1
|
Wang P, Li M, Dong L, Zhang C, Xie W. Comparative Genomics of Thaumarchaeota From Deep-Sea Sponges Reveal Their Niche Adaptation. Front Microbiol 2022; 13:869834. [PMID: 35859738 PMCID: PMC9289680 DOI: 10.3389/fmicb.2022.869834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
Thaumarchaeota account for a large portion of microbial symbionts in deep-sea sponges and are even dominant in some cases. In this study, we investigated three new sponge-associated Thaumarchaeota from the deep West Pacific Ocean. Thaumarchaeota were found to be the most dominant phylum in this sponge by both prokaryotic 16S rRNA amplicons and metagenomic sequencing. Fifty-seven published Thaumarchaeota genomes from sponges and other habitats were included for genomic comparison. Similar to shallow sponge-associated Thaumarchaeota, those Thaumarchaeota in deep-sea sponges have extended genome sizes and lower coding density compared with their free-living lineages. Thaumarchaeota in deep-sea sponges were specifically enriched in genes related to stress adapting, symbiotic adhesion and stability, host–microbe interaction and protein transportation. The genes involved in defense mechanisms, such as the restriction-modification system, clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system, and toxin-antitoxin system were commonly enriched in both shallow and deep sponge-associated Thaumarchaeota. Our study demonstrates the significant effects of both depth and symbiosis on forming genomic characteristics of Thaumarchaeota, and provides novel insights into their niche adaptation in deep-sea sponges.
Collapse
Affiliation(s)
- Peng Wang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Minchun Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Liang Dong
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng Zhang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Wei Xie
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- *Correspondence: Wei Xie,
| |
Collapse
|
2
|
Ortega D, Beeby M. How Did the Archaellum Get Its Rotation? Front Microbiol 2022; 12:803720. [PMID: 35558523 PMCID: PMC9087265 DOI: 10.3389/fmicb.2021.803720] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
How new functions evolve fascinates many evolutionary biologists. Particularly captivating is the evolution of rotation in molecular machines, as it evokes familiar machines that we have made ourselves. The archaellum, an archaeal analog of the bacterial flagellum, is one of the simplest rotary motors. It features a long helical propeller attached to a cell envelope-embedded rotary motor. Satisfyingly, the archaellum is one of many members of the large type IV filament superfamily, which includes pili, secretion systems, and adhesins, relationships that promise clues as to how the rotating archaellum evolved from a non-rotary ancestor. Nevertheless, determining exactly how the archaellum got its rotation remains frustratingly elusive. Here we review what is known about how the archaellum got its rotation, what clues exist, and what more is needed to address this question.
Collapse
Affiliation(s)
| | - Morgan Beeby
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
3
|
Nuno de Sousa Machado J, Albers SV, Daum B. Towards Elucidating the Rotary Mechanism of the Archaellum Machinery. Front Microbiol 2022; 13:848597. [PMID: 35387068 PMCID: PMC8978795 DOI: 10.3389/fmicb.2022.848597] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Motile archaea swim by means of a molecular machine called the archaellum. This structure consists of a filament attached to a membrane-embedded motor. The archaellum is found exclusively in members of the archaeal domain, but the core of its motor shares homology with the motor of type IV pili (T4P). Here, we provide an overview of the different components of the archaellum machinery and hypothetical models to explain how rotary motion of the filament is powered by the archaellum motor.
Collapse
Affiliation(s)
- João Nuno de Sousa Machado
- Molecular Biology of Archaea, Faculty of Biology, Institute of Biology II, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Faculty of Biology, Institute of Biology II, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Bertram Daum
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
4
|
Gambelli L, Isupov MN, Conners R, McLaren M, Bellack A, Gold V, Rachel R, Daum B. An archaellum filament composed of two alternating subunits. Nat Commun 2022; 13:710. [PMID: 35132062 PMCID: PMC8821640 DOI: 10.1038/s41467-022-28337-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
Archaea use a molecular machine, called the archaellum, to swim. The archaellum consists of an ATP-powered intracellular motor that drives the rotation of an extracellular filament composed of multiple copies of proteins named archaellins. In many species, several archaellin homologs are encoded in the same operon; however, previous structural studies indicated that archaellum filaments mainly consist of only one protein species. Here, we use electron cryo-microscopy to elucidate the structure of the archaellum from Methanocaldococcus villosus at 3.08 Å resolution. The filament is composed of two alternating archaellins, suggesting that the architecture and assembly of archaella is more complex than previously thought. Moreover, we identify structural elements that may contribute to the filament’s flexibility. The archaellum is a molecular machine used by archaea to swim, consisting of an intracellular motor that drives the rotation of an extracellular filament composed of multiple copies of proteins named archaellins. Here, the authors use electron cryo-microscopy to elucidate the structure of an archaellum, and find that the filament is composed of two alternating archaellins.
Collapse
Affiliation(s)
- Lavinia Gambelli
- Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK.,College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK
| | - Michail N Isupov
- Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Rebecca Conners
- Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK.,College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Mathew McLaren
- Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK.,College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Annett Bellack
- Institute of Microbiology and Archaea Centre, University of Regensburg, 93053, Regensburg, Germany
| | - Vicki Gold
- Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK.,College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Reinhard Rachel
- Institute of Microbiology and Archaea Centre, University of Regensburg, 93053, Regensburg, Germany
| | - Bertram Daum
- Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK. .,College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK.
| |
Collapse
|
5
|
de Sousa Machado JN, Vollmar L, Schimpf J, Chaudhury P, Kumariya R, van der Does C, Hugel T, Albers SV. Autophosphorylation of the KaiC-like protein ArlH inhibits oligomerization and interaction with ArlI, the motor ATPase of the archaellum. Mol Microbiol 2021; 116:943-956. [PMID: 34219289 DOI: 10.1111/mmi.14781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 12/27/2022]
Abstract
Motile archaea are propelled by the archaellum, whose motor complex consists of the membrane protein ArlJ, the ATPase ArlI, and the ATP-binding protein ArlH. Despite its essential function and the existence of structural and biochemical data on ArlH, the role of ArlH in archaellum assembly and function remains elusive. ArlH is a structural homolog of KaiC, the central component of the cyanobacterial circadian clock. Since autophosphorylation and dephosphorylation of KaiC are central properties for the function of KaiC, we asked whether autophosphorylation is also a property of ArlH proteins. We observed that both ArlH from the euryarchaeon Pyrococcus furiosus (PfArlH) and from the crenarchaeon Sulfolobus acidocaldarius (SaArlH) have autophosphorylation activity. Using a combination of single-molecule fluorescence measurements and biochemical assays, we show that autophosphorylation of ArlH is closely linked to its oligomeric state when bound to hexameric ArlI. These experiments also strongly suggest that ArlH is a hexamer in its ArlI-bound state. Mutagenesis of the putative catalytic residue (Glu-57 in SaArlH) in ArlH results in a reduced autophosphorylation activity and abolished archaellation and motility in S. acidocaldarius, indicating that optimum phosphorylation activity of ArlH is essential for archaellation and motility.
Collapse
Affiliation(s)
- J Nuno de Sousa Machado
- Molecular Biology of Archaea and Signaling Research Centre BIOSS, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Leonie Vollmar
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany.,Institute of Physical Chemistry and Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Julia Schimpf
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany.,Institute of Physical Chemistry and Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Paushali Chaudhury
- Molecular Biology of Archaea and Signaling Research Centre BIOSS, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Rashmi Kumariya
- Molecular Biology of Archaea and Signaling Research Centre BIOSS, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Chris van der Does
- Molecular Biology of Archaea and Signaling Research Centre BIOSS, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Thorsten Hugel
- Institute of Physical Chemistry and Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea and Signaling Research Centre BIOSS, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Jarrell KF, Albers SV, Machado JNDS. A comprehensive history of motility and Archaellation in Archaea. FEMS MICROBES 2021; 2:xtab002. [PMID: 37334237 PMCID: PMC10117864 DOI: 10.1093/femsmc/xtab002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/18/2021] [Indexed: 08/24/2023] Open
Abstract
Each of the three Domains of life, Eukarya, Bacteria and Archaea, have swimming structures that were all originally called flagella, despite the fact that none were evolutionarily related to either of the other two. Surprisingly, this was true even in the two prokaryotic Domains of Bacteria and Archaea. Beginning in the 1980s, evidence gradually accumulated that convincingly demonstrated that the motility organelle in Archaea was unrelated to that found in Bacteria, but surprisingly shared significant similarities to type IV pili. This information culminated in the proposal, in 2012, that the 'archaeal flagellum' be assigned a new name, the archaellum. In this review, we provide a historical overview on archaella and motility research in Archaea, beginning with the first simple observations of motile extreme halophilic archaea a century ago up to state-of-the-art cryo-tomography of the archaellum motor complex and filament observed today. In addition to structural and biochemical data which revealed the archaellum to be a type IV pilus-like structure repurposed as a rotating nanomachine (Beeby et al. 2020), we also review the initial discoveries and subsequent advances using a wide variety of approaches to reveal: complex regulatory events that lead to the assembly of the archaellum filaments (archaellation); the roles of the various archaellum proteins; key post-translational modifications of the archaellum structural subunits; evolutionary relationships; functions of archaella other than motility and the biotechnological potential of this fascinating structure. The progress made in understanding the structure and assembly of the archaellum is highlighted by comparing early models to what is known today.
Collapse
Affiliation(s)
- Ken F Jarrell
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Sonja-Verena Albers
- Institute for Biology II- Microbiology, Molecular Biology of Archaea, University of Freiburg, Schänzlestraße 1, Freiburg 79104, Germany
| | - J Nuno de Sousa Machado
- Institute for Biology II- Microbiology, Molecular Biology of Archaea, University of Freiburg, Schänzlestraße 1, Freiburg 79104, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Albertstraße 19A, 79104, Freiburg, Germany
| |
Collapse
|
7
|
de Sousa Machado JN, Vollmar L, Schimpf J, Chaudhury P, Kumariya R, van der Does C, Hugel T, Albers S. Autophosphorylation of the KaiC-like protein ArlH inhibits oligomerisation and interaction with ArlI, the motor ATPase of the archaellum.. [DOI: 10.1101/2021.03.19.436134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
Abstract
Motile archaea are propelled by the archaellum, whose motor complex consists of the membrane protein ArlJ, the ATPase ArlI, and the ATP-binding protein ArlH. Despite its essential function and the existence of structural and biochemical data on ArlH, the role of ArlH in archaellum assembly and function remains elusive. ArlH is a structural homolog of KaiC, the central component of the cyanobacterial circadian clock. Similar to KaiC, ArlH exhibits autophosphorylation activity, which was observed for both ArlH of the euryarchaeonPyrococcus furiosus (PfArlH)and the crenarchaeonSulfolobus acidocaldarius(SaArlH). Using a combination of single molecule fluorescence measurements and biochemical assays, it is shown that autophosphorylation of ArlH is closely linked to the oligomeric state of ArlH bound to ArlI. These experiments also strongly suggest that ArlH is a hexamer in its functional ArlI bound state. Mutagenesis of the putative catalytic residue Glu-57 inSaArlH results in a reduced autophosphorylation activity and abolished archaellation and motility, suggesting that optimum phosphorylation activity of ArlH is essential for both archaellation and motility.
Collapse
|
8
|
Beeby M, Ferreira JL, Tripp P, Albers SV, Mitchell DR. Propulsive nanomachines: the convergent evolution of archaella, flagella and cilia. FEMS Microbiol Rev 2020; 44:253-304. [DOI: 10.1093/femsre/fuaa006] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
ABSTRACT
Echoing the repeated convergent evolution of flight and vision in large eukaryotes, propulsive swimming motility has evolved independently in microbes in each of the three domains of life. Filamentous appendages – archaella in Archaea, flagella in Bacteria and cilia in Eukaryotes – wave, whip or rotate to propel microbes, overcoming diffusion and enabling colonization of new environments. The implementations of the three propulsive nanomachines are distinct, however: archaella and flagella rotate, while cilia beat or wave; flagella and cilia assemble at their tips, while archaella assemble at their base; archaella and cilia use ATP for motility, while flagella use ion-motive force. These underlying differences reflect the tinkering required to evolve a molecular machine, in which pre-existing machines in the appropriate contexts were iteratively co-opted for new functions and whose origins are reflected in their resultant mechanisms. Contemporary homologies suggest that archaella evolved from a non-rotary pilus, flagella from a non-rotary appendage or secretion system, and cilia from a passive sensory structure. Here, we review the structure, assembly, mechanism and homologies of the three distinct solutions as a foundation to better understand how propulsive nanomachines evolved three times independently and to highlight principles of molecular evolution.
Collapse
Affiliation(s)
- Morgan Beeby
- Department of Life Sciences, Frankland Road, Imperial College of London, London, SW7 2AZ, UK
| | - Josie L Ferreira
- Department of Life Sciences, Frankland Road, Imperial College of London, London, SW7 2AZ, UK
| | - Patrick Tripp
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Schaenzlestrasse 1, 79211 Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Schaenzlestrasse 1, 79211 Freiburg, Germany
| | - David R Mitchell
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| |
Collapse
|
9
|
Abstract
The bacterial flagellar motor is driven by an ion flux that is converted to torque by motor-attendant complexes known as stators. The dynamics of stator assembly around the motor in response to external stimuli have been the subject of much recent research, but less is known about the evolutionary origins of stator complexes and how they select for specific ions. Here, we review the latest structural and biochemical data for the stator complexes and compare these with other ion transporters and microbial motors to examine possible evolutionary origins of the stator complex.
Collapse
|
10
|
The structure of the periplasmic FlaG-FlaF complex and its essential role for archaellar swimming motility. Nat Microbiol 2019; 5:216-225. [PMID: 31844299 DOI: 10.1038/s41564-019-0622-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 10/23/2019] [Indexed: 11/08/2022]
Abstract
Motility structures are vital in all three domains of life. In Archaea, motility is mediated by the archaellum, a rotating type IV pilus-like structure that is a unique nanomachine for swimming motility in nature. Whereas periplasmic FlaF binds the surface layer (S-layer), the structure, assembly and roles of other periplasmic components remain enigmatic, limiting our knowledge of the archaellum's functional interactions. Here, we find that the periplasmic protein FlaG and the association with its paralogue FlaF are essential for archaellation and motility. Therefore, we determine the crystal structure of Sulfolobus acidocaldarius soluble FlaG (sFlaG), which reveals a β-sandwich fold resembling the S-layer-interacting FlaF soluble domain (sFlaF). Furthermore, we solve the sFlaG2-sFlaF2 co-crystal structure, define its heterotetrameric complex in solution by small-angle X-ray scattering and find that mutations that disrupt the complex abolish motility. Interestingly, the sFlaF and sFlaG of Pyrococcus furiosus form a globular complex, whereas sFlaG alone forms a filament, indicating that FlaF can regulate FlaG filament assembly. Strikingly, Sulfolobus cells that lack the S-layer component bound by FlaF assemble archaella but cannot swim. These collective results support a model where a FlaG filament capped by a FlaG-FlaF complex anchors the archaellum to the S-layer to allow motility.
Collapse
|
11
|
Daum B, Gold V. Twitch or swim: towards the understanding of prokaryotic motion based on the type IV pilus blueprint. Biol Chem 2019; 399:799-808. [PMID: 29894297 DOI: 10.1515/hsz-2018-0157] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/05/2018] [Indexed: 01/02/2023]
Abstract
Bacteria and archaea are evolutionarily distinct prokaryotes that diverged from a common ancestor billions of years ago. However, both bacteria and archaea assemble long, helical protein filaments on their surface through a machinery that is conserved at its core. In both domains of life, the filaments are required for a diverse array of important cellular processes including cell motility, adhesion, communication and biofilm formation. In this review, we highlight the recent structures of both the type IV pilus machinery and the archaellum determined in situ. We describe the current level of functional understanding and discuss how this relates to the pressures facing bacteria and archaea throughout evolution.
Collapse
Affiliation(s)
- Bertram Daum
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.,College of Engineering, Mathematics and Physical Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Vicki Gold
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.,College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
12
|
Chaudhury P, van der Does C, Albers SV. Characterization of the ATPase FlaI of the motor complex of the Pyrococcus furiosus archaellum and its interactions between the ATP-binding protein FlaH. PeerJ 2018; 6:e4984. [PMID: 29938130 PMCID: PMC6011876 DOI: 10.7717/peerj.4984] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/25/2018] [Indexed: 01/09/2023] Open
Abstract
The archaellum, the rotating motility structure of archaea, is best studied in the crenarchaeon Sulfolobus acidocaldarius. To better understand how assembly and rotation of this structure is driven, two ATP-binding proteins, FlaI and FlaH of the motor complex of the archaellum of the euryarchaeon Pyrococcus furiosus, were overexpressed, purified and studied. Contrary to the FlaI ATPase of S. acidocaldarius, which only forms a hexamer after binding of nucleotides, FlaI of P. furiosus formed a hexamer in a nucleotide independent manner. In this hexamer only 2 of the ATP binding sites were available for binding of the fluorescent ATP-analog MANT-ATP, suggesting a twofold symmetry in the hexamer. P. furiosus FlaI showed a 250-fold higher ATPase activity than S. acidocaldarius FlaI. Interaction studies between the isolated N- and C-terminal domains of FlaI showed interactions between the N- and C-terminal domains and strong interactions between the N-terminal domains not previously observed for ATPases involved in archaellum assembly. These interactions played a role in oligomerization and activity, suggesting a conformational state of the hexamer not observed before. Further interaction studies show that the C-terminal domain of PfFlaI interacts with the nucleotide binding protein FlaH. This interaction stimulates the ATPase activity of FlaI optimally at a 1:1 stoichiometry, suggesting that hexameric PfFlaI interacts with hexameric PfFlaH. These data help to further understand the complex interactions that are required to energize the archaellar motor.
Collapse
Affiliation(s)
- Paushali Chaudhury
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Freiburg, Germany
| | - Chris van der Does
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
Kinosita Y, Nishizaka T. Cross-kymography analysis to simultaneously quantify the function and morphology of the archaellum. Biophys Physicobiol 2018; 15:121-128. [PMID: 29955563 PMCID: PMC6018435 DOI: 10.2142/biophysico.15.0_121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 03/29/2018] [Indexed: 12/13/2022] Open
Abstract
In many microorganisms helical structures are important for motility, e.g., bacterial flagella and kink propagation in Spiroplasma eriocheiris. Motile archaea also form a helical-shaped filament called the ‘archaellum’ that is functionally equivalent to the bacterial flagellum, but structurally resembles type IV pili. The archaellum motor consists of 6–8 proteins called fla accessory genes, and the filament assembly is driven by ATP hydrolysis at catalytic sites in FlaI. Remarkably, previous research using a dark-field microscopy showed that right-handed filaments propelled archaeal cells forwards or backwards by clockwise or counterclockwise rotation, respectively. However, the shape and rotational rate of the archaellum during swimming remained unclear, due to the low signal and lack of temporal resolution. Additionally, the structure and the motor properties of the archaellum and bacterial flagellum have not been precisely determined during swimming because they move freely in three-dimensional space. Recently, we developed an advanced method called “cross-kymography analysis”, which enables us to be a long-term observation and simultaneously quantify the function and morphology of helical structures using a total internal reflection fluorescence microscope. In this review, we introduce the basic idea of this analysis, and summarize the latest information in structural and functional characterization of the archaellum motor.
Collapse
Affiliation(s)
- Yoshiaki Kinosita
- Department of Physics, Gakushuin University, Toshima-ku, Tokyo 171-8588, Japan
| | - Takayuki Nishizaka
- Department of Physics, Gakushuin University, Toshima-ku, Tokyo 171-8588, Japan
| |
Collapse
|
14
|
Albers SV, Jarrell KF. The Archaellum: An Update on the Unique Archaeal Motility Structure. Trends Microbiol 2018; 26:351-362. [PMID: 29452953 DOI: 10.1016/j.tim.2018.01.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/08/2018] [Accepted: 01/19/2018] [Indexed: 11/24/2022]
Abstract
Each of the three domains of life exhibits a unique motility structure: while Bacteria use flagella, Eukarya employ cilia, and Archaea swim using archaella. Since the new name for the archaeal motility structure was proposed, in 2012, a significant amount of new data on the regulation of transcription of archaella operons, the structure and function of archaellum subunits, their interactions, and cryo-EM data on in situ archaellum complexes in whole cells have been obtained. These data support the notion that the archaellum is evolutionary and structurally unrelated to the flagellum, but instead is related to archaeal and bacterial type IV pili and emphasize that it is a motility structure unique to the Archaea.
Collapse
Affiliation(s)
- Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II - Microbiology, University of Freiburg, 79104 Freiburg, Germany.
| | - Ken F Jarrell
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
15
|
Expression, Purification, and Assembly of Archaellum Subcomplexes of Sulfolobus acidocaldarius. Methods Mol Biol 2018; 1764:307-314. [PMID: 29605923 DOI: 10.1007/978-1-4939-7759-8_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The archaellum assembly machinery and its filament consist of seven proteins in the crenarchaeon Sulfolobus acidocaldarius. We have so far expressed, purified, and biochemically characterized four of these archaellum subunits, namely, FlaX, FlaH, FlaI, and FlaF. FlaX, FlaH, and FlaI tightly interact and form the archaellum motor complex important for archaellum assembly and rotation. We have previously shown that FlaH forms an inner ring within a very stable FlaX ring, and therefore FlaX is believed to provide the scaffold for the assembly of the archaellum motor complex. Here we describe how to express and purify FlaX and FlaH and how the double ring structure both form can be obtained.
Collapse
|
16
|
Chaudhury P, Quax TEF, Albers SV. Versatile cell surface structures of archaea. Mol Microbiol 2017; 107:298-311. [PMID: 29194812 DOI: 10.1111/mmi.13889] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2017] [Indexed: 11/27/2022]
Abstract
Archaea are ubiquitously present in nature and colonize environments with broadly varying growth conditions. Several surface appendages support their colonization of new habitats. A hallmark of archaea seems to be the high abundance of type IV pili (T4P). However, some unique non T4 filaments are present in a number of archaeal species. Archaeal surface structures can mediate different processes such as cellular surface adhesion, DNA exchange, motility and biofilm formation and represent an initial attachment site for infecting viruses. In addition to the functionally characterized archaeal T4P, archaeal genomes encode a large number of T4P components that might form yet undiscovered surface structures with novel functions. In this review, we summarize recent advancement in structural and functional characterizations of known archaeal surface structures and highlight the diverse processes in which they play a role.
Collapse
Affiliation(s)
- Paushali Chaudhury
- Institute of Biology II, Molecular Biology of Archaea, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Tessa E F Quax
- Institute of Biology II, Molecular Biology of Archaea, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Sonja-Verena Albers
- Institute of Biology II, Molecular Biology of Archaea, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| |
Collapse
|
17
|
Daum B, Vonck J, Bellack A, Chaudhury P, Reichelt R, Albers SV, Rachel R, Kühlbrandt W. Structure and in situ organisation of the Pyrococcus furiosus archaellum machinery. eLife 2017; 6. [PMID: 28653905 PMCID: PMC5517150 DOI: 10.7554/elife.27470] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/26/2017] [Indexed: 12/25/2022] Open
Abstract
The archaellum is the macromolecular machinery that Archaea use for propulsion or surface adhesion, enabling them to proliferate and invade new territories. The molecular composition of the archaellum and of the motor that drives it appears to be entirely distinct from that of the functionally equivalent bacterial flagellum and flagellar motor. Yet, the structure of the archaellum machinery is scarcely known. Using combined modes of electron cryo-microscopy (cryoEM), we have solved the structure of the Pyrococcus furiosus archaellum filament at 4.2 Å resolution and visualise the architecture and organisation of its motor complex in situ. This allows us to build a structural model combining the archaellum and its motor complex, paving the way to a molecular understanding of archaeal swimming motion.
Collapse
Affiliation(s)
- Bertram Daum
- Max Planck Institute of Biophysics, Frankfurt, Germany.,Living Systems Institute, University of Exeter, Exeter, United Kingdom.,College of Physics, Engineering and Physical Science, University of Exeter, Exeter, United Kingdom
| | - Janet Vonck
- Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Annett Bellack
- Institute of Microbiology and Archaea Centre, University of Regensburg, Regensburg, Germany
| | - Paushali Chaudhury
- Institute of Biology II, Molecular Biology of Archaea, University of Freiburg, Freiburg, Germany
| | - Robert Reichelt
- Institute of Microbiology and Archaea Centre, University of Regensburg, Regensburg, Germany
| | - Sonja-Verena Albers
- Institute of Biology II, Molecular Biology of Archaea, University of Freiburg, Freiburg, Germany
| | - Reinhard Rachel
- Institute of Microbiology and Archaea Centre, University of Regensburg, Regensburg, Germany
| | | |
Collapse
|
18
|
Legerme G, Yang E, Esquivel RN, Kiljunen S, Savilahti H, Pohlschroder M. Screening of a Haloferax volcanii Transposon Library Reveals Novel Motility and Adhesion Mutants. Life (Basel) 2016; 6:life6040041. [PMID: 27898036 PMCID: PMC5198076 DOI: 10.3390/life6040041] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 12/11/2022] Open
Abstract
Archaea, like bacteria, use type IV pili to facilitate surface adhesion. Moreover, archaeal flagella—structures required for motility—share a common ancestry with type IV pili. While the characterization of archaeal homologs of bacterial type IV pilus biosynthesis components has revealed important aspects of flagellum and pilus biosynthesis and the mechanisms regulating motility and adhesion in archaea, many questions remain. Therefore, we screened a Haloferax volcanii transposon insertion library for motility mutants using motility plates and adhesion mutants, using an adapted air–liquid interface assay. Here, we identify 20 genes, previously unknown to affect motility or adhesion. These genes include potential novel regulatory genes that will help to unravel the mechanisms underpinning these processes. Both screens also identified distinct insertions within the genomic region lying between two chemotaxis genes, suggesting that chemotaxis not only plays a role in archaeal motility, but also in adhesion. Studying these genes, as well as hypothetical genes hvo_2512 and hvo_2876—also critical for both motility and adhesion—will likely elucidate how these two systems interact. Furthermore, this study underscores the usefulness of the transposon library to screen other archaeal cellular processes for specific phenotypic defects.
Collapse
Affiliation(s)
- Georgio Legerme
- Department of Biology, University of Pennsylvania, Philadelphia 19104, PA, USA.
| | - Evan Yang
- Department of Biology, University of Pennsylvania, Philadelphia 19104, PA, USA.
| | - Rianne N Esquivel
- Department of Biology, University of Pennsylvania, Philadelphia 19104, PA, USA.
| | - Saija Kiljunen
- Division of Genetics and Physiology, Department of Biology, University of Turku, Turku 20500, Finland.
- Immunobiology Program, Research Programs Unit, University of Helsinki, Fi-00014, Helsinki, Finland.
| | - Harri Savilahti
- Division of Genetics and Physiology, Department of Biology, University of Turku, Turku 20500, Finland.
| | | |
Collapse
|
19
|
Bischof LF, Friedrich C, Harms A, Søgaard-Andersen L, van der Does C. The Type IV Pilus Assembly ATPase PilB of Myxococcus xanthus Interacts with the Inner Membrane Platform Protein PilC and the Nucleotide-binding Protein PilM. J Biol Chem 2016; 291:6946-57. [PMID: 26851283 DOI: 10.1074/jbc.m115.701284] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Indexed: 01/01/2023] Open
Abstract
Type IV pili (T4P) are ubiquitous bacterial cell surface structures, involved in processes such as twitching motility, biofilm formation, bacteriophage infection, surface attachment, virulence, and natural transformation. T4P are assembled by machinery that can be divided into the outer membrane pore complex, the alignment complex that connects components in the inner and outer membrane, and the motor complex in the inner membrane and cytoplasm. Here, we characterize the inner membrane platform protein PilC, the cytosolic assembly ATPase PilB of the motor complex, and the cytosolic nucleotide-binding protein PilM of the alignment complex of the T4P machinery ofMyxococcus xanthus PilC was purified as a dimer and reconstituted into liposomes. PilB was isolated as a monomer and bound ATP in a non-cooperative manner, but PilB fused to Hcp1 ofPseudomonas aeruginosaformed a hexamer and bound ATP in a cooperative manner. Hexameric but not monomeric PilB bound to PilC reconstituted in liposomes, and this binding stimulated PilB ATPase activity. PilM could only be purified when it was stabilized by a fusion with a peptide corresponding to the first 16 amino acids of PilN, supporting an interaction between PilM and PilN(1-16). PilM-N(1-16) was isolated as a monomer that bound but did not hydrolyze ATP. PilM interacted directly with PilB, but only with PilC in the presence of PilB, suggesting an indirect interaction. We propose that PilB interacts with PilC and with PilM, thus establishing the connection between the alignment and the motor complex.
Collapse
Affiliation(s)
- Lisa Franziska Bischof
- From the Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg and the Institute of Biology II, Molecular Biology of Archaea, University of Freiburg, D-79104 Freiburg, Germany
| | - Carmen Friedrich
- From the Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg and
| | - Andrea Harms
- From the Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg and
| | - Lotte Søgaard-Andersen
- From the Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg and
| | - Chris van der Does
- From the Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg and the Institute of Biology II, Molecular Biology of Archaea, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
20
|
Effects of growth conditions on archaellation and N-glycosylation in Methanococcus maripaludis. Microbiology (Reading) 2016; 162:339-350. [DOI: 10.1099/mic.0.000221] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
21
|
Chaudhury P, Neiner T, D'Imprima E, Banerjee A, Reindl S, Ghosh A, Arvai AS, Mills DJ, van der Does C, Tainer JA, Vonck J, Albers SV. The nucleotide-dependent interaction of FlaH and FlaI is essential for assembly and function of the archaellum motor. Mol Microbiol 2015; 99:674-85. [PMID: 26508112 PMCID: PMC5019145 DOI: 10.1111/mmi.13260] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2015] [Indexed: 12/24/2022]
Abstract
The motor of the membrane-anchored archaeal motility structure, the archaellum, contains FlaX, FlaI and FlaH. FlaX forms a 30 nm ring structure that acts as a scaffold protein and was shown to interact with the bifunctional ATPase FlaI and FlaH. However, the structure and function of FlaH has been enigmatic. Here we present structural and functional analyses of isolated FlaH and archaellum motor subcomplexes. The FlaH crystal structure reveals a RecA/Rad51 family fold with an ATP bound on a conserved and exposed surface, which presumably forms an oligomerization interface. FlaH does not hydrolyze ATP in vitro, but ATP binding to FlaH is essential for its interaction with FlaI and for archaellum assembly. FlaH interacts with the C-terminus of FlaX, which was earlier shown to be essential for FlaX ring formation and to mediate interaction with FlaI. Electron microscopy reveals that FlaH assembles as a second ring inside the FlaX ring in vitro. Collectively these data reveal central structural mechanisms for FlaH interactions in mediating archaellar assembly: FlaH binding within the FlaX ring and nucleotide-regulated FlaH binding to FlaI form the archaellar basal body core.
Collapse
Affiliation(s)
- Paushali Chaudhury
- Molecular Biology of Archaea, University of Freiburg, Institute of Biology II, Schaenzlestr.1, 79104, Freiburg, Germany
| | - Tomasz Neiner
- Molecular Biology of Archaea, University of Freiburg, Institute of Biology II, Schaenzlestr.1, 79104, Freiburg, Germany
| | - Edoardo D'Imprima
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt, Germany
| | - Ankan Banerjee
- FB- Chemie-Biochemie, AG-Essen, Philipps Universität Marburg, Hans-Meerwein-Straße 4, 35039, Marburg, Germany
| | - Sophia Reindl
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Abhrajyoti Ghosh
- Molecular Biology of Archaea, University of Freiburg, Institute of Biology II, Schaenzlestr.1, 79104, Freiburg, Germany
| | - Andrew S Arvai
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Deryck J Mills
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt, Germany
| | - Chris van der Does
- Molecular Biology of Archaea, University of Freiburg, Institute of Biology II, Schaenzlestr.1, 79104, Freiburg, Germany
| | - John A Tainer
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, University of Freiburg, Institute of Biology II, Schaenzlestr.1, 79104, Freiburg, Germany
| |
Collapse
|
22
|
Syutkin AS, Pyatibratov MG, Fedorov OV. Flagella of halophilic archaea: differences in supramolecular organization. BIOCHEMISTRY (MOSCOW) 2015; 79:1470-82. [PMID: 25749160 DOI: 10.1134/s0006297914130033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Archaeal flagella are similar functionally to bacterial flagella, but structurally they are completely different. Helical archaeal flagellar filaments are formed of protein subunits called flagellins (archaellins). Notwithstanding progress in studies of archaeal flagella achieved in recent years, many problems in this area are still unsolved. In this review, we analyze the formation of these supramolecular structures by the example of flagellar filaments of halophilic archaea. Recent data on the structure of the flagellar filaments demonstrate that their supramolecular organization differs considerably in different haloarchaeal species.
Collapse
Affiliation(s)
- A S Syutkin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | |
Collapse
|
23
|
FlaF Is a β-Sandwich Protein that Anchors the Archaellum in the Archaeal Cell Envelope by Binding the S-Layer Protein. Structure 2015; 23:863-872. [PMID: 25865246 PMCID: PMC4425475 DOI: 10.1016/j.str.2015.03.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 02/19/2015] [Accepted: 03/06/2015] [Indexed: 11/25/2022]
Abstract
Archaea employ the archaellum, a type IV pilus-like nanomachine, for swimming motility. In the crenarchaeon Sulfolobus acidocaldarius, the archaellum consists of seven proteins: FlaB/X/G/F/H/I/J. FlaF is conserved and essential for archaellum assembly but no FlaF structures exist. Here, we truncated the FlaF N terminus and solved 1.5-Å and 1.65-Å resolution crystal structures of this monotopic membrane protein. Structures revealed an N-terminal α-helix and an eight-strand β-sandwich, immunoglobulin-like fold with striking similarity to S-layer proteins. Crystal structures, X-ray scattering, and mutational analyses suggest dimer assembly is needed for in vivo function. The sole cell envelope component of S. acidocaldarius is a paracrystalline S-layer, and FlaF specifically bound to S-layer protein, suggesting that its interaction domain is located in the pseudoperiplasm with its N-terminal helix in the membrane. From these data, FlaF may act as the previously unknown archaellum stator protein that anchors the rotating archaellum to the archaeal cell envelope. This is the first structural and functional study of an archaellum stator component sFlaF is a β-sandwich, immunoglobulin-like dimeric protein FlaF resembles and binds to the S-layer protein FlaF exerts its function in the pseudoperiplasm
Collapse
|
24
|
Abstract
Recent studies on archaeal motility have shown that the archaeal motility structure is unique in several aspects. Although it fulfills the same swimming function as the bacterial flagellum, it is evolutionarily and structurally related to the type IV pilus. This was the basis for the recent proposal to term the archaeal motility structure the "archaellum." This review illustrates the key findings that led to the realization that the archaellum was a novel motility structure and presents the current knowledge about the structural composition, mechanism of assembly and regulation, and the posttranslational modifications of archaella.
Collapse
Affiliation(s)
- Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II-Microbiology, University of Freiburg , Freiburg, Germany ; Molecular Biology of Archaea, Max Planck Institute for Terrestrial Microbiology , Marburg, Germany
| | - Ken F Jarrell
- Department of Biomedical and Molecular Sciences, Queen's University , Kingston, ON, Canada
| |
Collapse
|
25
|
Nair DB, Jarrell KF. Pilin Processing Follows a Different Temporal Route than That of Archaellins in Methanococcus maripaludis. Life (Basel) 2015; 5:85-101. [PMID: 25569238 PMCID: PMC4390842 DOI: 10.3390/life5010085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/26/2014] [Indexed: 11/16/2022] Open
Abstract
Methanococcus maripaludis has two different surface appendages: type IV-like pili and archaella. Both structures are believed to be assembled using a bacterial type IV pilus mechanism. Each structure is composed of multiple subunits, either pilins or archaellins. Both pilins and archaellins are made initially as preproteins with type IV pilin-like signal peptides, which must be removed by a prepilin peptidase-like enzyme. This enzyme is FlaK for archaellins and EppA for pilins. In addition, both pilins and archaellins are modified with N-linked glycans. The archaellins possess an N-linked tetrasaccharide while the pilins have a pentasaccharide which consists of the archaellin tetrasaccharide but with an additional sugar, an unidentified hexose, attached to the linking sugar. In this report, we show that archaellins can be processed by FlaK in the absence of N-glycosylation and N-glycosylation can occur on archaellins that still retain their signal peptides. In contrast, pilins are not glycosylated unless they have been acted on by EppA to have the signal peptide removed. However, EppA can still remove signal peptides from non-glycosylated pilins. These findings indicate that there is a difference in the order of the posttranslational modifications of pilins and archaellins even though both are type IV pilin-like proteins.
Collapse
Affiliation(s)
- Divya B Nair
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Ken F Jarrell
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
26
|
N-Glycosylation of the archaellum filament is not important for archaella assembly and motility, although N-Glycosylation is essential for motility in Sulfolobus acidocaldarius. Biochimie 2014; 118:294-301. [PMID: 25447136 DOI: 10.1016/j.biochi.2014.10.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 10/17/2014] [Indexed: 12/29/2022]
Abstract
N-Glycosylation is one of the predominant posttranslational modifications, which is found in all three domains of life. N-Glycosylation has been shown to influence many biological aspects of proteins, like protein folding, stability or activity. In this study we demonstrate that the archaellum filament subunit FlaB of Sulfolobus acidocaldarius is N-glycosylated. Each of the six predicted N-Glycosylation sites within FlaB are modified with the attachment of an N-glycan. Although, it has been previously shown that N-Glycosylation is essential for motility in S. acidocaldarius, as defects in the N-Glycosylation process resulted in none or reduced motile cells, strains lacking one to all six N-Glycosylation sites within FlaB still remained motile. Deletion of the first five N-Glycosylation sites in FlaB did not significantly affect the motility, whereas removal of all six N-Glycosylation sites reduced motility by about 40%. Transmission electron microscopy analyses of non glycosylated and glycosylated archaellum filament revealed no structural change in length. Therefore N-Glycosylation does not appear to be important for the stability and assembly of the archaellum filament itself, but plays a role in other parts of the archaellum assembly.
Collapse
|
27
|
Nair DB, Uchida K, Aizawa SI, Jarrell KF. Genetic analysis of a type IV pili-like locus in the archaeon Methanococcus maripaludis. Arch Microbiol 2014; 196:179-91. [PMID: 24493292 DOI: 10.1007/s00203-014-0956-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/28/2013] [Accepted: 01/24/2014] [Indexed: 12/29/2022]
Abstract
Methanococcus maripaludis is a stringently anaerobic archaeon with two studied surface structures, archaella and type IV pili. Previously, it was shown that three pilin genes (mmp0233 [epdA], mmp0236 [epdB] and mmp0237 [epdC]) located within an 11 gene cluster in the genome were necessary for normal piliation. This study focused on analysis of the remaining genes to determine their potential involvement in piliation. Reverse transcriptase PCR experiments demonstrated the 11 genes formed a single transcriptional unit. Deletions were made in all the non-pilin genes except mmp0231. Electron microscopy revealed that all the genes in the locus except mmp0235 and mmp0238 were essential for piliation. Complementation with a plasmid-borne wild-type copy of the deleted gene restored at least some piliation. We identified genes for an assembly ATPase and two versions of the conserved pilin platform forming protein necessary for pili assembly at a separate genetic locus.
Collapse
Affiliation(s)
- Divya B Nair
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | | | | | | |
Collapse
|
28
|
Investigation of the malE promoter and MalR, a positive regulator of the maltose regulon, for an improved expression system in Sulfolobus acidocaldarius. Appl Environ Microbiol 2013; 80:1072-81. [PMID: 24271181 DOI: 10.1128/aem.03050-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, the regulator MalR (Saci_1161) of the TrmB family from Sulfolobus acidocaldarius was identified and was shown to be involved in transcriptional control of the maltose regulon (Saci_1660 to Saci_1666), including the ABC transporter (malEFGK), α-amylase (amyA), and α-glycosidase (malA). The ΔmalR deletion mutant exhibited a significantly decreased growth rate on maltose and dextrin but not on sucrose. The expression of the genes organized in the maltose regulon was induced only in the presence of MalR and maltose in the growth medium, indicating that MalR, in contrast to its TrmB and TrmB-like homologues, is an activator of the maltose gene cluster. Electrophoretic mobility shift assays revealed that the binding of MalR to malE was independent of sugars. Here we report the identification of the archaeal maltose regulator protein MalR, which acts as an activator and controls the expression of genes involved in maltose transport and metabolic conversion in S. acidocaldarius, and its use for improvement of the S. acidocaldarius expression system under the control of an optimized maltose binding protein (malE) promoter by promoter mutagenesis.
Collapse
|
29
|
Banerjee A, Neiner T, Tripp P, Albers SV. Insights into subunit interactions in theSulfolobus acidocaldariusarchaellum cytoplasmic complex. FEBS J 2013; 280:6141-9. [DOI: 10.1111/febs.12534] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/12/2013] [Accepted: 09/09/2013] [Indexed: 12/30/2022]
Affiliation(s)
- Ankan Banerjee
- Molecular Biology of Archaea; Max Planck Institute for Terrestrial Microbiology; Marburg Germany
| | - Tomasz Neiner
- Molecular Biology of Archaea; Max Planck Institute for Terrestrial Microbiology; Marburg Germany
| | - Patrick Tripp
- Molecular Biology of Archaea; Max Planck Institute for Terrestrial Microbiology; Marburg Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea; Max Planck Institute for Terrestrial Microbiology; Marburg Germany
| |
Collapse
|
30
|
Tripepi M, Esquivel RN, Wirth R, Pohlschröder M. Haloferax volcanii cells lacking the flagellin FlgA2 are hypermotile. MICROBIOLOGY-SGM 2013; 159:2249-2258. [PMID: 23989184 DOI: 10.1099/mic.0.069617-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Motility driven by rotational movement of flagella allows bacteria and archaea to seek favourable conditions and escape toxic ones. However, archaeal flagella share structural similarities with bacterial type IV pili rather than bacterial flagella. The Haloferax volcanii genome contains two flagellin genes, flgA1 and flgA2. While FlgA1 has been shown to be a major flagellin, the function of FlgA2 is elusive. In this study, it was determined that although FlgA2 by itself does not confer motility to non-motile ΔflgA1 Hfx. volcanii, a subset of these mutant cells contains a flagellum. Consistent with FlgA2 being assembled into functional flagella, FlgA1 expressed from a plasmid can only complement a ΔflgA1 strain when co-expressed with chromosomal or plasmid-encoded FlgA2. Surprisingly, a mutant strain lacking FlgA2, but expressing chromosomally encoded FlgA1, is hypermotile, a phenotype that is accompanied by an increased number of flagella per cell, as well as an increased flagellum length. Site-directed mutagenesis resulting in early translational termination of flgA2 suggests that the hypermotility of the ΔflgA2 strain is not due to transcriptional regulation. This, and the fact that plasmid-encoded FlgA2 expression in a ΔflgA2 strain does not reduce its hypermotility, suggests a possible regulatory role for FlgA2 that depends on the relative abundance of FlgA1. Taken together, our results indicate that FlgA2 plays both structural and regulatory roles in Hfx. volcanii flagella-dependent motility. Future studies will build upon the data presented here to elucidate the significance of the hypermotility of this ΔflgA2 mutant, and will illuminate the regulation and function of archaeal flagella.
Collapse
Affiliation(s)
- Manuela Tripepi
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rianne N Esquivel
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Reinhard Wirth
- Institute for Microbiology, University of Regensburg, Universitaetsstrasse 31D-93053 Regensburg, Germany
| | | |
Collapse
|
31
|
Jarrell KF, Ding Y, Nair DB, Siu S. Surface appendages of archaea: structure, function, genetics and assembly. Life (Basel) 2013; 3:86-117. [PMID: 25371333 PMCID: PMC4187195 DOI: 10.3390/life3010086] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/09/2013] [Accepted: 01/09/2013] [Indexed: 12/17/2022] Open
Abstract
Organisms representing diverse subgroupings of the Domain Archaea are known to possess unusual surface structures. These can include ones unique to Archaea such as cannulae and hami as well as archaella (archaeal flagella) and various types of pili that superficially resemble their namesakes in Bacteria, although with significant differences. Major advances have occurred particularly in the study of archaella and pili using model organisms with recently developed advanced genetic tools. There is common use of a type IV pili-model of assembly for several archaeal surface structures including archaella, certain pili and sugar binding structures termed bindosomes. In addition, there are widespread posttranslational modifications of archaellins and pilins with N-linked glycans, with some containing novel sugars. Archaeal surface structures are involved in such diverse functions as swimming, attachment to surfaces, cell to cell contact resulting in genetic transfer, biofilm formation, and possible intercellular communication. Sometimes functions are co-dependent on other surface structures. These structures and the regulation of their assembly are important features that allow various Archaea, including thermoacidophilic, hyperthermophilic, halophilic, and anaerobic ones, to survive and thrive in the extreme environments that are commonly inhabited by members of this domain.
Collapse
Affiliation(s)
- Ken F Jarrell
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston Ontario, K7L 3N6, Canada.
| | - Yan Ding
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston Ontario, K7L 3N6, Canada.
| | - Divya B Nair
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston Ontario, K7L 3N6, Canada.
| | - Sarah Siu
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston Ontario, K7L 3N6, Canada.
| |
Collapse
|