Liming Zhang
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Yuhan Li
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Lin Wang
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Xuelian Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Shihui Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Long Yang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hui Zhong
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaohui Liu
- School of Life Science, Tsinghua University, Beijing, China
| | - Penghua Wang
- Department of Immunology, School of Medicine, the University of Connecticut Health Center, Farmington, CT, USA
| | - Liang Li
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China.
| | - Renli Zhang
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, China.
| | - Gong Cheng
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China.
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, China.
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
4
|
Chang JL, Xu HZ, Zhou J, Zhou M, Zhang X, Guo Y, Ruan HL. Antimicrobial Furancarboxylic Acids from a Penicillium sp. JOURNAL OF NATURAL PRODUCTS 2020; 83:3606-3613. [PMID: 33314934 DOI: 10.1021/acs.jnatprod.0c00758] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Ten novel (1, 2, 3a, 3b, 4a, 4b, 5a, 5b, 6a, and 6b) furancarboxylic acids including four pairs of epimers (3a, 3b; 4a, 4b; 5a, 5b; 6a, 6b), together with seven known analogues (7a, 7b, 8a, 8b, 9a, 9b, and 10), were isolated from the fermentation of the soil-derived fungus Penicillium sp. sb62. Their structures were established on the basis of spectroscopic data analysis, and the absolute configurations were determined by time-dependent density functional theory electronic circular dichroism calculations, comparison of the specific optical rotation values, and modified Mosher's method. Compounds 1-4 represent the first class of natural furancarboxylic acids featuring a thiophene moiety. Compounds 1-7 showed antimicrobial inhibitory activities against Escherichia coli, Staphylococcus aureus, and Candida albicans with MIC values ranging from 0.9 to 7.0 μg/mL, from 1.7 to 3.5 μg/mL, and from 3.3 to 7.0 μg/mL, respectively.
Collapse
Affiliation(s)
- Jin-Ling Chang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Hong-Zhe Xu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Jia Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Ming Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xuke Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Han-Li Ruan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
5
|
Yamazoe Y, Tohkin M. Development of template systems for ligand interactions of CYP3A5 and CYP3A7 and their distinctions from CYP3A4 template. Drug Metab Pharmacokinet 2020; 38:100357. [PMID: 33866277 DOI: 10.1016/j.dmpk.2020.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/16/2020] [Accepted: 09/02/2020] [Indexed: 01/23/2023]
Abstract
Starting from established CYP3A4 Template (DMPK. 2019, and 2020), CYP3A5 and CYP3A7 Templates have been constructed to be reliable tools for verification of their distinct catalytic properties. A distinct occupancy was observed on CYP3A4-selective ligands, but not on the non-selective ligands, in simulation experiments. These ligands often invade into Bay-1 region during the migration from Entrance to Site of oxidation in simulation experiments. These results offered an idea of the distinct localization of Bay-1 residue on CYP3A5 Template, in which the Bay-1 residue stayed closely to Template border. The idea also accounted for the higher oxidation rates of CYP3A5, than of CYP3A4, of noscapine and schisantherin E through their enhanced sitting-stabilization. Typical CYP3A7 substrates such as zonisamide and retinoic acids took their placements without occupying a left side region of Template for their metabolisms. In turn, the occupancies of the left-side region were inevitably observed among poor ligands of CYP3A7. Altered extent of IJK-Interaction or localization of a specific residue at the left-side would thus explain distinct catalytic properties of CYP3A7 on Template. These data suggest the alteration of each one of Template region, from CYP3A4 Template, led to the distinct catalytic properties of CYP3A5 and CYP3A7 forms.
Collapse
Affiliation(s)
- Yasushi Yamazoe
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, 980-8578, Japan; Division of Risk Assessment, National Institute of Health Sciences, Tonomachi 3-25-26, Kawasaki-ku, Kanagawa, 210-9501, Japan.
| | - Masahiro Tohkin
- Regulatory Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1, Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan.
| |
Collapse
|
6
|
Czuba LC, Zhong G, Yabut KC, Isoherranen N. Analysis of vitamin A and retinoids in biological matrices. Methods Enzymol 2020; 637:309-340. [PMID: 32359651 DOI: 10.1016/bs.mie.2020.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Vitamin A signaling pathways are predominantly driven by the cellular concentrations of all-trans-retinoic acid (atRA), as the main mechanism of retinoid signaling is via activation of retinoic acid receptors. atRA concentrations are in turn controlled by the storage of vitamin A and enzymatic processes that synthesize and clear atRA. This has resulted in the need for robust and highly specific analytical methods to accurately quantify retinoids in diverse biological matrices. Tissue-specific differences in both the quantity of retinoids and background matrix interferences can confound the quantification of retinoids, and the bioanalysis requires high performance instrumentation, such as liquid chromatography mass-spectrometry (LC-MS). Successful bioanalysis of retinoids is further complicated by the innate structural instability of retinoids and their relatively high lipophilicity. Further, in vitro experiments with retinoids require attention to experimental design and interpretation to account for the instability of retinoids due to isomerization and degradation, sequential metabolism to numerous structurally similar metabolites, and substrate depletion during experiments. In addition, in vitro biological activity is often confounded by residual presence of retinoids in common biological reagents such as cell culture media. This chapter identifies common biological and analytical complexities in retinoid bioanalysis in diverse biological matrices, and in the use of retinoids in cell culture and metabolic incubations. In addition, this chapter highlights best practices for the successful detection and quantification of the vitamin A metabolome in a wide range of biological matrices.
Collapse
Affiliation(s)
- Lindsay C Czuba
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, United States
| | - Guo Zhong
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, United States
| | - King C Yabut
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, United States
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, United States.
| |
Collapse
|
7
|
Isoherranen N, Zhong G. Biochemical and physiological importance of the CYP26 retinoic acid hydroxylases. Pharmacol Ther 2019; 204:107400. [PMID: 31419517 PMCID: PMC6881548 DOI: 10.1016/j.pharmthera.2019.107400] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/06/2019] [Indexed: 12/19/2022]
Abstract
The Cytochrome P450 (CYP) family 26 enzymes contribute to retinoic acid (RA) metabolism and homeostasis in humans, mammals and other chordates. The three CYP26 family enzymes, CYP26A1, CYP26B1 and CYP26C1 have all been shown to metabolize all-trans-retinoic acid (atRA) it's 9-cisRA and 13-cisRA isomers and primary metabolites 4-OH-RA and 4-oxo-RA with high efficiency. While no crystal structures of CYP26 enzymes are available, the binding of various ligands has been extensively explored via homology modeling. All three CYP26 enzymes are inducible by treatment with atRA in various prenatal and postnatal tissues and cell types. However, current literature shows that in addition to regulation by atRA, CYP26 enzyme expression is also regulated by other endogenous processes and inflammatory cytokines. In humans and in animal models the expression patterns of CYP26 enzymes have been shown to be tissue and cell type specific, and the expression of the CYP26 enzymes is believed to regulate the formation of critical atRA concentration gradients in various tissue types. Yet, very little data exists on direct disease associations of altered CYP26 expression or activity. Nevertheless, data is emerging describing a variety of human genetic variations in the CYP26 enzymes that are associated with different pathologies. Interestingly, some of these genetic variants result in increased activity of the CYP26 enzymes potentially leading to complex gene-environment interactions due to variability in dietary intake of retinoids. This review highlights the current knowledge of structure-function of CYP26 enzymes and focuses on their role in human retinoid metabolism in different tissues.
Collapse
Affiliation(s)
- Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA.
| | - Guo Zhong
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA
| |
Collapse
|
8
|
Wang S, Yu J, Kane MA, Moise AR. Modulation of retinoid signaling: therapeutic opportunities in organ fibrosis and repair. Pharmacol Ther 2019; 205:107415. [PMID: 31629008 DOI: 10.1016/j.pharmthera.2019.107415] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/17/2019] [Indexed: 02/08/2023]
Abstract
The vitamin A metabolite, retinoic acid, is an important signaling molecule during embryonic development serving critical roles in morphogenesis, organ patterning and skeletal and neural development. Retinoic acid is also important in postnatal life in the maintenance of tissue homeostasis, while retinoid-based therapies have long been used in the treatment of a variety of cancers and skin disorders. As the number of people living with chronic disorders continues to increase, there is great interest in extending the use of retinoid therapies in promoting the maintenance and repair of adult tissues. However, there are still many conflicting results as we struggle to understand the role of retinoic acid in the multitude of processes that contribute to tissue injury and repair. This review will assess our current knowledge of the role retinoic acid signaling in the development of fibroblasts, and their transformation to myofibroblasts, and of the potential use of retinoid therapies in the treatment of organ fibrosis.
Collapse
Affiliation(s)
- Suya Wang
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA.
| | - Alexander R Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; Departments of Chemistry and Biochemistry, and Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON, P3E 2C6, Canada.
| |
Collapse
|
9
|
Li H, Lampe JN. Neonatal cytochrome P450 CYP3A7: A comprehensive review of its role in development, disease, and xenobiotic metabolism. Arch Biochem Biophys 2019; 673:108078. [PMID: 31445893 DOI: 10.1016/j.abb.2019.108078] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/17/2019] [Accepted: 08/18/2019] [Indexed: 12/14/2022]
Abstract
The human cytochrome P450 CYP3A7, once thought to be an enzyme exclusive to fetal livers, has more recently been identified in neonates and developing infants as old as 24 months post-gestational age. CYP3A7 has been demonstrated to metabolize two endogenous compounds that are known to be important in the growth and development of the fetus and neonate, namely dehydroepiandrosterone sulfate (DHEA-S) and all-trans retinoic acid (atRA). In addition, it is also known to metabolize a variety of drugs and xenobiotics, albeit generally to a lesser extent relative to CYP3A4/5. CYP3A7 is an important component in the development and protection of the fetal liver and additionally plays a role in certain disease states, such as cancer and adrenal hyperplasia. Ultimately, a full understanding of the expression, regulation, and metabolic properties of CYP3A7 is needed to provide neonates with appropriate individualized pharmacotherapy. This article summarizes the current state of knowledge of CYP3A7, including its discovery, distribution, alleles, RNA splicing, expression and regulation, metabolic properties, substrates, and inhibitors.
Collapse
Affiliation(s)
- Haixing Li
- Sino-German Joint Research Institute Nanchang University, 235 East Nanjing Road, Nanchang, 330047, Jiangxi, PR China
| | - Jed N Lampe
- University of Colorado, Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Mail Stop C238, 12850 E. Montview Blvd., Aurora, CO, 80045, USA.
| |
Collapse
|
10
|
Rendic SP, Peter Guengerich F. Human cytochrome P450 enzymes 5-51 as targets of drugs and natural and environmental compounds: mechanisms, induction, and inhibition - toxic effects and benefits. Drug Metab Rev 2019; 50:256-342. [PMID: 30717606 DOI: 10.1080/03602532.2018.1483401] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytochrome P450 (P450, CYP) enzymes have long been of interest due to their roles in the metabolism of drugs, pesticides, pro-carcinogens, and other xenobiotic chemicals. They have also been of interest due to their very critical roles in the biosynthesis and metabolism of steroids, vitamins, and certain eicosanoids. This review covers the 22 (of the total of 57) human P450s in Families 5-51 and their substrate selectivity. Furthermore, included is information and references regarding inducibility, inhibition, and (in some cases) stimulation by chemicals. We update and discuss important aspects of each of these 22 P450s and questions that remain open.
Collapse
Affiliation(s)
| | - F Peter Guengerich
- b Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , TN , USA
| |
Collapse
|
11
|
Wei M, Liu Y, Pi Z, Li S, Hu M, He Y, Yue K, Liu T, Liu Z, Song F, Liu Z. Systematically Characterize the Anti-Alzheimer's Disease Mechanism of Lignans from S. chinensis based on In-Vivo Ingredient Analysis and Target-Network Pharmacology Strategy by UHPLC⁻Q-TOF-MS. Molecules 2019; 24:molecules24071203. [PMID: 30934777 PMCID: PMC6480032 DOI: 10.3390/molecules24071203] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022] Open
Abstract
Lignans from Schisandra chinensis (Turcz.) Baill can ameliorate cognitive impairment in animals with Alzheimer’s disease (AD). However, the metabolism of absorbed ingredients and the potential targets of the lignans from S. chinensis in animals with AD have not been systematically investigated. Therefore, for the first time, we performed an in-vivo ingredient analysis and implemented a target-network pharmacology strategy to assess the effects of lignans from S. chinensis in rats with AD. Ten absorbed prototype constituents and 39 metabolites were identified or tentatively characterized in the plasma of dosed rats with AD using ultra high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Based on the results of analysis of the effective constituents in vivo, the potential therapeutic mechanism of the effective constituents in the rats with AD was investigated using a target-network pharmacology approach and independent experimental validation. The results showed that the treatment effects of lignans from S. chinensis on cognitive impairment might involve the regulation of amyloid precursor protein metabolism, neurofibrillary tangles, neurotransmitter metabolism, inflammatory response, and antioxidant system. Overall, we identified the effective components of lignans in S. chinensis that can improve the cognitive impairment induced by AD and proposed potential therapeutic metabolic pathways. The results might serve as the basis for a fundamental strategy to explore effective therapeutic drugs to treat AD.
Collapse
Affiliation(s)
- Mengying Wei
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun 130021, China.
- National Center for Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Yuanyuan Liu
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun 130021, China.
| | - Zifeng Pi
- National Center for Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Shizhe Li
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Mingxin Hu
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun 130021, China.
| | - Yang He
- Department of Pharmaceutical Analysis, School of Pharmacy and Food Science, Zhuhai College of Jilin University, 8 Anji East Road, Zhuhai 519041, China.
| | - Kexin Yue
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun 130021, China.
| | - Tianshu Liu
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun 130021, China.
| | - Zhiqiang Liu
- National Center for Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Fengrui Song
- National Center for Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Zhongying Liu
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun 130021, China.
| |
Collapse
|
12
|
Zhang J, Gao LZ, Chen YJ, Zhu PP, Yin SS, Su MM, Ni Y, Miao J, Wu WL, Chen H, Brouwer KLR, Liu CX, Xu L, Jia W, Lan K. Continuum of Host-Gut Microbial Co-metabolism: Host CYP3A4/3A7 are Responsible for Tertiary Oxidations of Deoxycholate Species. Drug Metab Dispos 2019; 47:283-294. [PMID: 30606729 PMCID: PMC6378331 DOI: 10.1124/dmd.118.085670] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 12/31/2018] [Indexed: 02/05/2023] Open
Abstract
The gut microbiota modifies endogenous primary bile acids (BAs) to produce exogenous secondary BAs, which may be further metabolized by cytochrome P450 enzymes (P450s). Our primary aim was to examine how the host adapts to the stress of microbe-derived secondary BAs by P450-mediated oxidative modifications on the steroid nucleus. Five unconjugated tri-hydroxyl BAs that were structurally and/or biologically associated with deoxycholate (DCA) were determined in human biologic samples by liquid chromatography-tandem mass spectrometry in combination with enzyme-digestion techniques. They were identified as DCA-19-ol, DCA-6β-ol, DCA-5β-ol, DCA-6α-ol, DCA-1β-ol, and DCA-4β-ol based on matching in-laboratory synthesized standards. Metabolic inhibition assays in human liver microsomes and recombinant P450 assays revealed that CYP3A4 and CYP3A7 were responsible for the regioselective oxidations of both DCA and its conjugated forms, glycodeoxycholate (GDCA) and taurodeoxycholate (TDCA). The modification of secondary BAs to tertiary BAs defines a host liver (primary BAs)-gut microbiota (secondary BAs)-host liver (tertiary BAs) axis. The regioselective oxidations of DCA, GDCA, and TDCA by CYP3A4 and CYP3A7 may help eliminate host-toxic DCA species. The 19- and 4β-hydroxylation of DCA species demonstrated outstanding CYP3A7 selectivity and may be useful as indicators of CYP3A7 activity.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China (J.Z., L.Z.G., Y.J.C., P.P.Z., S.S.Y., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.M.S., Y.N., W.J.); Institute of Clinical Pharmacology, West China Hospital, Sichuan University, Chengdu, China (J.M.); Chengdu Institutes for Food and Drug Control, Chengdu, China (W.L.W., H.C.); UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina (K.L.R.B.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (S.S.Y.)
| | - Ling-Zhi Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China (J.Z., L.Z.G., Y.J.C., P.P.Z., S.S.Y., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.M.S., Y.N., W.J.); Institute of Clinical Pharmacology, West China Hospital, Sichuan University, Chengdu, China (J.M.); Chengdu Institutes for Food and Drug Control, Chengdu, China (W.L.W., H.C.); UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina (K.L.R.B.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (S.S.Y.)
| | - Yu-Jie Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China (J.Z., L.Z.G., Y.J.C., P.P.Z., S.S.Y., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.M.S., Y.N., W.J.); Institute of Clinical Pharmacology, West China Hospital, Sichuan University, Chengdu, China (J.M.); Chengdu Institutes for Food and Drug Control, Chengdu, China (W.L.W., H.C.); UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina (K.L.R.B.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (S.S.Y.)
| | - Ping-Ping Zhu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China (J.Z., L.Z.G., Y.J.C., P.P.Z., S.S.Y., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.M.S., Y.N., W.J.); Institute of Clinical Pharmacology, West China Hospital, Sichuan University, Chengdu, China (J.M.); Chengdu Institutes for Food and Drug Control, Chengdu, China (W.L.W., H.C.); UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina (K.L.R.B.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (S.S.Y.)
| | - Shan-Shan Yin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China (J.Z., L.Z.G., Y.J.C., P.P.Z., S.S.Y., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.M.S., Y.N., W.J.); Institute of Clinical Pharmacology, West China Hospital, Sichuan University, Chengdu, China (J.M.); Chengdu Institutes for Food and Drug Control, Chengdu, China (W.L.W., H.C.); UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina (K.L.R.B.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (S.S.Y.)
| | - Ming-Ming Su
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China (J.Z., L.Z.G., Y.J.C., P.P.Z., S.S.Y., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.M.S., Y.N., W.J.); Institute of Clinical Pharmacology, West China Hospital, Sichuan University, Chengdu, China (J.M.); Chengdu Institutes for Food and Drug Control, Chengdu, China (W.L.W., H.C.); UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina (K.L.R.B.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (S.S.Y.)
| | - Yan Ni
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China (J.Z., L.Z.G., Y.J.C., P.P.Z., S.S.Y., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.M.S., Y.N., W.J.); Institute of Clinical Pharmacology, West China Hospital, Sichuan University, Chengdu, China (J.M.); Chengdu Institutes for Food and Drug Control, Chengdu, China (W.L.W., H.C.); UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina (K.L.R.B.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (S.S.Y.)
| | - Jia Miao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China (J.Z., L.Z.G., Y.J.C., P.P.Z., S.S.Y., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.M.S., Y.N., W.J.); Institute of Clinical Pharmacology, West China Hospital, Sichuan University, Chengdu, China (J.M.); Chengdu Institutes for Food and Drug Control, Chengdu, China (W.L.W., H.C.); UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina (K.L.R.B.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (S.S.Y.)
| | - Wen-Lin Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China (J.Z., L.Z.G., Y.J.C., P.P.Z., S.S.Y., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.M.S., Y.N., W.J.); Institute of Clinical Pharmacology, West China Hospital, Sichuan University, Chengdu, China (J.M.); Chengdu Institutes for Food and Drug Control, Chengdu, China (W.L.W., H.C.); UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina (K.L.R.B.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (S.S.Y.)
| | - Hong Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China (J.Z., L.Z.G., Y.J.C., P.P.Z., S.S.Y., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.M.S., Y.N., W.J.); Institute of Clinical Pharmacology, West China Hospital, Sichuan University, Chengdu, China (J.M.); Chengdu Institutes for Food and Drug Control, Chengdu, China (W.L.W., H.C.); UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina (K.L.R.B.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (S.S.Y.)
| | - Kim L R Brouwer
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China (J.Z., L.Z.G., Y.J.C., P.P.Z., S.S.Y., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.M.S., Y.N., W.J.); Institute of Clinical Pharmacology, West China Hospital, Sichuan University, Chengdu, China (J.M.); Chengdu Institutes for Food and Drug Control, Chengdu, China (W.L.W., H.C.); UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina (K.L.R.B.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (S.S.Y.)
| | - Chang-Xiao Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China (J.Z., L.Z.G., Y.J.C., P.P.Z., S.S.Y., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.M.S., Y.N., W.J.); Institute of Clinical Pharmacology, West China Hospital, Sichuan University, Chengdu, China (J.M.); Chengdu Institutes for Food and Drug Control, Chengdu, China (W.L.W., H.C.); UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina (K.L.R.B.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (S.S.Y.)
| | - Liang Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China (J.Z., L.Z.G., Y.J.C., P.P.Z., S.S.Y., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.M.S., Y.N., W.J.); Institute of Clinical Pharmacology, West China Hospital, Sichuan University, Chengdu, China (J.M.); Chengdu Institutes for Food and Drug Control, Chengdu, China (W.L.W., H.C.); UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina (K.L.R.B.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (S.S.Y.)
| | - Wei Jia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China (J.Z., L.Z.G., Y.J.C., P.P.Z., S.S.Y., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.M.S., Y.N., W.J.); Institute of Clinical Pharmacology, West China Hospital, Sichuan University, Chengdu, China (J.M.); Chengdu Institutes for Food and Drug Control, Chengdu, China (W.L.W., H.C.); UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina (K.L.R.B.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (S.S.Y.)
| | - Ke Lan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China (J.Z., L.Z.G., Y.J.C., P.P.Z., S.S.Y., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.M.S., Y.N., W.J.); Institute of Clinical Pharmacology, West China Hospital, Sichuan University, Chengdu, China (J.M.); Chengdu Institutes for Food and Drug Control, Chengdu, China (W.L.W., H.C.); UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina (K.L.R.B.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (S.S.Y.)
| |
Collapse
|
13
|
Janesick A, Tang W, Shioda T, Blumberg B. RARγ is required for mesodermal gene expression prior to gastrulation in Xenopus. Development 2018; 145:dev147769. [PMID: 30111657 DOI: 10.1242/dev.147769] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 07/31/2018] [Indexed: 12/12/2022]
Abstract
The developing vertebrate embryo is exquisitely sensitive to retinoic acid (RA) concentration, particularly during anteroposterior patterning. In contrast to Nodal and Wnt signaling, RA was not previously considered to be an instructive signal in mesoderm formation during gastrulation. Here, we show in Xenopus that RARγ is indispensable for the expression of early mesoderm markers and is, therefore, an obligatory factor in mesodermal competence and/or maintenance. We identified several novel targets upregulated by RA receptor signaling in the early gastrula that are expressed in the circumblastoporal ring and linked to mesodermal development. Despite overlapping expression patterns of the genes encoding the RA-synthesizing enzyme Aldh1a2 and the RA-degrading enzyme Cyp26a1, RARγ1 functions as a transcriptional activator in early mesoderm development, suggesting that RA ligand is available to the embryo earlier than previously appreciated. RARγ1 is required for cellular adhesion, as revealed by spontaneous dissociation and depletion of ncam1 mRNA in animal caps harvested from RARγ1 knockdown embryos. RARγ1 knockdown obliterates somite boundaries, and causes loss of Myod protein in the presomitic mesoderm, but ectopic, persistent expression of Myod protein in the trunk. Thus, RARγ1 is required for stabilizing the mesodermal fate, myogenic commitment, somite boundary formation, and terminal skeletal muscle differentiation.
Collapse
Affiliation(s)
- Amanda Janesick
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, 92697-2300, USA
| | - Weiyi Tang
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, 92697-2300, USA
| | - Toshi Shioda
- Center for Cancer Research, Massachusetts General Hospital, Building 149, 13th Street, Charlestown, MA 02129, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, 92697-2300, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697-2300, USA
| |
Collapse
|
14
|
Zhong G, Ortiz D, Zelter A, Nath A, Isoherranen N. CYP26C1 Is a Hydroxylase of Multiple Active Retinoids and Interacts with Cellular Retinoic Acid Binding Proteins. Mol Pharmacol 2018; 93:489-503. [PMID: 29476041 DOI: 10.1124/mol.117.111039] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/22/2018] [Indexed: 01/10/2023] Open
Abstract
The clearance of retinoic acid (RA) and its metabolites is believed to be regulated by the CYP26 enzymes, but the specific roles of CYP26A1, CYP26B1, and CYP26C1 in clearing active vitamin A metabolites have not been defined. The goal of this study was to establish the substrate specificity of CYP26C1, and determine whether CYP26C1 interacts with cellular retinoic acid binding proteins (CRABPs). CYP26C1 was found to effectively metabolize all-trans retinoic acid (atRA), 9-cis-retinoic acid (9-cis-RA), 13-cis-retinoic acid, and 4-oxo-atRA with the highest intrinsic clearance toward 9-cis-RA. In comparison with CYP26A1 and CYP26B1, CYP26C1 resulted in a different metabolite profile for retinoids, suggesting differences in the active-site structure of CYP26C1 compared with other CYP26s. Homology modeling of CYP26C1 suggested that this is attributable to the distinct binding orientation of retinoids within the CYP26C1 active site. In comparison with other CYP26 family members, CYP26C1 was up to 10-fold more efficient in clearing 4-oxo-atRA (intrinsic clearance 153 μl/min/pmol) than CYP26A1 and CYP26B1, suggesting that CYP26C1 may be important in clearing this active retinoid. In support of this, CRABPs delivered 4-oxo-atRA and atRA for metabolism by CYP26C1. Despite the tight binding of 4-oxo-atRA and atRA with CRABPs, the apparent Michaelis-Menten constant in biological matrix (Km) value of these substrates with CYP26C1 was not increased when the substrates were bound with CRABPs, in contrast to what is predicted by free drug hypothesis. Together these findings suggest that CYP26C1 is a 4-oxo-atRA hydroxylase and may be important in regulating the concentrations of this active retinoid in human tissues.
Collapse
Affiliation(s)
- Guo Zhong
- Departments of Pharmaceutics (G.Z., N.I.) and Medicinal Chemistry (D.O., A.N.), School of Pharmacy, and Department of Biochemistry, School of Medicine (A.Z.), University of Washington, Seattle, Washington
| | - David Ortiz
- Departments of Pharmaceutics (G.Z., N.I.) and Medicinal Chemistry (D.O., A.N.), School of Pharmacy, and Department of Biochemistry, School of Medicine (A.Z.), University of Washington, Seattle, Washington
| | - Alex Zelter
- Departments of Pharmaceutics (G.Z., N.I.) and Medicinal Chemistry (D.O., A.N.), School of Pharmacy, and Department of Biochemistry, School of Medicine (A.Z.), University of Washington, Seattle, Washington
| | - Abhinav Nath
- Departments of Pharmaceutics (G.Z., N.I.) and Medicinal Chemistry (D.O., A.N.), School of Pharmacy, and Department of Biochemistry, School of Medicine (A.Z.), University of Washington, Seattle, Washington
| | - Nina Isoherranen
- Departments of Pharmaceutics (G.Z., N.I.) and Medicinal Chemistry (D.O., A.N.), School of Pharmacy, and Department of Biochemistry, School of Medicine (A.Z.), University of Washington, Seattle, Washington
| |
Collapse
|
15
|
Nelson CH, Peng CC, Lutz JD, Yeung CK, Zelter A, Isoherranen N. Direct protein-protein interactions and substrate channeling between cellular retinoic acid binding proteins and CYP26B1. FEBS Lett 2016; 590:2527-35. [PMID: 27416800 DOI: 10.1002/1873-3468.12303] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/23/2016] [Accepted: 06/29/2016] [Indexed: 11/11/2022]
Abstract
Cellular retinoic acid binding proteins (CRABPs) bind all-trans-retinoic acid (atRA) tightly. This study aimed to determine whether atRA is channeled directly to cytochrome P450 (CYP) CYP26B1 by CRABPs, and whether CRABPs interact directly with CYP26B1. atRA bound to CRABPs (holo-CRABP) was efficiently metabolized by CYP26B1. Isotope dilution experiments showed that delivery of atRA to CYP26B1 in solution was similar with or without CRABP. Holo-CRABPs had higher affinity for CYP26B1 than free atRA, but both apo-CRABPs inhibited the formation of 4-OH-RA by CYP26B1. Similar protein-protein interactions between soluble binding proteins and CYPs may be important for other lipophilic CYP substrates.
Collapse
Affiliation(s)
- Cara H Nelson
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Chi-Chi Peng
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Justin D Lutz
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Catherine K Yeung
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Alex Zelter
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Nina Isoherranen
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| |
Collapse
|
16
|
Foti RS, Diaz P, Douguet D. Comparison of the ligand binding site of CYP2C8 with CYP26A1 and CYP26B1: a structural basis for the identification of new inhibitors of the retinoic acid hydroxylases. J Enzyme Inhib Med Chem 2016; 31:148-161. [PMID: 27424662 DOI: 10.1080/14756366.2016.1193734] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The CYP26s are responsible for metabolizing retinoic acid and play an important role in maintaining homeostatic levels of retinoic acid. Given the ability of CYP2C8 to metabolize retinoic acid, we evaluated the potential for CYP2C8 inhibitors to also inhibit CYP26. In vitro assays were used to evaluate the inhibition potencies of CYP2C8 inhibitors against CYP26A1 and CYP26B1. Using tazarotenic acid as a substrate for CYP26, IC50 values for 17 inhibitors of CYP2C8 were determined for CYP26A1 and CYP26B1, ranging from ∼20 nM to 100 μM, with a positive correlation observed between IC50s for CYP2C8 and CYP26A1. An evaluation of IC50's versus in vivo Cmax values suggests that inhibitors such as clotrimazole or fluconazole may interact with CYP26 at clinically relevant concentrations and may alter levels of retinoic acid. These findings provide insight into drug interactions resulting in elevated retinoic acid concentrations and expand upon the pharmacophore of CYP26 inhibition.
Collapse
Affiliation(s)
- Robert S Foti
- a Amgen Pharmacokinetics and Drug Metabolism , Cambridge , MA , USA
| | - Philippe Diaz
- b Department of Biomedical and Pharmaceutical Sciences , Core Laboratory for Neuromolecular Production, University of Montana , Missoula , MT , USA.,c Dermaxon , Missoula , MT , USA , and
| | - Dominique Douguet
- d CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Nice Sophia Antipolis , Valbonne , France
| |
Collapse
|
17
|
Kramlinger VM, Nagy LD, Fujiwara R, Johnson KM, Phan TTN, Xiao Y, Enright JM, Toomey MB, Corbo JC, Guengerich FP. Human cytochrome P450 27C1 catalyzes 3,4-desaturation of retinoids. FEBS Lett 2016; 590:1304-12. [PMID: 27059013 DOI: 10.1002/1873-3468.12167] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/23/2016] [Accepted: 03/29/2016] [Indexed: 11/05/2022]
Abstract
In humans, a considerable fraction of the retinoid pool in skin is derived from vitamin A2 (all-trans 3,4-dehydroretinal). Vitamin A2 may be locally generated by keratinocytes, which can convert vitamin A1 (all-trans retinol) into vitamin A2 in cell culture. We report that human cytochrome P450 (hP450) 27C1, a previously 'orphan' enzyme, can catalyze this reaction. Purified recombinant hP450 27C1 bound and desaturated all-trans retinol, retinal, and retinoic acid, as well as 11-cis-retinal. Although the physiological role of 3,4-dehydroretinoids in humans is unclear, we have identified hP450 27C1 as an enzyme capable of efficiently mediating their formation.
Collapse
Affiliation(s)
- Valerie M Kramlinger
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Leslie D Nagy
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Rina Fujiwara
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kevin M Johnson
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Thanh T N Phan
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yi Xiao
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jennifer M Enright
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew B Toomey
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Joseph C Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | |
Collapse
|
18
|
Improved Homology Model of the Human all-trans Retinoic Acid Metabolizing Enzyme CYP26A1. Molecules 2016; 21:351. [PMID: 26999080 PMCID: PMC6274249 DOI: 10.3390/molecules21030351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 03/07/2016] [Accepted: 03/09/2016] [Indexed: 11/17/2022] Open
Abstract
A new CYP26A1 homology model was built based on the crystal structure of cyanobacterial CYP120A1. The model quality was examined for stereochemical accuracy, folding reliability, and absolute quality using a variety of different bioinformatics tools. Furthermore, the docking capabilities of the model were assessed by docking of the natural substrate all-trans-retinoic acid (atRA), and a group of known azole- and tetralone-based CYP26A1 inhibitors. The preferred binding pose of atRA suggests the (4S)-OH-atRA metabolite production, in agreement with recently available experimental data. The distances between the ligands and the heme group iron of the enzyme are in agreement with corresponding distances obtained for substrates and azole inhibitors for other cytochrome systems. The calculated theoretical binding energies agree with recently reported experimental data and show that the model is capable of discriminating between natural substrate, strong inhibitors (R116010 and R115866), and weak inhibitors (liarozole, fluconazole, tetralone derivatives).
Collapse
|
19
|
Foti RS, Isoherranen N, Zelter A, Dickmann LJ, Buttrick BR, Diaz P, Douguet D. Identification of Tazarotenic Acid as the First Xenobiotic Substrate of Human Retinoic Acid Hydroxylase CYP26A1 and CYP26B1. J Pharmacol Exp Ther 2016; 357:281-92. [PMID: 26937021 DOI: 10.1124/jpet.116.232637] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/26/2016] [Indexed: 11/22/2022] Open
Abstract
Cytochrome P450 (CYP) 26A1 and 26B1 are heme-containing enzymes responsible for metabolizing all-trans retinoic acid (at-RA). No crystal structures have been solved, and therefore homology models that provide structural information are extremely valuable for the development of inhibitors of cytochrome P450 family 26 (CYP26). The objectives of this study were to use homology models of CYP26A1 and CYP26B1 to characterize substrate binding characteristics, to compare structural aspects of their active sites, and to support the role of CYP26 in the metabolism of xenobiotics. Each model was verified by dockingat-RA in the active site and comparing the results to known metabolic profiles ofat-RA. The models were then used to predict the metabolic sites of tazarotenic acid with results verified by in vitro metabolite identification experiments. The CYP26A1 and CYP26B1 homology models predicted that the benzothiopyranyl moiety of tazarotenic acid would be oriented toward the heme of each enzyme and suggested that tazarotenic acid would be a substrate of CYP26A1 and CYP26B1. Metabolite identification experiments indicated that CYP26A1 and CYP26B1 oxidatively metabolized tazarotenic acid on the predicted moiety, with in vitro rates of metabolite formation by CYP26A1 and CYP26B1 being the highest across a panel of enzymes. Molecular analysis of the active sites estimated the active-site volumes of CYP26A1 and CYP26B1 to be 918 Å(3)and 977 Å(3), respectively. Overall, the homology models presented herein describe the enzyme characteristics leading to the metabolism of tazarotenic acid by CYP26A1 and CYP26B1 and support a potential role for the CYP26 enzymes in the metabolism of xenobiotics.
Collapse
Affiliation(s)
- Robert S Foti
- Amgen Pharmacokinetics and Drug Metabolism, Seattle, Washington (R.S.F.); Department of Pharmaceutics, University of Washington, Seattle, Washington (N.I., A.Z., L.J.D., B.R.B.); Core Laboratory for Neuromolecular Production, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana (P.D.); CNRS, Université Nice Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Valbonne, France (D.D.)
| | - Nina Isoherranen
- Amgen Pharmacokinetics and Drug Metabolism, Seattle, Washington (R.S.F.); Department of Pharmaceutics, University of Washington, Seattle, Washington (N.I., A.Z., L.J.D., B.R.B.); Core Laboratory for Neuromolecular Production, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana (P.D.); CNRS, Université Nice Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Valbonne, France (D.D.)
| | - Alex Zelter
- Amgen Pharmacokinetics and Drug Metabolism, Seattle, Washington (R.S.F.); Department of Pharmaceutics, University of Washington, Seattle, Washington (N.I., A.Z., L.J.D., B.R.B.); Core Laboratory for Neuromolecular Production, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana (P.D.); CNRS, Université Nice Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Valbonne, France (D.D.)
| | - Leslie J Dickmann
- Amgen Pharmacokinetics and Drug Metabolism, Seattle, Washington (R.S.F.); Department of Pharmaceutics, University of Washington, Seattle, Washington (N.I., A.Z., L.J.D., B.R.B.); Core Laboratory for Neuromolecular Production, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana (P.D.); CNRS, Université Nice Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Valbonne, France (D.D.)
| | - Brian R Buttrick
- Amgen Pharmacokinetics and Drug Metabolism, Seattle, Washington (R.S.F.); Department of Pharmaceutics, University of Washington, Seattle, Washington (N.I., A.Z., L.J.D., B.R.B.); Core Laboratory for Neuromolecular Production, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana (P.D.); CNRS, Université Nice Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Valbonne, France (D.D.)
| | - Philippe Diaz
- Amgen Pharmacokinetics and Drug Metabolism, Seattle, Washington (R.S.F.); Department of Pharmaceutics, University of Washington, Seattle, Washington (N.I., A.Z., L.J.D., B.R.B.); Core Laboratory for Neuromolecular Production, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana (P.D.); CNRS, Université Nice Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Valbonne, France (D.D.)
| | - Dominique Douguet
- Amgen Pharmacokinetics and Drug Metabolism, Seattle, Washington (R.S.F.); Department of Pharmaceutics, University of Washington, Seattle, Washington (N.I., A.Z., L.J.D., B.R.B.); Core Laboratory for Neuromolecular Production, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana (P.D.); CNRS, Université Nice Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Valbonne, France (D.D.)
| |
Collapse
|
20
|
Pallan PS, Nagy LD, Lei L, Gonzalez E, Kramlinger VM, Azumaya CM, Wawrzak Z, Waterman MR, Guengerich FP, Egli M. Structural and kinetic basis of steroid 17α,20-lyase activity in teleost fish cytochrome P450 17A1 and its absence in cytochrome P450 17A2. J Biol Chem 2014; 290:3248-68. [PMID: 25533464 DOI: 10.1074/jbc.m114.627265] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome P450 (P450) 17A enzymes play a critical role in the oxidation of the steroids progesterone (Prog) and pregnenolone (Preg) to glucocorticoids and androgens. In mammals, a single enzyme, P450 17A1, catalyzes both 17α-hydroxylation and a subsequent 17α,20-lyase reaction with both Prog and Preg. Teleost fish contain two 17A P450s; zebrafish P450 17A1 catalyzes both 17α-hydroxylation and lyase reactions with Prog and Preg, and P450 17A2 is more efficient in pregnenolone 17α-hydroxylation but does not catalyze the lyase reaction, even in the presence of cytochrome b5. P450 17A2 binds all substrates and products, although more loosely than P450 17A1. Pulse-chase and kinetic spectral experiments and modeling established that the two-step P450 17A1 Prog oxidation is more distributive than the Preg reaction, i.e. 17α-OH product dissociates more prior to the lyase step. The drug orteronel selectively blocked the lyase reaction of P450 17A1 but only in the case of Prog. X-ray crystal structures of zebrafish P450 17A1 and 17A2 were obtained with the ligand abiraterone and with Prog for P450 17A2. Comparison of the two fish P450 17A-abiraterone structures with human P450 17A1 (DeVore, N. M., and Scott, E. E. (2013) Nature 482, 116-119) showed only a few differences near the active site, despite only ∼50% identity among the three proteins. The P450 17A2 structure differed in four residues near the heme periphery. These residues may allow the proposed alternative ferric peroxide mechanism for the lyase reaction, or residues removed from the active site may allow conformations that lead to the lyase activity.
Collapse
Affiliation(s)
- Pradeep S Pallan
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 and
| | - Leslie D Nagy
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 and
| | - Li Lei
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 and
| | - Eric Gonzalez
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 and
| | - Valerie M Kramlinger
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 and
| | - Caleigh M Azumaya
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 and
| | - Zdzislaw Wawrzak
- the Life Sciences Collaborative Access Team, Sector 21, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439
| | - Michael R Waterman
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 and
| | - F Peter Guengerich
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 and
| | - Martin Egli
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 and
| |
Collapse
|
21
|
Topletz AR, Tripathy S, Foti RS, Shimshoni JA, Nelson WL, Isoherranen N. Induction of CYP26A1 by metabolites of retinoic acid: evidence that CYP26A1 is an important enzyme in the elimination of active retinoids. Mol Pharmacol 2014; 87:430-41. [PMID: 25492813 DOI: 10.1124/mol.114.096784] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
All-trans-retinoic acid (atRA), the active metabolite of vitamin A, induces gene transcription via binding to nuclear retinoic acid receptors (RARs). The primary hydroxylated metabolites formed from atRA by CYP26A1, and the subsequent metabolite 4-oxo-atRA, bind to RARs and potentially have biologic activity. Hence, CYP26A1, the main atRA hydroxylase, may function either to deplete bioactive retinoids or to form active metabolites. This study aimed to determine the role of CYP26A1 in modulating RAR activation via formation and elimination of active retinoids. After treatment of HepG2 cells with atRA, (4S)-OH-atRA, (4R)-OH-atRA, 4-oxo-atRA, and 18-OH-atRA, mRNAs of CYP26A1 and RARβ were increased 300- to 3000-fold, with 4-oxo-atRA and atRA being the most potent inducers. However, >60% of the 4-OH-atRA enantiomers were converted to 4-oxo-atRA in the first 12 hours of treatment, suggesting that the activity of the 4-OH-atRA was due to 4-oxo-atRA. In human hepatocytes, atRA, 4-OH-atRA, and 4-oxo-atRA induced CYP26A1 and 4-oxo-atRA formation was observed from 4-OH-atRA. In HepG2 cells, 4-oxo-atRA formation was observed even in the absence of CYP26A1 activity and this formation was not inhibited by ketoconazole. In human liver microsomes, 4-oxo-atRA formation was supported by NAD(+), suggesting that 4-oxo-atRA formation is mediated by a microsomal alcohol dehydrogenase. Although 4-oxo-atRA was not formed by CYP26A1, it was depleted by CYP26A1 (Km = 63 nM and intrinsic clearance = 90 μl/min per pmol). Similarly, CYP26A1 depleted 18-OH-atRA and the 4-OH-atRA enantiomers. These data support the role of CYP26A1 to clear bioactive retinoids, and suggest that the enzyme forming active 4-oxo-atRA may be important in modulating retinoid action.
Collapse
Affiliation(s)
- Ariel R Topletz
- Departments of Pharmaceutics (A.R.T., S.T., J.A.S., N.I.) and Medicinal Chemistry (W.L.N.), University of Washington, Seattle, Washington; and Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., Seattle, Washington (R.S.F.)
| | - Sasmita Tripathy
- Departments of Pharmaceutics (A.R.T., S.T., J.A.S., N.I.) and Medicinal Chemistry (W.L.N.), University of Washington, Seattle, Washington; and Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., Seattle, Washington (R.S.F.)
| | - Robert S Foti
- Departments of Pharmaceutics (A.R.T., S.T., J.A.S., N.I.) and Medicinal Chemistry (W.L.N.), University of Washington, Seattle, Washington; and Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., Seattle, Washington (R.S.F.)
| | - Jakob A Shimshoni
- Departments of Pharmaceutics (A.R.T., S.T., J.A.S., N.I.) and Medicinal Chemistry (W.L.N.), University of Washington, Seattle, Washington; and Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., Seattle, Washington (R.S.F.)
| | - Wendel L Nelson
- Departments of Pharmaceutics (A.R.T., S.T., J.A.S., N.I.) and Medicinal Chemistry (W.L.N.), University of Washington, Seattle, Washington; and Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., Seattle, Washington (R.S.F.)
| | - Nina Isoherranen
- Departments of Pharmaceutics (A.R.T., S.T., J.A.S., N.I.) and Medicinal Chemistry (W.L.N.), University of Washington, Seattle, Washington; and Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., Seattle, Washington (R.S.F.)
| |
Collapse
|
22
|
Wang W, Ni Y, Wang L, Che X, Liu W, Meng Q. Stereoselective oxidation metabolism of 20(S)-protopanaxatriol in human liver microsomes and in rats. Xenobiotica 2014; 45:385-95. [DOI: 10.3109/00498254.2014.986562] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
23
|
Wang W, Wang L, Wu X, Xu L, Meng Q, Liu W. Stereoselective Formation and Metabolism of 20(S)-Protopanaxadiol Ocotillol Type Epimers in Vivo and in Vitro. Chirality 2014; 27:170-6. [DOI: 10.1002/chir.22407] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 10/15/2014] [Indexed: 01/19/2023]
Affiliation(s)
- Wenyan Wang
- School of Pharmacy; Yantai University; Yantai China
| | - Li Wang
- School of Pharmacy; Yantai University; Yantai China
| | - Xiangmeng Wu
- School of Pharmacy; Yantai University; Yantai China
| | - Lixiao Xu
- School of Pharmacy; Yantai University; Yantai China
| | - Qingguo Meng
- School of Pharmacy; Yantai University; Yantai China
| | - Wanhui Liu
- School of Pharmacy; Yantai University; Yantai China
| |
Collapse
|
24
|
Álvarez R, Vaz B, Gronemeyer H, de Lera ÁR. Functions, therapeutic applications, and synthesis of retinoids and carotenoids. Chem Rev 2013; 114:1-125. [PMID: 24266866 DOI: 10.1021/cr400126u] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rosana Álvarez
- Departamento de Química Orgánica, Centro de Investigación Biomédica (CINBIO), and Instituto de Investigación Biomédica de Vigo (IBIV), Universidade de Vigo , 36310 Vigo, Spain
| | | | | | | |
Collapse
|
25
|
Lee CM, Lee BS, Arnold SL, Isoherranen N, Morgan ET. Nitric oxide and interleukin-1β stimulate the proteasome-independent degradation of the retinoic acid hydroxylase CYP2C22 in primary rat hepatocytes. J Pharmacol Exp Ther 2013; 348:141-52. [PMID: 24144795 DOI: 10.1124/jpet.113.209841] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
CYP2C22 was recently described as a retinoic acid-metabolizing cytochrome P450 enzyme whose transcription is induced by all-trans-retinoic acid (atRA) in hepatoma cells (Qian L, Zolfaghari R, and Ross AC (2010) J Lipid Res 51:1781-1792). We identified CYP2C22 as a putative nitric oxide (NO)-regulated protein in a proteomic screen and raised specific polyclonal antibodies to CYP2C22 to study its protein expression. We found that CYP2C22 is a liver-specific protein that was not significantly induced by activators of the pregnane X receptor, constitutive androstane receptor, or peroxisome proliferator-activated receptor-α, but was downregulated to <25% of control by the aryl hydrocarbon receptor agonist β-naphthoflavone in cultured rat hepatocytes. CYP2C22 protein and its mRNA both were induced by atRA in hepatocytes, with EC50 of 100-300 nM, whereas the maximal extent of mRNA induction was twice that of the protein. CYP2C22 protein, but not its mRNA, was rapidly downregulated in hepatocytes by interleukin-1 (IL-1) or NO-donating compounds, and the downregulation by IL-1 was blocked by inhibition of NO synthases. The NO donor (Z)-1-[N-(3-aminopropyl)-N-(3-ammoniopropyl)amino]diazen-1-ium-1,2-diolate reduced the half-life of CYP2C22 from 8.7 to 3.4 hours in the presence of cycloheximide, demonstrating that NO-dependent downregulation is due to stimulated proteolysis. No intermediate degradation products were detected. However, this degradation was insensitive to inhibitors of calpains or the canonical proteasomal or lysosomal pathways, indicating that NO-dependent degradation of CYP2C22 proceeds via a novel pathway.
Collapse
Affiliation(s)
- Choon-myung Lee
- Department of Pharmacology, Emory University, Atlanta, Georgia (C.-m.L., B.-s.L., E.T.M.); and Department of Pharmaceutics, University of Washington, Seattle, Washington (S.L.A., N.I.)
| | | | | | | | | |
Collapse
|