1
|
Kolancılar H, Özcan H, Yılmaz AŞ, Salan AS, Ece A. 2,3-Dichloronaphthoquinone derivatives: Synthesis, antimicrobial activity, molecular modelling and ADMET studies. Bioorg Chem 2024; 146:107300. [PMID: 38522391 DOI: 10.1016/j.bioorg.2024.107300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
In the present study, an intermediate namely 2-(3-bromopropylamino)-3-chloronaphthalene-1,4-dione was initially synthesized via the nucleophilic addition-elimination reaction between 2,3-dichloro-1,4-naphthoquinone and 3-bromo-1-aminopropane. Then a coupling reaction between the intermediate and piperazine derivatives yielded a number of 1,4-naphthoquinone derivatives. Spectroscopic analysis successfully characterized the products that were obtained in good yields. In vitro antibacterial properties of the compounds were examined against different bacterial strains. In vitro antibacterial properties of the compounds were examined against the bacterial strains S. Aureus, E. Faecalis, E. Coli and P. Aeruginosa. While compound 9 was found to be effective against all bacterial strains used, compound 12 was active against three strains and compounds 10 and 11 were effective against the two. None of the compounds are effective against C. albicans strain. In silico molecular docking studies revealed that all compounds had docking scores comparable to the antibacterial drugs ciprofloxacin and gentamicin and might be considered as DNA gyrase B inhibitors. Molecular dynamics simulations were also conducted for a better understanding of the stability and the selected docked complexes. Additionally, the drug similarity of the synthesized compounds and ADMET characteristics were examined in conjunction with the antibiotic ciprofloxacin, and drug potentials were then evaluated. Compatible predictions were found with the drug similarity and ADMET parameters.
Collapse
Affiliation(s)
- Hakan Kolancılar
- Department of Professional Pharmaceutical Sciences, Faculty of Pharmacy, Trakya University, 22030 Edirne, Türkiye.
| | - Hafize Özcan
- Department of Chemistry, Faculty of Science, Trakya University, 22030 Edirne, Türkiye
| | - Ayşen Şuekinci Yılmaz
- Department of Chemistry, Faculty of Science, Trakya University, 22030 Edirne, Türkiye
| | - Alparslan Semih Salan
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Trakya University, 22030 Edirne, Türkiye
| | - Abdulilah Ece
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, İstanbul, Türkiye
| |
Collapse
|
2
|
Alishahi M, Aboelkheir M, Chowdhury R, Altier C, Shen H, Uyar T. Functionalization of cotton nonwoven with cyclodextrin/lawsone inclusion complex nanofibrous coating for antibacterial wound dressing. Int J Pharm 2024; 652:123815. [PMID: 38242260 DOI: 10.1016/j.ijpharm.2024.123815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 01/21/2024]
Abstract
Functionalizing cotton to induce biological activity is a viable approach for developing wound dressing. This study explores the development of cotton-based wound dressing through coating with biologically active nanofibers. Bioactive compounds like lawsone offer dual benefits of wound healing and infection prevention, however, their limited solubility and viability hinder their applications. To address this, Hydroxypropyl-beta-cyclodextrin (HP-β-CD) and Hydroxypropyl-gamma-cyclodextrin (HP-γ-CD) were employed. Inclusion complexations of CD/lawsone were achieved at 2:1 and 4:1 M ratios, followed by the fabrication of CD/lawsone nanofibrous systems via electrospinning. Phase solubility studies indicated a twofold increase in lawsone water-solubility with HP-β-CD. Electrospinning yielded smooth and uniform nanofibers with an average diameter of ∼300-700 nm. The results showed that while specific crystalline peaks of lawsone are apparent in the samples with a 2:1 M ratio, they disappeared in 4:1, indicating complete complexation. The nanofibers exhibited ∼100 % loading efficiency of lawsone and its rapid release upon dissolution. Notably, antibacterial assays demonstrated the complete elimination of Escherichia coli and Staphylococcus aureus colonies. The CD/lawsone nanofibers also showed suitable antioxidant activity ranging from 50 % to 70 %. This integrated approach effectively enhances lawsone's solubility through CD complexation and offers promise for bilayer cotton-based wound dressings.
Collapse
Affiliation(s)
- Mohsen Alishahi
- Fiber Science Program, Department of Human Centered Design, College of Human Ecology, Cornell University, Ithaca, NY 14853, United States
| | - Mahmoud Aboelkheir
- Fiber Science Program, Department of Human Centered Design, College of Human Ecology, Cornell University, Ithaca, NY 14853, United States
| | - Rimi Chowdhury
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States
| | - Craig Altier
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States
| | | | - Tamer Uyar
- Fiber Science Program, Department of Human Centered Design, College of Human Ecology, Cornell University, Ithaca, NY 14853, United States.
| |
Collapse
|
3
|
Adhikrao PA, Motiram GM, Kumar G. Tackling Nontuberculous Mycobacteria by Repurposable Drugs and Potential Leads from Natural Products. Curr Top Med Chem 2024; 24:1291-1326. [PMID: 38288807 DOI: 10.2174/0115680266276938240108060247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 07/25/2024]
Abstract
Nontuberculous Mycobacteria (NTM) refer to bacteria other than all Mycobacterium species that do not cause tuberculosis or leprosy, excluding the species of the Mycobacterium tuberculosis complex, M. leprae and M. lepromatosis. NTM are ubiquitous and present in soils and natural waters. NTM can survive in a wide range of environmental conditions. The direct inoculum of the NTM from water or other materials is most likely a source of infections. NTMs are responsible for several illnesses, including pulmonary alveolar proteinosis, cystic fibrosis, bronchiectasis, chronic obstructive pneumoconiosis, and pulmonary disease. Recent reports suggest that NTM species have become insensitive to sterilizing agents, antiseptics, and disinfectants. The efficacy of existing anti-NTM regimens is diminishing and has been compromised due to drug resistance. New and recurring cases of multidrug-resistant NTM strains are increasing. Thus, there is an urgent need for ant-NTM regimens with novel modes of action. This review sheds light on the mode of antimicrobial resistance in the NTM species. Then, we discussed the repurposable drugs (antibiotics) that have shown new indications (activity against NTM strains) that could be developed for treating NTM infections. Also, we have summarised recently identified natural leads acting against NTM, which have the potential for treating NTM-associated infections.
Collapse
Affiliation(s)
- Patil Amruta Adhikrao
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| | - Gudle Mayuri Motiram
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| | - Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| |
Collapse
|
4
|
Leitão AC, Ferreira TL, Gurgel do Amaral Valente Sá L, Rodrigues DS, de Souza BO, Barbosa AD, Moreira LEA, de Andrade Neto JB, Cabral VPDF, Rios MEF, Cavalcanti BC, Silva J, Marinho ES, Dos Santos HS, de Moraes MO, Júnior HVN, da Silva CR. Antibacterial activity of menadione alone and in combination with oxacillin against methicillin-resistant Staphylococcus aureus and its impact on biofilms. J Med Microbiol 2023; 72. [PMID: 37707372 DOI: 10.1099/jmm.0.001751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
Introduction. Antibiotic resistance is a major threat to public health, particularly with methicillin-resistant Staphylococcus aureus (MRSA) being a leading cause of antimicrobial resistance. To combat this problem, drug repurposing offers a promising solution for the discovery of new antibacterial agents.Hypothesis. Menadione exhibits antibacterial activity against methicillin-sensitive and methicillin-resistant S. aureus strains, both alone and in combination with oxacillin. Its primary mechanism of action involves inducing oxidative stress.Methodology. Sensitivity assays were performed using broth microdilution. The interaction between menadione, oxacillin, and antioxidants was assessed using checkerboard technique. Mechanism of action was evaluated using flow cytometry, fluorescence microscopy, and in silico analysis.Aim. The aim of this study was to evaluate the in vitro antibacterial potential of menadione against planktonic and biofilm forms of methicillin-sensitive and resistant S. aureus strains. It also examined its role as a modulator of oxacillin activity and investigated the mechanism of action involved in its activity.Results. Menadione showed antibacterial activity against planktonic cells at concentrations ranging from 2 to 32 µg ml-1, with bacteriostatic action. When combined with oxacillin, it exhibited an additive and synergistic effect against the tested strains. Menadione also demonstrated antibiofilm activity at subinhibitory concentrations and effectively combated biofilms with reduced sensitivity to oxacillin alone. Its mechanism of action involves the production of reactive oxygen species (ROS) and DNA damage. It also showed interactions with important targets, such as DNA gyrase and dehydroesqualene synthase. The presence of ascorbic acid reversed its effects.Conclusion. Menadione exhibited antibacterial and antibiofilm activity against MRSA strains, suggesting its potential as an adjunct in the treatment of S. aureus infections. The main mechanism of action involves the production of ROS, which subsequently leads to DNA damage. Additionally, the activity of menadione can be complemented by its interaction with important virulence targets.
Collapse
Affiliation(s)
- Amanda Cavalcante Leitão
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Thais Lima Ferreira
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lívia Gurgel do Amaral Valente Sá
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
- Christus University Center, Fortaleza, CE, Brazil
| | - Daniel Sampaio Rodrigues
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Beatriz Oliveira de Souza
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Amanda Dias Barbosa
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lara Elloyse Almeida Moreira
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Vitória Pessoa de Farias Cabral
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | | | - Jacilene Silva
- Department of Chemistry, Theoretical Chemistry and Electrochemistry Group (GQTE), State University of Ceará, Limoeiro do Norte, CE, Brazil
| | - Emmanuel Silva Marinho
- Department of Chemistry, Theoretical Chemistry and Electrochemistry Group (GQTE), State University of Ceará, Limoeiro do Norte, CE, Brazil
| | - Hélcio Silva Dos Santos
- Center for Exact Sciences and Technology, Acaraú Valley State University, Sobral, CE, Brazil
| | | | - Hélio Vitoriano Nobre Júnior
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Cecília Rocha da Silva
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
5
|
Ribeiro A, Serrano R, da Silva IBM, Gomes ET, Pinto JF, Silva O. The Genus Diospyros: A Review of Novel Insights into the Biological Activity and Species of Mozambican Flora. PLANTS (BASEL, SWITZERLAND) 2023; 12:2833. [PMID: 37570987 PMCID: PMC10421099 DOI: 10.3390/plants12152833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023]
Abstract
Species of the Diospyros L. genus (Ebenaceae family) have been largely used in traditional medicine for the treatment of several diseases, especially infectious ones. To date, active major compounds such as naphthoquinones, triterpenoids, and tannins have been isolated and pharmacologically validated from Diospyros species. The present study summarizes the information available in the literature on the species described in the Flora of Mozambique. To do so, scientific databases (e.g., PubMed, Scopus, Web of Science, and Google Scholar) were searched using various keywords and Boolean connectors to gather and summarize the information. Of the 31 native and naturalized species in the Flora of Mozambique, 17 are used in different regions of Africa and were described for their traditional uses. They were reported to treat more than 20 diseases, mostly infectious, in the gastrointestinal and oral cavity compartments. This work provides an overview of the therapeutical potential of Diospyros species and explores novel insights on the antimicrobial potential of extracts and/or isolated compounds of these Mozambican species.
Collapse
Affiliation(s)
| | | | | | | | | | - Olga Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (A.R.); (R.S.); (I.B.M.d.S.); (E.T.G.); (J.F.P.)
| |
Collapse
|
6
|
Cadamuro RD, Bastos IMADS, de Freitas ACO, Rosa MDS, Costa GDO, da Silva IT, Robl D, Stoco PH, Sandjo LP, Treichel H, Steindel M, Fongaro G. Bioactivity Screening and Chemical Characterization of Biocompound from Endophytic Neofusicoccum parvum and Buergenerula spartinae Isolated from Mangrove Ecosystem. Microorganisms 2023; 11:1599. [PMID: 37375101 DOI: 10.3390/microorganisms11061599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The discovery of biomolecules has been the subject of extensive research for several years due to their potential to combat harmful pathogens that can lead to environmental contamination and infections in both humans and animals. This study aimed to identify the chemical profile of endophytic fungi, namely Neofusicoccum parvum and Buergenerula spartinae, which were isolated from Avecinnia schaueriana and Laguncularia racemosa. We identified several HPLC-MS compounds, including Ethylidene-3,39-biplumbagin, Pestauvicolactone A, Phenylalanine, 2-Isopropylmalic acid, Fusaproliferin, Sespendole, Ansellone, Calanone derivative, Terpestacin, and others. Solid-state fermentation was conducted for 14-21 days, and methanol and dichloromethane extraction were performed to obtain a crude extract. The results of our cytotoxicity assay revealed a CC50 value > 500 μg/mL, while the virucide, Trypanosoma, leishmania, and yeast assay demonstrated no inhibition. Nevertheless, the bacteriostatic assay showed a 98% reduction in Listeria monocytogenes and Escherichia coli. Our findings suggest that these endophytic fungi species with distinct chemical profiles represent a promising niche for further exploring new biomolecules.
Collapse
Affiliation(s)
- Rafael Dorighello Cadamuro
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | | | - Ana Claudia Oliveira de Freitas
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Marilene da Silva Rosa
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | | | - Izabella Thaís da Silva
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Diogo Robl
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Patricia Hermes Stoco
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Louis Pergaud Sandjo
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Helen Treichel
- Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim 99700970, RS, Brazil
| | - Mário Steindel
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Gislaine Fongaro
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| |
Collapse
|
7
|
Mone NS, Syed S, Ravichandiran P, Satpute SK, Kim AR, Yoo DJ. How Structure-Function Relationships of 1,4-Naphthoquinones Combat Antimicrobial Resistance in Multidrug-Resistant (MDR) Pathogens. ChemMedChem 2023; 18:e202200471. [PMID: 36316281 DOI: 10.1002/cmdc.202200471] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/30/2022] [Indexed: 11/06/2022]
Abstract
Antimicrobial resistance (AMR) is one of the top ten health-related threats worldwide. Among several antimicrobial agents, naphthoquinones (NQs) of plant/chemical origin possess enormous structural and functional diversity and are effective against multidrug-resistant (MDR) pathogens. 1,4-NQs possess alkyl, hydroxyl, halide, and metal groups as side chains on their double-ring structure, predominantly at the C-2, C-3, C-5, and C-8 positions. Among 1,4-NQs, hydroxyl groups at either C-2 or C-5 exhibit significant antibacterial activity against Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. (ESKAPE) and MDR categories. 1,4-NQs exhibit antibacterial activities like plasmids curing, reactive oxygen species generation, efflux pumps inhibition, anti-DNA gyrase activity, membrane permeabilization, and biofilm inhibition. This review emphasizes the structure-function relationships of 1,4-NQs against ESKAPE and MDR pathogens based on a literature review of studies published in the last 15 years. Overall, 1,4-NQs have great potential for counteracting the antimicrobial resistance of MDR pathogens.
Collapse
Affiliation(s)
- Nishigandha S Mone
- Department of Microbiology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, Maharashtra, India
| | - Sahil Syed
- Department of Microbiology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, Maharashtra, India
| | - Palanisamy Ravichandiran
- R&D Education Center for Whole Life Cycle R&D of Fuel Cell Systems, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea.,Department of Life Science, Department of Energy Storage/Conversion Engineering (BK21 FOUR) of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea.,Present address: Analytical, HP Green R&D Centre, Hindustan Petroleum Corporation Limited, KIADB Industrial Area, Devangundi, Hoskote, Bengaluru, 562114, Karnataka, India
| | - Surekha K Satpute
- Department of Microbiology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, Maharashtra, India
| | - Ae Rhan Kim
- Department of Life Science, Department of Energy Storage/Conversion Engineering (BK21 FOUR) of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Dong Jin Yoo
- R&D Education Center for Whole Life Cycle R&D of Fuel Cell Systems, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea.,Department of Life Science, Department of Energy Storage/Conversion Engineering (BK21 FOUR) of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| |
Collapse
|
8
|
Fatahi Bafghi M, Salary S, Mirzaei F, Mahmoodian H, Meftahizade H, Zareshahi R. Antibacterial and anti-trichomunas characteristics of local landraces of Lawsonia inermis L. BMC Complement Med Ther 2022; 22:203. [PMID: 35907942 PMCID: PMC9338597 DOI: 10.1186/s12906-022-03676-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/15/2022] [Indexed: 02/05/2023] Open
Abstract
Abstract
Background
Henna (Lawsonia inermis) with anti-bacterial properties has been widely used in traditional medicine especially Persian medicine. Henna oil is suggested for diseases of infectious origin, such as cervical ulcers. Group B Streptococcus agalactiae, Pseudomonas aeruginosa and, Trichomonas vaginalis are involved in the infection of women especially cervicitis. Henna grows in dry and tropical regions. The main important landraces of henna landraces are cultivated in Kerman, Sistan and Baluchestan, Hormozgan, and Bushehr provinces in Iran.
Proper use of antimicrobial agents, use of new antimicrobial strategies, and alternative methods, such as herbal methods may help reduce drug resistance in the future. This study’s objective was to investigate the anti-Trichomonas vaginalis activity of three different henna landraces and antimicrobial effects against group B Streptococcus agalactiae and, Pseudomonas aeruginosa.
Methods
Total phenol content was measured by Folin ciocaltu method. Antibacterial effect of landraces of Henna against P. aeruginosa and S. agalactiae were assayed by well diffusion method and minimal inhibitory concentration assessments were done using the broth micro-dilution technique. Anti-Trichomonas effect of Henna landraces were assayed by Hemocytometery method.
Results
Total phenol content of Shahdad, Rudbar-e-Jonub, and Qaleh Ganj was 206.51, 201.96, and 254.85 μg/ml, respectively. Shahdad, Rudbar-e-Jonub, and Qaleh Ganj had MIC against GBS at 15, 15 and, 4 μg/ml. The growth inhibition diameter of the most effective henna (Shahdad landrace) at a concentration of 20 μg/ml on P. aeruginosa was 2.46 ± 0.15 cm and in the MIC method at a concentration of 5 μg/ml of Shahdad landrace, P. aeruginosa did not grow. IC50 of shahdad Henna after 24 h, 48 h, and 72 h was 7.54, 4.83 and 20.54 μg/ml, respectively. IC50 of Rudbar-e-Jonub extract was 5.76, 3.79 and 5.77 μg/ml in different days. IC50 of Qaleh Ganj extract was 6.09, 4.08 and 5.74 μg/ml in different days.
Conclusions
The amount of total phenol in Qaleh Ganj was higher than the other varieties. In the well diffusion method, Qaleh Ganj was more effective against group B Streptococcus (Gram-positive bacterium) than the other two landraces, and Shahdad landrace was more effective against P. aeruginosa (Gram-negative bacterium) than other. In the MIC method, the same result was obtained as in the well diffusion method, but at a lower concentration.
Collapse
|
9
|
Fareed N, El-Kersh DM, Youssef FS, Labib RM. Unveiling major ethnopharmacological aspects of genus Diospyros in context to its chemical diversity: A comprehensive overview. J Food Biochem 2022; 46:e14413. [PMID: 36136087 DOI: 10.1111/jfbc.14413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/22/2022] [Accepted: 08/30/2022] [Indexed: 01/13/2023]
Abstract
Diospyros species (DS), "Ebenaceae," were known for their therapeutic uses in folk medicine since days of yore. Thereafter, scientific evidence related their health benefits to a myriad of chemical classes, for instance, naphthoquinones, flavonoids, tannins, coumarins, norbergenin derivatives, sterols, secoiridoids, sesquiterpenes, diterpenoids, triterpenoids, volatile organic compounds (VOCs), and carotenoids. The available literature showed that more than 200 compounds were isolated and identified via spectroscopic techniques. Many pharmacological activities of DS have been previously described, such as antioxidant, neuroprotective, antibacterial, antiviral, antiprotozoal, antifungal, antiinflammatory, analgesic, antipyretic and cosmeceutical, investigated, and confirmed through versatile in vitro and in vivo assays. Previous studies proved that genus Diospyros is a rich reservoir of valuable bioactive compounds. However, further comparative studies among its different species are recommended for more precise natural source-based drug discovery and clinical application. Accordingly, this review is to recall the chemical abundance and diversity among different members of genus Diospyros and their ethnopharmacological and pharmacological uses. PRACTICAL APPLICATIONS: Practically, providing sufficient background on both secondary metabolites divergence and pharmacological properties of genus Diospyros has many fruitful aspects. As demonstrated below, extracts and many isolated compounds have significant curative properties, which can lead to the discovery of pharmaceutically relevant alternative substitutes to conventional medicine. Consequently, molecular docking on various receptors can be applied. On the grounds, Naoxinqing tablets, a standardized herbal product containing D. kaki leaves extract, have been patented and recorded in Chinese Pharmacopeia as an approved Traditional Chinese Medicine (TCM) for the treatment of cerebro- and cardiovascular diseases, although the underlying mechanism remains under advisement. Moreover, the antimicrobial applications of DS are of considerable concern; since the widespread use of antibiotics resulted in different forms of bacterial resistance, hence, limiting and compromising effective treatment. In addition, as a result of contemporary rampant memory disorders, neuroprotective activities of different extracts of DS became of great emphasis.
Collapse
Affiliation(s)
- Nada Fareed
- Pharmacognosy Department, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, 11837, Egypt
| | - Dina M El-Kersh
- Pharmacognosy Department, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, 11837, Egypt
| | - Fadia S Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, 11566, Egypt
| | - Rola M Labib
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, 11566, Egypt
| |
Collapse
|
10
|
Wang W, Chang CT, Zhang Q. 1,4‐Naphthoquinone Analogs and Their Application as Antibacterial Agents. ChemistrySelect 2022. [DOI: 10.1002/slct.202203330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Weiding Wang
- Department of Chemistry Xi'an Jiaotong-Liverpool University No. 111 Ren Ai Road Suzhou 215123 China
| | - Cheng‐Wei Tom Chang
- Department of Chemistry and Biochemistry Utah State University, 0300 Old Main Hill Logan Utah 84322-0300 United States
| | - Qian Zhang
- Department of Chemistry Xi'an Jiaotong-Liverpool University No. 111 Ren Ai Road Suzhou 215123 China
| |
Collapse
|
11
|
Lozynskyi A, Senkiv J, Ivasechko I, Finiuk N, Klyuchivska O, Kashchak N, Lesyk D, Karkhut A, Polovkovych S, Levytska O, Karpenko O, Boshkayeva A, Sayakova G, Gzella A, Stoika R, Lesyk R. 1,4-Naphthoquinone Motif in the Synthesis of New Thiopyrano[2,3-d]thiazoles as Potential Biologically Active Compounds. Molecules 2022; 27:molecules27217575. [PMID: 36364402 PMCID: PMC9658586 DOI: 10.3390/molecules27217575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
A series of 11-substituted 3,5,10,11-tetrahydro-2H-benzo[6,7]thiochromeno[2,3-d][1,3]thiazole-2,5,10-triones were obtained via hetero-Diels-Alder reaction of 5-alkyl/arylallylidene/-4-thioxo-2-thiazolidinones and 1,4-naphthoquinones. The structures of newly synthesized compounds were established by spectral data and a single-crystal X-ray diffraction analysis. According to U.S. NCI protocols, compounds 3.5 and 3.6 were screened for their anticancer activity; 11-Phenethyl-3,11-dihydro-2H-benzo[6,7]thiochromeno[2,3-d]thiazole-2,5,10-trione (3.6) showed pronounced cytotoxic effect on leukemia (Jurkat, THP-1), epidermoid (KB3-1, KBC-1), and colon (HCT116wt, HCT116 p53-/-) cell lines. The cytotoxic action of 3.6 on p53-deficient colon carcinoma cells was two times weaker than on HCT116wt, and it may be an interesting feature of the mechanism action.
Collapse
Affiliation(s)
- Andrii Lozynskyi
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Julia Senkiv
- Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov14/16, 79005 Lviv, Ukraine
| | - Iryna Ivasechko
- Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov14/16, 79005 Lviv, Ukraine
| | - Nataliya Finiuk
- Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov14/16, 79005 Lviv, Ukraine
| | - Olga Klyuchivska
- Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov14/16, 79005 Lviv, Ukraine
| | - Nataliya Kashchak
- Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov14/16, 79005 Lviv, Ukraine
| | - Danylo Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Andriy Karkhut
- Department of Technology of Biologically Active Substances, Pharmacy and Biotechnology, Lviv Polytechnic National University, Bandera 12, 79013 Lviv, Ukraine
| | - Svyatoslav Polovkovych
- Department of Technology of Biologically Active Substances, Pharmacy and Biotechnology, Lviv Polytechnic National University, Bandera 12, 79013 Lviv, Ukraine
| | - Oksana Levytska
- Department of Organization and Economics of Pharmacy, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | | | - Assyl Boshkayeva
- Department of Pharmaceutical and Toxicological Chemistry, Pharmacognosy and Botany, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan
| | - Galiya Sayakova
- Department of Pharmaceutical and Toxicological Chemistry, Pharmacognosy and Botany, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan
| | - Andrzej Gzella
- Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Rostyslav Stoika
- Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov14/16, 79005 Lviv, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
- Correspondence: ; Tel.: +380-677-038-010
| |
Collapse
|
12
|
Antibacterial and Antibiofilm Potency of Menadione Against Multidrug-Resistant S. aureus. Curr Microbiol 2022; 79:282. [PMID: 35934752 DOI: 10.1007/s00284-022-02975-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/11/2022] [Indexed: 11/03/2022]
Abstract
Menadione is an analogue of 1,4-naphthoquinone (1,4-NQ) that possesses enormous pharmaceutical potential. The minimum inhibitory concentration (MIC) of menadione was determined against eighteen pathogens of the ESKAPE category, including thirteen multidrug-resistant (MDR) and five standard strains. From a total of eighteen pathogens, five strains of S. aureus (four: MDR and one: Standard strain) were considered further for detailed studies. This study included the determination of minimum bactericidal concentration (MBC), time-kill assay, scanning electron microscopic technique (SEM), and detection of reactive oxygen species (ROS). Additionally, the effect of menadione on biofilms of three strains of S. aureus was performed through crystal violet assay, SEM, and confocal laser scanning microscopy (CLSM). Menadione exerted substantial antibacterial activity against S. aureus (S8, S9, NCIM 5021) at a lower MIC (64 µg/mL). Whereas, the MIC of 256 µg/mL was displayed against J2 and J4 (MDR and biofilm-forming strains). The time-killing effect of menadione against S. aureus strains was observed after 9 h at MBCs of 64 µg/mL (NCIM 5021), 128 µg/mL (S8, S9), and 512 µg/mL (J2, J4). Enhanced levels of ROS in all five S. aureus were observed in presence of menadione (MICs and MBCs). The relation of enhanced ROS due to menadione activity invigorated us to explore its effect on S. aureus biofilms. We report menadione-mediated inhibition (> 90%) of biofilm formation (at respective MICs) and effect on preformed biofilms (> 85%) at 1024 µg/mL. Menadione possessing antibacterial and antibiofilm potentials are imperative in the era of multidrug resistance developed by bacterial pathogens.
Collapse
|
13
|
Erasmus C, Aucamp J, Smit FJ, Seldon R, Jordaan A, Warner DF, N'Da DD. Synthesis and comparison of in vitro dual anti-infective activities of novel naphthoquinone hybrids and atovaquone. Bioorg Chem 2021; 114:105118. [PMID: 34216896 DOI: 10.1016/j.bioorg.2021.105118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 05/11/2021] [Accepted: 06/19/2021] [Indexed: 10/21/2022]
Abstract
A principal factor that contributes towards the failure to eradicate leishmaniasis and tuberculosis infections is the reduced efficacy of existing chemotherapies, owing to a continuous increase in multidrug-resistant strains of the causative pathogens. This accentuates the dire need to develop new and effective drugs against both plights. A series of naphthoquinone-triazole hybrids was synthesized and evaluated in vitro against Leishmania (L.) and Mycobacterium tuberculosis (Mtb) strains. Their cytotoxicities were also evaluated, using the human embryonic kidney cell line (HEK-293). The hybrids were found to be non-toxic towards human cells and had demonstrated micromolar cellular antileishmanial and antimycobacterial potencies. Hybrid 13, i.e. 2-{[1-(4-methylbenzyl)-1H-1,2,3-triazol-4-yl]methoxy}naphthalene-1,4-dione was the most active of all. It was found with MIC90 0.5 µM potency against Mtb in a protein free medium, and with half-maxima inhibitory concentrations (IC50) of 0.81 µM and 1.48 µM against the infective promastigote parasites of L. donavani and L. major, respectively, with good selectivity towards these pathogens (SI 22 - 65). Comparatively, the clinical naphthoquinone, atovaquone, although less cytotoxic, was found to be two-fold less antimycobacterial potent, and six- to twelve-fold less active against leishmania. Hybrid 13 may therefore stand as a potential anti-infective hit for further development in the search for new antitubercular and antileishmanial drugs. Elucidation of its exact mechanism of action and molecular targets will constitute future endeavour.
Collapse
Affiliation(s)
- Chané Erasmus
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Potchefstroom 2520, South Africa
| | - Janine Aucamp
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Frans J Smit
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Ronnett Seldon
- SAMRC Drug Discovery and Development Research Unit, University of Cape Town, Cape Town 7700, South Africa
| | - Audrey Jordaan
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, 7925, South Africa
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, 7925, South Africa; Wellcome Centre for Clinical Infectious Diseases Research in Africa, University of Cape Town, Cape Town 7925, South Africa
| | - David D N'Da
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa.
| |
Collapse
|
14
|
Naphthoquinones and Their Derivatives: Emerging Trends in Combating Microbial Pathogens. COATINGS 2021. [DOI: 10.3390/coatings11040434] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the current era, an ever-emerging threat of multidrug-resistant (MDR) pathogens pose serious health challenges to mankind. Researchers are uninterruptedly putting their efforts to design and develop alternative, innovative strategies to tackle the antibiotic resistance displayed by varied pathogens. Among several naturally derived and chemically synthesized compounds, quinones have achieved a distinct position to defeat microbial pathogens. This review unleashes the structural diversity and promising biological activities of naphthoquinones (NQs) and their derivatives documented in the past two decades. Further, realizing their functional potentialities, researchers were encouraged to approach NQs as lead molecules. We have retrieved information that is dedicated on biological applications (antibacterial, antifungal, antiparasitic) of NQs. The multiple roles of NQs offer them a promising armory to combat microbial pathogens including MDR and the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) group. In bacteria, NQs may exhibit their function in the following ways (1) plasmid curing, (2) inhibiting efflux pumps (EPs), (3) generating reactive oxygen species (ROS), (4) the inhibition of topoisomerase activity. Sparse but meticulous literature suggests the mechanistic roles of NQs. We have highlighted the possible mechanisms of NQs and how the targeted drug synthesis can be achieved via molecular docking analysis. This bioinformatics-oriented approach will explicitly lead to the development of effective and most potent drugs against targeted pathogens. The mechanistic approaches of emerging molecules like NQs might prove a milestone to defeat the battle against microbial pathogens.
Collapse
|
15
|
Jaiswal AK, Tiwari S, Jamal SB, Oliveira LDC, Sales-Campos H, Andrade-Silva LE, Oliveira CJF, Ghosh P, Barh D, Azevedo V, Soares SC, Rodrigues VR, da Silva MV. Reverse vaccinology and subtractive genomics approaches for identifying common therapeutics against Mycobacterium leprae and Mycobacterium lepromatosis. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200027. [PMID: 33889182 PMCID: PMC8040911 DOI: 10.1590/1678-9199-jvatitd-2020-0027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 12/09/2020] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Mycobacterium leprae and Mycobacterium lepromatosis are gram-positive bacterial pathogens and the causative agents of leprosy in humans across the world. The elimination of leprosy cannot be achieved by multidrug therapy alone, and highlights the need for new tools and drugs to prevent the emergence of new resistant strains. METHODS In this study, our contribution includes the prediction of vaccine targets and new putative drugs against leprosy, using reverse vaccinology and subtractive genomics. Six strains of Mycobacterium leprae and Mycobacterium lepromatosis (4 and 2 strains, respectively) were used for comparison taking Mycobacterium leprae strain TN as the reference genome. Briefly, we used a combined reverse vaccinology and subtractive genomics approach. RESULTS As a result, we identified 12 common putative antigenic proteins as vaccine targets and three common drug targets against Mycobacterium leprae and Mycobacterium lepromatosis. Furthermore, the docking analysis using 28 natural compounds with three drug targets was done. CONCLUSIONS The bis-naphthoquinone compound Diospyrin (CID 308140) obtained from indigenous plant Diospyros spp. showed the most favored binding affinity against predicted drug targets, which can be a candidate therapeutic target in the future against leprosy.
Collapse
Affiliation(s)
- Arun Kumar Jaiswal
- Graduate Program in Bioinformatics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
- Department of Immunology, Microbiology and Parasitology, Institute of Biological Sciences and Natural Sciences, Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Sandeep Tiwari
- Graduate Program in Bioinformatics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Syed Babar Jamal
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Punjab, Pakistan
| | - Letícia de Castro Oliveira
- Graduate Program in Bioinformatics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
- Department of Immunology, Microbiology and Parasitology, Institute of Biological Sciences and Natural Sciences, Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Helioswilton Sales-Campos
- Department of Immunology, Microbiology and Parasitology, Institute of Biological Sciences and Natural Sciences, Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
- Institute of Tropical Pathology and Public Health, Federal University of Goias (UFG), Goiânia, Goiás, Brazil
| | - Leonardo Eurípedes Andrade-Silva
- Infectious Disease Department, Institute of Health Sciences, Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Carlo Jose Freire Oliveira
- Department of Immunology, Microbiology and Parasitology, Institute of Biological Sciences and Natural Sciences, Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, West Bengal, India
| | - Vasco Azevedo
- Graduate Program in Bioinformatics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Siomar C. Soares
- Department of Immunology, Microbiology and Parasitology, Institute of Biological Sciences and Natural Sciences, Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Virmondes Rodrigues Rodrigues
- Department of Immunology, Microbiology and Parasitology, Institute of Biological Sciences and Natural Sciences, Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Marcos Vinicius da Silva
- Department of Immunology, Microbiology and Parasitology, Institute of Biological Sciences and Natural Sciences, Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| |
Collapse
|
16
|
Porras G, Chassagne F, Lyles JT, Marquez L, Dettweiler M, Salam AM, Samarakoon T, Shabih S, Farrokhi DR, Quave CL. Ethnobotany and the Role of Plant Natural Products in Antibiotic Drug Discovery. Chem Rev 2021; 121:3495-3560. [PMID: 33164487 PMCID: PMC8183567 DOI: 10.1021/acs.chemrev.0c00922] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The crisis of antibiotic resistance necessitates creative and innovative approaches, from chemical identification and analysis to the assessment of bioactivity. Plant natural products (NPs) represent a promising source of antibacterial lead compounds that could help fill the drug discovery pipeline in response to the growing antibiotic resistance crisis. The major strength of plant NPs lies in their rich and unique chemodiversity, their worldwide distribution and ease of access, their various antibacterial modes of action, and the proven clinical effectiveness of plant extracts from which they are isolated. While many studies have tried to summarize NPs with antibacterial activities, a comprehensive review with rigorous selection criteria has never been performed. In this work, the literature from 2012 to 2019 was systematically reviewed to highlight plant-derived compounds with antibacterial activity by focusing on their growth inhibitory activity. A total of 459 compounds are included in this Review, of which 50.8% are phenolic derivatives, 26.6% are terpenoids, 5.7% are alkaloids, and 17% are classified as other metabolites. A selection of 183 compounds is further discussed regarding their antibacterial activity, biosynthesis, structure-activity relationship, mechanism of action, and potential as antibiotics. Emerging trends in the field of antibacterial drug discovery from plants are also discussed. This Review brings to the forefront key findings on the antibacterial potential of plant NPs for consideration in future antibiotic discovery and development efforts.
Collapse
Affiliation(s)
- Gina Porras
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - François Chassagne
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - James T. Lyles
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - Lewis Marquez
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, 615 Michael St., Whitehead 115, Atlanta, Georgia 30322
| | - Micah Dettweiler
- Department of Dermatology, Emory University, 615 Michael St., Whitehead 105L, Atlanta, Georgia 30322
| | - Akram M. Salam
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, 615 Michael St., Whitehead 115, Atlanta, Georgia 30322
| | - Tharanga Samarakoon
- Emory University Herbarium, Emory University, 1462 Clifton Rd NE, Room 102, Atlanta, Georgia 30322
| | - Sarah Shabih
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - Darya Raschid Farrokhi
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - Cassandra L. Quave
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
- Emory University Herbarium, Emory University, 1462 Clifton Rd NE, Room 102, Atlanta, Georgia 30322
- Department of Dermatology, Emory University, 615 Michael St., Whitehead 105L, Atlanta, Georgia 30322
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, 615 Michael St., Whitehead 115, Atlanta, Georgia 30322
| |
Collapse
|
17
|
The pentapeptide-repeat protein, MfpA, interacts with mycobacterial DNA gyrase as a DNA T-segment mimic. Proc Natl Acad Sci U S A 2021; 118:2016705118. [PMID: 33836580 PMCID: PMC7980463 DOI: 10.1073/pnas.2016705118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA gyrase, a type II topoisomerase, introduces negative supercoils into DNA using ATP hydrolysis. The highly effective gyrase-targeted drugs, fluoroquinolones (FQs), interrupt gyrase by stabilizing a DNA-cleavage complex, a transient intermediate in the supercoiling cycle, leading to double-stranded DNA breaks. MfpA, a pentapeptide-repeat protein in mycobacteria, protects gyrase from FQs, but its molecular mechanism remains unknown. Here, we show that Mycobacterium smegmatis MfpA (MsMfpA) inhibits negative supercoiling by M. smegmatis gyrase (Msgyrase) in the absence of FQs, while in their presence, MsMfpA decreases FQ-induced DNA cleavage, protecting the enzyme from these drugs. MsMfpA stimulates the ATPase activity of Msgyrase by directly interacting with the ATPase domain (MsGyrB47), which was confirmed through X-ray crystallography of the MsMfpA-MsGyrB47 complex, and mutational analysis, demonstrating that MsMfpA mimics a T (transported) DNA segment. These data reveal the molecular mechanism whereby MfpA modulates the activity of gyrase and may provide a general molecular basis for the action of other pentapeptide-repeat proteins.
Collapse
|
18
|
Pullella GA, Vuong D, Lacey E, Piggott MJ. Total Synthesis of the Antitumor-Antitubercular 2,6'-Bijuglone Natural Product Diospyrin and Its 3,6'-Isomer. JOURNAL OF NATURAL PRODUCTS 2020; 83:3623-3634. [PMID: 33314932 DOI: 10.1021/acs.jnatprod.0c00800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The 2,6'-bijuglone natural product diospyrin and its unnatural 3,6'-isomer idospyrin have been synthesized in seven steps each from N,N-diethylsenecioamide in overall yields of 12% and 13%, respectively. The syntheses diverge from ramentaceone (7-methyljuglone) and include a key Suzuki-Miyaura cross-coupling. Diospyrin, idospyrin, and several synthetic precursors exhibit potent and selective cytotoxicity to the murine myeloma NS-1 cell line over neonatal foreskin cells.
Collapse
Affiliation(s)
- Glenn A Pullella
- Chemistry, School of Molecular Sciences, University of Western Australia, Perth 6009, Australia
| | - Daniel Vuong
- Microbial Screening Technologies, Smithfield, NSW 2164, Australia
| | - Ernest Lacey
- Microbial Screening Technologies, Smithfield, NSW 2164, Australia
| | - Matthew J Piggott
- Chemistry, School of Molecular Sciences, University of Western Australia, Perth 6009, Australia
| |
Collapse
|
19
|
Kalt MM, Schuehly W, Saf R, Ochensberger S, Solnier J, Bucar F, Kaiser M, Presser A. Palladium-catalysed synthesis of arylnaphthoquinones as antiprotozoal and antimycobacterial agents. Eur J Med Chem 2020; 207:112837. [PMID: 33002847 DOI: 10.1016/j.ejmech.2020.112837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/26/2020] [Accepted: 09/07/2020] [Indexed: 10/23/2022]
Abstract
Malaria and tuberculosis are still among the leading causes of death in low-income countries. The 1,4-naphthoquinone (NQ) scaffold can be found in a variety of anti-infective agents. Herein, we report an optimised, high yield process for the preparation of various 2-arylnaphthoquinones by a palladium-catalysed Suzuki reaction. All synthesised compounds were evaluated for their in-vitro antiprotozoal and antimycobacterial activity. Antiprotozoal activity was assessed against Plasmodium falciparum (P.f.) NF54 and Trypanosoma brucei rhodesiense (T.b.r.) STIB900, and antimycobacterial activity against Mycobacterium smegmatis (M.s.) mc2 155. Substitution with pyridine and pyrimidine rings significantly increased antiplasmodial potency of our compounds. The 2-aryl-NQs exhibited trypanocidal activity in the nM range with a very favourable selectivity profile. (Pseudo)halogenated aryl-NQs were found to have a pronounced effect indicating inhibition of mycobacterial efflux pumps. Cytotoxicity of all compounds towards L6 cells was evaluated and the respective selectivity indices (SI) were calculated. In addition, the physicochemical parameters of the synthesised compounds were discussed.
Collapse
Affiliation(s)
- Marc-Manuel Kalt
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Schubertstrasse 1, A-8010, Graz, Austria
| | - Wolfgang Schuehly
- Institute of Pharmaceutical Sciences, Pharmacognosy, University of Graz, Universitaetsplatz 4, A-8010, Graz, Austria
| | - Robert Saf
- Institute for Chemistry and Technology of Materials (ICTM), University of Technology, Stremayrgasse 9, A-8010, Graz, Austria
| | - Sandra Ochensberger
- Institute of Pharmaceutical Sciences, Pharmacognosy, University of Graz, Universitaetsplatz 4, A-8010, Graz, Austria
| | - Julia Solnier
- Institute of Pharmaceutical Sciences, Pharmacognosy, University of Graz, Universitaetsplatz 4, A-8010, Graz, Austria
| | - Franz Bucar
- Institute of Pharmaceutical Sciences, Pharmacognosy, University of Graz, Universitaetsplatz 4, A-8010, Graz, Austria
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002, Basel, Switzerland; University of Basel, Petersplatz 1, CH-4003, Basel, Switzerland
| | - Armin Presser
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Schubertstrasse 1, A-8010, Graz, Austria.
| |
Collapse
|
20
|
Hesabi N, Ebrahimi A. The electrochemical properties and PIM1 kinase enzyme inhibition of some 2-(hydroxy phenyl amino) naphthalene-1,4-dione derivatives. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Dwivedi VD, Arya A, Sharma T, Sharma S, Patil SA, Gupta VK. Computational investigation of phytomolecules as resuscitation-promoting factor B (RpfB) inhibitors for clinical suppression of Mycobacterium tuberculosis dormancy reactivation. INFECTION GENETICS AND EVOLUTION 2020; 83:104356. [PMID: 32438079 DOI: 10.1016/j.meegid.2020.104356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 05/03/2020] [Accepted: 05/06/2020] [Indexed: 01/03/2023]
Abstract
Among the various strategies of curbing tuberculosis, suppression of Mycobacterium tuberculosis (Mtb) is a primary goal of the WHO to stop its infection, which is further strengthened by the presence of a massive reservoir of latently infected individuals. Several efforts have been made to explore potential candidates, including drug-repurposing, phytomolecules evaluation, and de novo designs. Compared to other strategies, investigation of phytomolecules with known experimental evidence represents a highly cost-effective and less time-consuming approach. Interestingly, some of the phytomolecules, previously known to show anti-tuberculosis effects, are known. While, these compounds have not yet been tested for their additional abilities to interact with resuscitation-promoting factor B (RpfB), an essential protein involved in revoking of Mtb dormancy. We, therefore, performed an initial computational study to evaluate the binding affinity of 38 phytomolecules to select the most effective ligands against RpfB. The studies were carried out using AutoDock and associated tools for static interaction analysis, while molecular dynamics (MD) simulations were performed to examine the stability of predicted protein-ligand complexes using the Desmond MD package. As an outcome of this study, we have reported four potential compounds, viz. diospyrin, 2'-Nortiliacorinine, 5,4'-dihydroxy-3,7,8,3'-tetramethoxyflavone, and tiliacorine which showed a putative binding affinity with significant intermolecular interactions, docking energy of -8.0 kcal/mol or higher, and vital complex stability (~2.4 Å RMSD) during 100 ns MD simulation. The findings of this study indicated that phytomolecules are capable to efficiently inhibit the RpfB, which is vital for reactivation of dormant Mtb. Characterization of the molecular targets for hits with intriguingly selective activity against dormant Mtb would be helpful to elucidate the essential mechanisms underlying the survival of dormant Mtb during latent infections.
Collapse
Affiliation(s)
- Vivek Dhar Dwivedi
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India.
| | - Aditya Arya
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India.
| | - Tanuj Sharma
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India.
| | - Shweta Sharma
- ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India.
| | - Shripad A Patil
- ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India.
| | - Vivek Kumar Gupta
- ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India.
| |
Collapse
|
22
|
Cui J, Li S, Jia J. A regioselective synthesis of 7-methyl juglone and its derivatives. Nat Prod Res 2020; 36:18-25. [DOI: 10.1080/14786419.2020.1761356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Jiahua Cui
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Shaoshun Li
- School of Pharmacy, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Jinping Jia
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai, P.R. China
| |
Collapse
|
23
|
Potential anti-TB investigational compounds and drugs with repurposing potential in TB therapy: a conspectus. Appl Microbiol Biotechnol 2020; 104:5633-5662. [PMID: 32372202 DOI: 10.1007/s00253-020-10606-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/27/2020] [Accepted: 04/05/2020] [Indexed: 02/07/2023]
Abstract
The latest WHO report estimates about 1.6 million global deaths annually from TB, which is further exacerbated by drug-resistant (DR) TB and comorbidities with diabetes and HIV. Exiguous dosing, incomplete treatment course, and the ability of the tuberculosis bacilli to tolerate and survive current first-line and second-line anti-TB drugs, in either their latent state or active state, has resulted in an increased prevalence of multidrug-resistant (MDR), extensively drug-resistant (XDR), and totally drug-resistant TB (TDR-TB). Although a better understanding of the TB microanatomy, genome, transcriptome, proteome, and metabolome, has resulted in the discovery of a few novel promising anti-TB drug targets and diagnostic biomarkers of late, no new anti-TB drug candidates have been approved for routine therapy in over 50 years, with only bedaquiline, delamanid, and pretomanid recently receiving tentative regulatory approval. Considering this, alternative approaches for identifying possible new anti-TB drug candidates, for effectively eradicating both replicating and non-replicating Mycobacterium tuberculosis, are still urgently required. Subsequently, several antibiotic and non-antibiotic drugs with known treatment indications (TB targeted and non-TB targeted) are now being repurposed and/or derivatized as novel antibiotics for possible use in TB therapy. Insights gathered here reveal that more studies focused on drug-drug interactions between licensed and potential lead anti-TB drug candidates need to be prioritized. This write-up encapsulates the most recent findings regarding investigational compounds with promising anti-TB potential and drugs with repurposing potential in TB therapy.
Collapse
|
24
|
Leite TOC, Novais JS, de Carvalho BLC, Ferreira VF, Miceli LA, Fraga L, Abrahim-Vieira B, Rodrigues CR, Sá Figueiredo AM, Castro HC, Cunha AC. Synthesis, In Vitro and In Silico Studies of Indolequinone Derivatives against Clinically Relevant Bacterial Pathogens. Curr Top Med Chem 2020; 20:192-208. [DOI: 10.2174/1568026620666191223110518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/05/2019] [Accepted: 11/25/2019] [Indexed: 01/09/2023]
Abstract
Background:
According to the World Health Organization, antimicrobial resistance is one of
the most important public health threats of the 21st century. Therefore, there is an urgent need for the
development of antimicrobial agents with new mechanism of action, especially those capable of evading
known resistance mechanisms.
Objective:
We described the synthesis, in vitro antimicrobial evaluation, and in silico analysis of a series
of 1H-indole-4,7-dione derivatives.
Methods:
The new series of 1H-indole-4,7-diones was prepared with good yield by using a copper(II)-
mediated reaction between bromoquinone and β-enamino ketones bearing alkyl or phenyl groups attached
to the nitrogen atom. The antimicrobial potential of indole derivatives was assessed. Molecular
docking studies were also performed using AutoDock 4.2 for Windows. Characterization of all compounds
was confirmed by one- and two-dimensional NMR techniques 1H and 13C NMR spectra [1H, 13C
– APT, 1H x 1H – COSY, HSQC and HMBC], IR and mass spectrometry analysis.
Results:
Several indolequinone compounds showed effective antimicrobial profile against Grampositive
(MIC = 16 µg.mL-1) and Gram-negative bacteria (MIC = 8 µg.mL-1) similar to antimicrobials
current on the market. The 3-acetyl-1-(2,5-dimethylphenyl)-1H-indole-4,7-dione derivative exhibited an
important effect against different biofilm stages formed by a serious hospital life-threatening resistant
strain of Methicillin-Resistant Staphylococcus aureus (MRSA). A hemocompatibility profile analysis
based on in vitro hemolysis assays revealed the low toxicity effects of this new series. Indeed, in silico
studies showed a good pharmacokinetics and toxicological profiles for all indolequinone derivatives,
reinforcing their feasibility to display a promising oral bioavailability. An elucidation of the promising
indolequinone derivatives binding mode was achieved, showing interactions with important sites to biological
activity of S. aureus DNA gyrase. These results highlighted 3-acetyl-1-(2-hydroxyethyl)-1Hindole-
4,7-dione derivative as broad-spectrum antimicrobial prototype to be further explored for treating
bacterial infections.
Conclusion:
The highly substituted indolequinones were obtained in moderate to good yields. The
pharmacological study indicated that these compounds should be exploited in the search for a leading
substance in a project aimed at obtaining new antimicrobials effective against Gram-negative bacteria.
Collapse
Affiliation(s)
- Talita Odriane Custodio Leite
- Universidade Federal Fluminense, Instituto de Quimica, Departamento de Quimica Organica, Programa de Pos- Graduacao em Quimica, 24020-141, Niteroi, Rio de Janeiro, Brazil
| | - Juliana Silva Novais
- Universidade Federal Fluminense, Programas de Pos-Graduacao em Patologia (HUAP) e em Ciencias e Biotecnologia (PPBI), 24020-150, Niteroi, Rio de Janeiro, Brazil
| | - Beatriz Lima Cosenza de Carvalho
- Universidade Federal do Rio de Janeiro, Instituto de Quimica, Departamento de Quimica Organica, 21941-909, Rio de Janeiro, Brazil
| | - Vitor Francisco Ferreira
- Universidade Federal Fluminense, Faculdade de Farmácia, 24241-000, Departamento de Tecnologia Farmaceutica, Niteroi, Rio de Janeiro, Brazil
| | - Leonardo Alves Miceli
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Professor Paulo de Goes, Programa de Pos-Graduacao em Ciencias Farmaceuticas e Faculdade de Farmacia, 21941-902, Rio de Janeiro, Brazil
| | - Letícia Fraga
- Universidade Federal do Rio de Janeiro, Laboratorio de Modelagem Molecular e QSAR (MODMOLQSAR), Faculdade de Farmacia, 21941-902, Rio de Janeiro, Brazil
| | - Bárbara Abrahim-Vieira
- Universidade Federal do Rio de Janeiro, Laboratorio de Modelagem Molecular e QSAR (MODMOLQSAR), Faculdade de Farmacia, 21941-902, Rio de Janeiro, Brazil
| | - Carlos Rangel Rodrigues
- Universidade Federal do Rio de Janeiro, Programa de Pos-Graduacao em Ciências Farmaceuticas da Faculdade de Farmacia, 21941-902, Rio de Janeiro, Brazil
| | - Agnes Marie Sá Figueiredo
- Universidade Federal do Rio de Janeiro, Laboratorio de Modelagem Molecular e QSAR (MODMOLQSAR), Faculdade de Farmacia, 21941-902, Rio de Janeiro, Brazil
| | - Helena Carla Castro
- Universidade Federal Fluminense, Programas de Pos-Graduacao em Patologia (HUAP) e em Ciencias e Biotecnologia (PPBI), 24020-150, Niteroi, Rio de Janeiro, Brazil
| | - Anna Claudia Cunha
- Universidade Federal Fluminense, Instituto de Quimica, Departamento de Quimica Organica, Programa de Pos- Graduacao em Quimica, 24020-141, Niteroi, Rio de Janeiro, Brazil
| |
Collapse
|
25
|
Das S, Garg T, Srinivas N, Dasgupta A, Chopra S. Targeting DNA Gyrase to Combat Mycobacterium tuberculosis: An Update. Curr Top Med Chem 2019; 19:579-593. [PMID: 30834837 DOI: 10.2174/1568026619666190304130218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/10/2018] [Accepted: 01/02/2019] [Indexed: 11/22/2022]
Abstract
DNA gyrase is a clinically validated drug target, currently targeted only by fluoroquinolone class of antibacterials. However, owing to increasing drug resistance as well as a concomitant reduction in the availability of newer classes of antibiotics, fluoroquinolones are increasingly being over-utilized in order to treat serious infections, including multi-drug resistant tuberculosis. This, in turn, increases the probability of resistance to fluoroquinolones, which is mediated by a single amino acid change in gyrA, leading to class-wide resistance. In this review, we provide an overview of the recent progress in identifying novel scaffolds which target DNA gyrase and provide an update on their discovery and development status.
Collapse
Affiliation(s)
- Swetarka Das
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow-226031, Uttar Pradesh, India
| | - Tanu Garg
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow-226031, Uttar Pradesh, India
| | - Nanduri Srinivas
- Department of Medicinal and Process Chemistry, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Arunava Dasgupta
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow-226031, Uttar Pradesh, India
| | - Sidharth Chopra
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow-226031, Uttar Pradesh, India
| |
Collapse
|
26
|
Ravichandiran P, Masłyk M, Sheet S, Janeczko M, Premnath D, Kim AR, Park B, Han M, Yoo DJ. Synthesis and Antimicrobial Evaluation of 1,4-Naphthoquinone Derivatives as Potential Antibacterial Agents. ChemistryOpen 2019; 8:589-600. [PMID: 31098338 PMCID: PMC6507621 DOI: 10.1002/open.201900077] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/18/2019] [Indexed: 12/16/2022] Open
Abstract
1,4-Naphthoquinones are an important class of compounds present in a number of natural products. In this study, a new series of 1,4-naphthoquinone derivatives were synthesized. All the synthesized compounds were tested for in vitro antimicrobial activity. In this present investigation, two Gram-positive and five Gram-negative bacterial strains and one pathogenic yeast strain were used to determine the antibacterial activity. Naphthoquinones tested for its antibacterial potencies, among seven of them displayed better antimicrobial activity against Staphylococcus aureus (S. aureus; 30-70 μg/mL). Some of the tested compounds showed moderate to low antimicrobial activity against Pseudomonas aeruginosa (P. aeruginosa) and Salmonella bongori (S. bongori; 70-150 μg/mL). In addition, most active compounds against S. aureus were evaluated for toxicity to human blood cells using a hemolysis assay. For better understanding, reactive oxygen species (ROS) generation, time-kill kinetic study, and apoptosis, necrosis responses were investigated for three representative compounds.
Collapse
Affiliation(s)
- Palanisamy Ravichandiran
- Department of Life Science, Department of Energy Storage/Conversion Engineering of Graduate School, and Hydrogen and Fuel Cell Research CenterChonbuk National University, Jeollabuk-do54896Republic of Korea
| | - Maciej Masłyk
- Department of Molecular Biology, Faculty of Biotechnology and Environmental SciencesThe John Paul II Catholic University of Lublinul. Konstantynów 1i20-708LublinPoland
| | - Sunirmal Sheet
- Department of Forest Science and Technology, College of Agriculture and Life SciencesChonbuk National University, 567 Baekje-daero, Deokjin-guJeonju-si561-756, Jeollabuk-doRepublic of Korea
| | - Monika Janeczko
- Department of Molecular Biology, Faculty of Biotechnology and Environmental SciencesThe John Paul II Catholic University of Lublinul. Konstantynów 1i20-708LublinPoland
| | - Dhanraj Premnath
- Department of BiotechnologyKarunya Institute of Technology and ScienceSchool of Agriculture and Biosciences, Karunya NagarCoimbatore641114, Tamil NaduIndia
| | - Ae Rhan Kim
- R&D Center for CANUTECH, Business Incubation Center, Department of Bioenvironmental ChemistryChonbuk National University, Jeollabuk-do54896Republic of Korea.
| | - Byung‐Hyun Park
- Department of BiochemistryChonbuk National University Medical School, Jeollabuk-do54896Republic of Korea
| | - Myung‐Kwan Han
- Department of MicrobiologyChonbuk National University Medical School, Jeollabuk-do54896Republic of Korea
| | - Dong Jin Yoo
- Department of Life Science, Department of Energy Storage/Conversion Engineering of Graduate School, and Hydrogen and Fuel Cell Research CenterChonbuk National University, Jeollabuk-do54896Republic of Korea
| |
Collapse
|
27
|
Ibis C, Sahinler Ayla S, Yavuz S. Reactions of quinones with some aryl phenols and synthesis of new quinone derivatives. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2018.1546403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Cemil Ibis
- Department of Chemistry, Engineering Faculty, University of Istanbul, Istanbul, Turkey
| | - Sibel Sahinler Ayla
- Department of Chemistry, Engineering Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Senol Yavuz
- Department of Chemistry, Engineering Faculty, University of Istanbul, Istanbul, Turkey
| |
Collapse
|
28
|
Dias FR, Novais JS, Devillart TADNS, da Silva WA, Ferreira MO, Loureiro RDS, Campos VR, Ferreira VF, de Souza MC, Castro HC, Cunha AC. Synthesis and antimicrobial evaluation of amino sugar-based naphthoquinones and isoquinoline-5,8-diones and their halogenated compounds. Eur J Med Chem 2018; 156:1-12. [DOI: 10.1016/j.ejmech.2018.06.050] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 11/25/2022]
|
29
|
Futuro DO, Ferreira PG, Nicoletti CD, Borba-Santos LP, Silva FCDA, Rozental S, Ferreira VF. The Antifungal Activity of Naphthoquinones: An Integrative Review. AN ACAD BRAS CIENC 2018; 90:1187-1214. [PMID: 29873671 DOI: 10.1590/0001-3765201820170815] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/08/2017] [Indexed: 01/05/2023] Open
Abstract
Naphthoquinones are the most commonly occurring type of quinones in nature. They are a diverse family of secondary metabolites that occur naturally in plants, lichens and various microorganisms. This subgroup is constantly being expanded through the discovery of new natural products and by the synthesis of new compounds via innovative techniques. Interest in quinones and the search for new biological activities within the members of this class have intensified in recent years, as evidenced by the evaluation of the potential antimicrobial activities of quinones. Among fungi of medical interest, yeasts of the genus Candida are of extreme importance due to their high frequency of colonization and infection in humans. The objective of this review is to describe the development of naphthoquinones as antifungals for the treatment of Candida species and to note the most promising compounds. By using certain criteria for selection of publications, 68 reports involving both synthetic and natural naphthoquinones are discussed. The activities of a large number of substances were evaluated against Candida albicans as well as against 7 other species of the genus Candida. The results discussed in this review allowed the identification of 30 naphthoquinones with higher antifungal activities than those of the currently used drugs.
Collapse
Affiliation(s)
- Débora O Futuro
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Patricia G Ferreira
- PPGCAPS, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Caroline D Nicoletti
- PPGCAPS, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Luana P Borba-Santos
- Centro de Ciências da Saúde, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fernando C DA Silva
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Sonia Rozental
- Centro de Ciências da Saúde, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Vitor Francisco Ferreira
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| |
Collapse
|
30
|
Halicki PCB, Ferreira LA, De Moura KCG, Carneiro PF, Del Rio KP, Carvalho TDSC, Pinto MDCFR, da Silva PEA, Ramos DF. Naphthoquinone Derivatives as Scaffold to Develop New Drugs for Tuberculosis Treatment. Front Microbiol 2018; 9:673. [PMID: 29686657 PMCID: PMC5900025 DOI: 10.3389/fmicb.2018.00673] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/22/2018] [Indexed: 11/13/2022] Open
Abstract
Despite being a curable disease, tuberculosis (TB) remains a public health problem worldwide mainly due to lengthy treatment, as well as its toxic effects, TB/HIV co-infection and the emergence of resistant Mycobacterium tuberculosis strains. These barriers reinforcing the need for development of new antimicrobial agents, that ideally should reduce the time of treatment and be active against susceptible and resistant strains. Quinones are compounds found in natural sources and among them, the naphthoquinones show antifungal, antiparasitic, and antimycobacterial activity. Thus, we evaluated the potential antimycobacterial activity of six 1,4-naphthoquinones derivatives. We determined the minimum inhibitory concentration (MIC) of the compounds against three M. tuberculosis strains: a pan-susceptible H37Rv (ATCC 27294); one mono-resistant to isoniazid (ATCC 35822); and one mono-resistant to rifampicin (ATCC 35838); the cytotoxicity in the J774A.1 (ATCC TIB-67) macrophage lineage; performed in silico analysis about absorption, distribution, metabolism, and excretion (ADME) and docking sites. All evaluated naphthoquinones were active against the three strains with MIC between 206.6 and 12.5 μM, and the compounds with lower MIC values have also showed low cytotoxicity. Moreover, two naphthoquinones derivatives 5 and 6 probably do not exhibit cross resistance with isoniazid and rifampicin, respectively, and regarding ADME analysis, no compound violated the Lipinski's rule-of-five. Considering the set of findings in this study, we conclude that these naphthoquinones could be promising scaffolds to develop new therapeutic strategies to TB.
Collapse
Affiliation(s)
- Priscila C. B. Halicki
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Laís A. Ferreira
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Kelly C. G. De Moura
- Núcleo de Pesquisas em Produtos Naturais, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paula F. Carneiro
- Núcleo de Pesquisas em Produtos Naturais, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Karina P. Del Rio
- Núcleo de Pesquisas em Produtos Naturais, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tatiane dos S. C. Carvalho
- Núcleo de Pesquisas em Produtos Naturais, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria do C. F. R. Pinto
- Núcleo de Pesquisas em Produtos Naturais, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro E. A. da Silva
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Daniela F. Ramos
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Brazil
| |
Collapse
|
31
|
Kozhikkadan Davis C, Nasla K, Anjana AK, Rajanikant GK. Taxifolin as dual inhibitor of Mtb DNA gyrase and isoleucyl-tRNA synthetase: in silico molecular docking, dynamics simulation and in vitro assays. In Silico Pharmacol 2018; 6:8. [PMID: 30607321 DOI: 10.1007/s40203-018-0045-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 04/05/2018] [Indexed: 12/25/2022] Open
Abstract
DNA gyrase and aminoacyl-tRNA synthetases are two essential bacterial enzymes involved in DNA replication, transcription and translation. Flavonoids are plant secondary metabolites with variable phenolic structures. In this study, eight flavonoids structurally similar to quercetin were selected and their ADMET properties were evaluated. Molecular docking and free energy calculations were carried out to examine the binding of these flavonoids to the ATP-binding site and editing domain of DNA gyrase and Isoleucyl-tRNA synthetase, respectively. Taxifolin was found out to be the top lead molecule in both the docking studies with a good number of interactions with the active site amino acids. Further, binding of taxifolin to the proteins was extensively studied using 50 ns molecular dynamics simulation. In vitro anti-tuberculosis activity of taxifolin was evaluated and compared with the standard drugs. Minimal inhibition concentration of taxifolin was found to be ≤ 12.5 μg/ml.
Collapse
Affiliation(s)
| | - K Nasla
- Department of Pharmacognosy and Phytochemistry, Jamia Salafiya Pharmacy College, Malappuram, 673637 India
| | - A K Anjana
- Department of Pharmacognosy and Phytochemistry, Jamia Salafiya Pharmacy College, Malappuram, 673637 India
| | - G K Rajanikant
- 1School of Biotechnology, National Institute of Technology Calicut, Calicut, 673601 India
| |
Collapse
|
32
|
Novais JS, Moreira CS, Silva ACJA, Loureiro RS, Sá Figueiredo AM, Ferreira VF, Castro HC, da Rocha DR. Antibacterial naphthoquinone derivatives targeting resistant strain Gram-negative bacteria in biofilms. Microb Pathog 2018; 118:105-114. [PMID: 29550501 DOI: 10.1016/j.micpath.2018.03.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 03/06/2018] [Accepted: 03/13/2018] [Indexed: 12/21/2022]
Abstract
The aims of this study were the planning, synthesis and in vitro evaluation of 2-hydroxy-3-phenylsulfanylmethyl-[1,4]-naphthoquinones against Gram-negative and Gram-positive strains, searching for potential lead compounds against bacterial biofilm formation. A series of 12 new analogs of 2-hydroxy-3-phenylsulfanylmethyl-[1,4]-naphthoquinones were synthesized by adding a thiol and different substituents to a ο-quinone methide using microwave irradiation. The compounds were tested against Gram-positive (Enterococcus faecalis ATCC 29212, Staphylococcus aureus ATCC 25923, S. simulans ATCC 27851, S. epidermidis ATCC 12228 and a hospital Methicillin-resistant S. aureus (MRSA) strain), as well as Gram-negative (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, P. aeruginosa ATCC 15442, Proteus mirabilis ATCC 15290, Serratia marcescens ATCC 14756, Klebsiella pneumoniae ATCC 4352 and Enterobacter cloacae ATCC 23355) strains, using the disk diffusion method. Ten compounds showed activity mainly against Gram-negative strains with a minimal inhibitory concentration (MIC = 4-64 μg/mL) within the Clinical and Laboratory Standards Institute (CLSI) levels. The biofilm inhibition data showed compounds, 9e, 9f, 9j and 9k, are anti-biofilm molecules when used in sub-MIC concentrations against P. aeruginosa ATCC 15442 strain. Compound (9j) inhibited biofilm formation up to 63.4% with a better profile than ciprofloxacin, which is not able to prevent biofilm formation effectively. The reduction of P. aeruginosa ATCC 15442 mature biofilms was also observed for 9e and 9k. The structure modification applied in the series resulted in 12 new naphthoquinones with antimicrobial activity against Gram-negative bacteria strains (E. coli ATCC 25922, P. aeruginosa ATCC 27853 and ATCC 15442). Four compounds decreased P. aeruginosa biofilm formation effectively.
Collapse
Affiliation(s)
- Juliana S Novais
- Universidade Federal Fluminense, PPBI Instituto de Biologia, Departamento de Biologia Celular e Molecular, 24020-150, Niterói, Rio de Janeiro, Brazil
| | - Caroline S Moreira
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, 24020-150, Niterói, Rio de Janeiro, Brazil
| | - Ana Carolina J A Silva
- Universidade Federal Fluminense, PPBI Instituto de Biologia, Departamento de Biologia Celular e Molecular, 24020-150, Niterói, Rio de Janeiro, Brazil
| | - Raquel S Loureiro
- Universidade Federal Fluminense, PPBI Instituto de Biologia, Departamento de Biologia Celular e Molecular, 24020-150, Niterói, Rio de Janeiro, Brazil
| | - Agnes Marie Sá Figueiredo
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Professor Paulo de Góes, Departamento de Microbiologia Médica, Rio de Janeiro, Brazil
| | - Vitor F Ferreira
- Universidade Federal Fluminense, Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Santa Rosa, 24241-002, Niterói, Rio de Janeiro, Brazil
| | - Helena C Castro
- Universidade Federal Fluminense, PPBI Instituto de Biologia, Departamento de Biologia Celular e Molecular, 24020-150, Niterói, Rio de Janeiro, Brazil.
| | - David R da Rocha
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, 24020-150, Niterói, Rio de Janeiro, Brazil.
| |
Collapse
|
33
|
Ekennia AC, Osowole AA, Onwudiwe DC, Babahan I, Ibeji CU, Okafor SN, Ujam OT. Synthesis, characterization, molecular docking, biological activity and density functional theory studies of novel 1,4-naphthoquinone derivatives and Pd(II), Ni(II) and Co(II) complexes. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4310] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Anthony C. Ekennia
- Department of Chemistry; Federal University Ndufu-Alike Ikwo (FUNAI); PMB 1010 Abakaliki Ebonyi State Nigeria
| | - Aderoju A. Osowole
- Inorganic Unit, Department of Chemistry; University of Ibadan; Oyo State Nigeria
| | - Damian C. Onwudiwe
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Agriculture, Science and Technology, North-West University (Mafikeng Campus); Private Bag X2046 Mmabatho South Africa
- Department of Chemistry, School of Mathematical and Physical Sciences, Faculty of Agriculture, Science and Technology; North-West University (Mafikeng Campus); Private Bag X2046 Mmabatho 2735 South Africa
| | - Ilknur Babahan
- Department of Chemistry; Adnan Menderes University; Aydin 09010 Turkey
- Department of Polymer Engineering; University of Akron; Akron Ohio 44325 U.S.A
| | - Collins U. Ibeji
- Catalysis and Peptide Research Unit, School of Health Sciences; University of KwaZulu-Natal; Durban 4041 South Africa
- Department of Pure and Industrial Chemistry, Faculty of Physical Sciences; University of Nigeria; Nsukka 410001 Enugu State Nigeria
| | - Sunday N. Okafor
- Department of Pharmaceutical and Medicinal Chemistry; University of Nigeria; Nsukka Nigeria
| | - Oguejiofo T. Ujam
- Department of Pure and Industrial Chemistry, Faculty of Physical Sciences; University of Nigeria; Nsukka 410001 Enugu State Nigeria
| |
Collapse
|
34
|
FUTURO DÉBORAO, FERREIRA PATRICIAG, NICOLETTI CAROLINED, BORBA-SANTOS LUANAP, SILVA FERNANDOCDA, ROZENTAL SONIA, FERREIRA VITORFRANCISCO. The Antifungal Activity of Naphthoquinones: An Integrative Review. AN ACAD BRAS CIENC 2018. [DOI: 10.1590/0001-3765201820170815 pmid: 29873671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
35
|
Reiche MA, Warner DF, Mizrahi V. Targeting DNA Replication and Repair for the Development of Novel Therapeutics against Tuberculosis. Front Mol Biosci 2017; 4:75. [PMID: 29184888 PMCID: PMC5694481 DOI: 10.3389/fmolb.2017.00075] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/31/2017] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium tuberculosis is the etiological agent of tuberculosis (TB), an infectious disease which results in approximately 10 million incident cases and 1.4 million deaths globally each year, making it the leading cause of mortality from infection. An effective frontline combination chemotherapy exists for TB; however, this regimen requires the administration of four drugs in a 2 month long intensive phase followed by a continuation phase of a further 4 months with two of the original drugs, and is only effective for the treatment of drug-sensitive TB. The emergence and global spread of multidrug-resistant (MDR) as well as extensively drug-resistant (XDR) strains of M. tuberculosis, and the complications posed by co-infection with the human immunodeficiency virus (HIV) and other co-morbidities such as diabetes, have prompted urgent efforts to develop shorter regimens comprising new compounds with novel mechanisms of action. This demands that researchers re-visit cellular pathways and functions that are essential to M. tuberculosis survival and replication in the host but which are inadequately represented amongst the targets of current anti-mycobacterial agents. Here, we consider the DNA replication and repair machinery as a source of new targets for anti-TB drug development. Like most bacteria, M. tuberculosis encodes a complex array of proteins which ensure faithful and accurate replication and repair of the chromosomal DNA. Many of these are essential; so, too, are enzymes in the ancillary pathways of nucleotide biosynthesis, salvage, and re-cycling, suggesting the potential to inhibit replication and repair functions at multiple stages. To this end, we provide an update on the state of chemotherapeutic inhibition of DNA synthesis and related pathways in M. tuberculosis. Given the established links between genotoxicity and mutagenesis, we also consider the potential implications of targeting DNA metabolic pathways implicated in the development of drug resistance in M. tuberculosis, an organism which is unusual in relying exclusively on de novo mutations and chromosomal rearrangements for evolution, including the acquisition of drug resistance. In that context, we conclude by discussing the feasibility of targeting mutagenic pathways in an ancillary, “anti-evolution” strategy aimed at protecting existing and future TB drugs.
Collapse
Affiliation(s)
- Michael A Reiche
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Valerie Mizrahi
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
36
|
Ahmed M, Kelley SO. Enhancing the Potency of Nalidixic Acid toward a Bacterial DNA Gyrase with Conjugated Peptides. ACS Chem Biol 2017; 12:2563-2569. [PMID: 28825963 DOI: 10.1021/acschembio.7b00540] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Quinolones and fluoroquinolones are widely used antibacterial agents. Nalidixic acid (NA) is a first-generation quinolone-based antibiotic that has a narrow spectrum and poor pharmacokinetics. Here, we describe a family of peptide-nalidixic acid conjugates featuring different levels of hydrophobicity and molecular charge prepared by solid-phase peptide synthesis that exhibit intriguing improvements in potency. In comparison to NA, which has a low level of potency in S. aureus, the NA peptide conjugates with optimized hydrophobicities and molecular charges exhibited significantly improved antibacterial activity. The most potent NA conjugate-featuring a peptide containing cyclohexylalanine and arginine-exhibited efficient bacterial uptake and, notably, specific inhibition of S. aureus DNA gyrase. A systematic study of peptide-NA conjugates revealed that a fine balance of cationic charge and hydrophobicity in an appendage anchored to the core of the drug is required to overcome the intrinsic resistance of S. aureus DNA gyrase toward this quinolone-based drug.
Collapse
Affiliation(s)
- Marya Ahmed
- Department of Pharmaceutical
Sciences, Leslie Dan Faculty of Pharmacy, and Department of Biochemistry,
Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Shana O. Kelley
- Department of Pharmaceutical
Sciences, Leslie Dan Faculty of Pharmacy, and Department of Biochemistry,
Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
37
|
Jang WS, Choi YS, Kim S, Jyoti MA, Seo H, Han J, Kim YS, Lyu J, Nam KW, Lee BE, Lee KI, Song HY. Naphthofuroquinone derivatives show strong antimycobacterial activities against drug-resistant Mycobacteria. J Chemother 2017; 29:338-343. [PMID: 28281912 DOI: 10.1080/1120009x.2017.1296987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Tuberculosis, one of the world's major health problems, has become more serious due to the emergence of multi-drug resistant (MDR) and extensively drug-resistant (XDR) Mycobacterium tuberculosis (MTB). In this study, we performed three anti-MTB assays to evaluate the anti-mycobacterial activity of naphthofuroquinone derivatives against drug-resistant MTB. Among them, methyl 5-[2-(dimethylamino)ethoxy]-7,12-dioxo-7,12-dihydrodinaphtho[1,2-b:2',3'-d]furan-6-carboxylate (DFC2) exhibited strong anti-mycobacterial activity against MTB H37Ra, H37Rv and four drug-resistant MTB strains. The MIC of DFC2 ranged from 0.19-0.39 μg/ml to 0.78-1.56 μg/ml against all tested MTB strains. Moreover, DFC2 showed low cytotoxicity against fibroblast cells (L929) at concentrations 10-40-fold higher than their MICs. The IC50 value of DFC2 against L929 cells was 15.218 μg/ml. In addition, DFC2 reduced the number of intracellular M. tuberculosis in macrophages in a dose-dependent manner. Taken together, our results indicate DFC2 to be promising new candidate agents for the treatment of tuberculosis.
Collapse
Affiliation(s)
- Woong Sik Jang
- c Regional Innovation Center , Soonchunhyang University , Asan , Korea
| | - Young-Sang Choi
- a Department of Microbiology and Immunology , School of Medicine, Soonchunhyang University , Cheonan , Chungnam 330-090 , South Korea
| | - Sukyung Kim
- a Department of Microbiology and Immunology , School of Medicine, Soonchunhyang University , Cheonan , Chungnam 330-090 , South Korea
| | - Md Anirban Jyoti
- a Department of Microbiology and Immunology , School of Medicine, Soonchunhyang University , Cheonan , Chungnam 330-090 , South Korea
| | - Hoonhee Seo
- a Department of Microbiology and Immunology , School of Medicine, Soonchunhyang University , Cheonan , Chungnam 330-090 , South Korea
| | - Juhye Han
- a Department of Microbiology and Immunology , School of Medicine, Soonchunhyang University , Cheonan , Chungnam 330-090 , South Korea
| | - Yong-Sik Kim
- a Department of Microbiology and Immunology , School of Medicine, Soonchunhyang University , Cheonan , Chungnam 330-090 , South Korea
| | - Jiwon Lyu
- b Department of Pulmonary and Critical Care Medicine , School of Medicine, Soonchunhyang University , Cheonan , Chungnam 330-090 , South Korea
| | - Kung-Woo Nam
- d Department of Life Science and Biotechnology , Soonchunhyang University , Asan , South Korea
| | - Byung-Eui Lee
- e Department of Chemistry , Soonchunhyang University , Asan , South Korea
| | - Kee-In Lee
- f Green Chemistry Division , Korea Research Institute of Chemical Technology , Taejon 305-600 , Korea
| | - Ho-Yeon Song
- a Department of Microbiology and Immunology , School of Medicine, Soonchunhyang University , Cheonan , Chungnam 330-090 , South Korea.,b Department of Pulmonary and Critical Care Medicine , School of Medicine, Soonchunhyang University , Cheonan , Chungnam 330-090 , South Korea
| |
Collapse
|
38
|
DNA topoisomerase I and DNA gyrase as targets for TB therapy. Drug Discov Today 2017; 22:510-518. [DOI: 10.1016/j.drudis.2016.11.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/01/2016] [Accepted: 11/03/2016] [Indexed: 11/20/2022]
|
39
|
Pandey B, Grover S, Tyagi C, Goyal S, Jamal S, Singh A, Kaur J, Grover A. Dynamics of fluoroquinolones induced resistance in DNA gyrase of Mycobacterium tuberculosis. J Biomol Struct Dyn 2017; 36:362-375. [PMID: 28071975 DOI: 10.1080/07391102.2016.1277784] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
DNA gyrase is a validated target of fluoroquinolones which are key components of multidrug resistance tuberculosis (TB) treatment. Most frequent occurring mutations associated with high level of resistance to fluoroquinolone in clinical isolates of TB patients are A90V, D94G, and A90V-D94G (double mutant [DM]), present in the larger subunit of DNA Gyrase. In order to explicate the molecular mechanism of drug resistance corresponding to these mutations, molecular dynamics (MD) and mechanics approach was applied. Structure-based molecular docking of complex comprised of DNA bound with Gyrase A (large subunit) and Gyrase C (small subunit) with moxifloxacin (MFX) revealed high binding affinity to wild type with considerably high Glide XP docking score of -7.88 kcal/mol. MFX affinity decreases toward single mutants and was minimum toward the DM with a docking score of -3.82 kcal/mol. Docking studies were also performed against 8-Methyl-moxifloxacin which exhibited higher binding affinity against wild and mutants DNA gyrase when compared to MFX. Molecular Mechanics/Generalized Born Surface Area method predicted the binding free energy of the wild, A90V, D94G, and DM complexes to be -55.81, -25.87, -20.45, and -12.29 kcal/mol, respectively. These complexes were further subjected to 30 ns long MD simulations to examine significant interactions and conformational flexibilities in terms of root mean square deviation, root mean square fluctuation, and strength of hydrogen bond formed. This comparative drug interaction analysis provides systematic insights into the mechanism behind drug resistance and also paves way toward identifying potent lead compounds that could combat drug resistance of DNA gyrase due to mutations.
Collapse
Affiliation(s)
- Bharati Pandey
- a Department of Biotechnology , Panjab University , Chandigarh 160014
| | - Sonam Grover
- b Kusuma School of Biological Sciences, Indian Institute of Technology Delhi , New Delhi , India
| | - Chetna Tyagi
- c School of Biotechnology , Jawaharlal Nehru University , New Delhi 110067 , India
| | - Sukriti Goyal
- d Department of Bioscience and Biotechnology , Banasthali University , Tonk 304022 , Rajasthan , India
| | - Salma Jamal
- d Department of Bioscience and Biotechnology , Banasthali University , Tonk 304022 , Rajasthan , India
| | - Aditi Singh
- e Department of Biotechnology , TERI University , Vasant Kunj , New Delhi 110070
| | - Jagdeep Kaur
- a Department of Biotechnology , Panjab University , Chandigarh 160014
| | - Abhinav Grover
- c School of Biotechnology , Jawaharlal Nehru University , New Delhi 110067 , India
| |
Collapse
|
40
|
Moreira CS, Silva ACJA, Novais JS, Sá Figueiredo AM, Ferreira VF, da Rocha DR, Castro HC. Searching for a potential antibacterial lead structure against bacterial biofilms among new naphthoquinone compounds. J Appl Microbiol 2017; 122:651-662. [PMID: 27930849 DOI: 10.1111/jam.13369] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/13/2016] [Accepted: 11/28/2016] [Indexed: 01/10/2023]
Abstract
AIMS The aims of this study were to design, synthesize and to evaluate 2-hydroxy-3-phenylsulfanylmethyl-[1,4]-naphthoquinones against Gram-negative and Gram-positive bacterial strains, including methicillin-resistant Staphylococcus aureus (MRSA) and its biofilm, to probe for potential lead structures. METHODS AND RESULTS Thirty-six new analogues were prepared with good yields using a simple, fast, operational three-procedure reaction and a thiol addition to an ο-quinone methide using microwave irradiation. All compounds were tested against Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Proteus mirabilis ATCC 15290, Serratia marcescens ATCC 14756, Klebsiella pneumoniae ATCC 4352, Enterobacter cloacae ATCC 23355, Enterococcus faecalis ATCC 29212, S. aureus ATCC 25923, Staphylococcus simulans ATCC 27851, Staphylococcus epidermidis ATCC 12228 and a hospital strain of MRSA. Their antibacterial activity was determined using the disc diffusion method, revealing the activity of 19 compounds, mainly against Gram-positive strains. Interestingly, the minimal inhibitory concentration ranges detected for the hit molecules (32-128 μg ml-1 ) were within Clinical and Laboratory Standards Institute levels. Promisingly, compound 15 affected the MRSA strain, with a reduction of up to 50% in biofilm formation, which is better than vancomycin as biofilm forms a barrier against the antibiotic that avoids its action. CONCLUSIONS After probing 36 naphthoquinones for a potential antibacterial lead structure against the bacterial biofilm, we found that compound 15 should be explored further and also should be structurally modified in the near future to test against Gram-negative strains. SIGNIFICANCE AND IMPACT OF THE STUDY Since vancomycin is one of the last treatment options currently available, and it is unable to inhibit biofilm, the research of new antimicrobials is urgent. In this context, 2-hydroxy-3-phenylsulfanylmethyl-[1,4]-naphthoquinones proved to be a promising lead structure against MRSA and bacterial biofilm.
Collapse
Affiliation(s)
- C S Moreira
- Organic Chemistry Department, Chemistry Institute, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
| | - A C J A Silva
- Molecular and Cell Biology Department, PPBI, Biology Institute, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
| | - J S Novais
- Molecular and Cell Biology Department, PPBI, Biology Institute, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
| | - A M Sá Figueiredo
- Department of Medical Microbiology, Institute of Microbiology Professor Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - V F Ferreira
- Organic Chemistry Department, Chemistry Institute, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
| | - D R da Rocha
- Organic Chemistry Department, Chemistry Institute, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
| | - H C Castro
- Molecular and Cell Biology Department, PPBI, Biology Institute, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
41
|
Hazra S, Ghosh S, Hazra B. Phytochemicals With Antileishmanial Activity. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2017. [DOI: 10.1016/b978-0-444-63931-8.00008-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
42
|
Novais JS, Campos VR, Silva ACJA, de Souza MCB, Ferreira VF, Keller VGL, Ferreira MO, Dias FRF, Vitorino MI, Sathler PC, Santana MV, Resende JALC, Castro HC, Cunha AC. Synthesis and antimicrobial evaluation of promising 7-arylamino-5,8-dioxo-5,8-dihydroisoquinoline-4-carboxylates and their halogenated amino compounds for treating Gram-negative bacterial infections. RSC Adv 2017. [DOI: 10.1039/c7ra00825b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this work we described the synthesis and antimicrobial evaluation of 7-arylamino-5,8-dioxo-5,8-dihydroisoquinoline-4-carboxylates derivatives that exhibited remarkable activity against two Gram-negative strains of clinical importance.
Collapse
|
43
|
Chaudhari K, Surana S, Jain P, Patel HM. Mycobacterium Tuberculosis (MTB) GyrB inhibitors: An attractive approach for developing novel drugs against TB. Eur J Med Chem 2016; 124:160-185. [PMID: 27569197 DOI: 10.1016/j.ejmech.2016.08.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/03/2016] [Accepted: 08/17/2016] [Indexed: 01/24/2023]
Abstract
New classes of drugs are needed to treat tuberculosis (TB) in order to combat the emergence of resistance (MDR and XDR) to existing agents and shorten the duration of therapy. Mycobacterial DNA gyrase B subunit has been identified to be one of the potentially under exploited drug targets in the field of antitubercular drug discovery. In the present review, we discussed the synthesis, structural optimization and docking study of effective potent DNA gyrase inhibitor against M. tuberculosis, with improved properties such as enhanced activity against MDR strains, reduced toxicity. Based on this progress, if we can successfully leverage the opportunities in this target, there is hope that we will be able to raise novel gyrase inhibitor in earnest in the long.
Collapse
Affiliation(s)
- Kavita Chaudhari
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, 425405, Maharashtra, India
| | - Sanjay Surana
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, 425405, Maharashtra, India
| | - Pritam Jain
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, 425405, Maharashtra, India.
| | - Harun M Patel
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, 425405, Maharashtra, India.
| |
Collapse
|
44
|
Predictive modeling targets thymidylate synthase ThyX in Mycobacterium tuberculosis. Sci Rep 2016; 6:27792. [PMID: 27283217 PMCID: PMC4901301 DOI: 10.1038/srep27792] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/23/2016] [Indexed: 01/26/2023] Open
Abstract
There is an urgent need to identify new treatments for tuberculosis (TB), a major infectious disease caused by Mycobacterium tuberculosis (Mtb), which results in 1.5 million deaths each year. We have targeted two essential enzymes in this organism that are promising for antibacterial therapy and reported to be inhibited by naphthoquinones. ThyX is an essential thymidylate synthase that is mechanistically and structurally unrelated to the human enzyme. DNA gyrase is a DNA topoisomerase present in bacteria and plants but not animals. The current study set out to understand the structure-activity relationships of these targets in Mtb using a combination of cheminformatics and in vitro screening. Here, we report the identification of new Mtb ThyX inhibitors, 2-chloro-3-(4-methanesulfonylpiperazin-1-yl)-1,4-dihydronaphthalene-1,4-dione) and idebenone, which show modest whole-cell activity and appear to act, at least in part, by targeting ThyX in Mtb.
Collapse
|
45
|
Skouloubris S, Djaout K, Lamarre I, Lambry JC, Anger K, Briffotaux J, Liebl U, de Reuse H, Myllykallio H. Targeting of Helicobacter pylori thymidylate synthase ThyX by non-mitotoxic hydroxy-naphthoquinones. Open Biol 2016; 5:150015. [PMID: 26040760 PMCID: PMC4632503 DOI: 10.1098/rsob.150015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
ThyX is an essential thymidylate synthase that is mechanistically and structurally unrelated to the functionally analogous human enzyme, thus providing means for selective inhibition of bacterial growth. To identify novel compounds with anti-bacterial activity against the human pathogenic bacterium Helicobacter pylori, based on our earlier biochemical and structural analyses, we designed a series of eighteen 2-hydroxy-1,4-naphthoquinones (2-OH-1,4-NQs) that target HpThyX. Our lead-like molecules markedly inhibited the NADPH oxidation and 2′-deoxythymidine-5′-monophosphate-forming activities of HpThyX enzyme in vitro, with inhibitory constants in the low nanomolar range. The identification of non-cytotoxic and non-mitotoxic 2-OH-1,4-NQ inhibitors permitted testing their in vivo efficacy in a mouse model for H. pylori infections. Despite the widely assumed toxicity of naphthoquinones (NQs), we identified tight-binding ThyX inhibitors that were tolerated in mice and can be associated with a modest effect in reducing the number of colonizing bacteria. Our results thus provide proof-of-concept that targeting ThyX enzymes is a highly feasible strategy for the development of therapies against H. pylori and a high number of other ThyX-dependent pathogenic bacteria. We also demonstrate that chemical reactivity of NQs does not prevent their exploitation as anti-microbial compounds, particularly when mitotoxicity screening is used to prioritize these compounds for further experimentation.
Collapse
Affiliation(s)
- Stéphane Skouloubris
- Laboratoire d'Optique et Biosciences, CNRS UMR7645, INSERM U1182, Ecole Polytechnique, Palaiseau 91128, France Department of Biology, Université Paris-Sud, Orsay 91405, France
| | - Kamel Djaout
- Laboratoire d'Optique et Biosciences, CNRS UMR7645, INSERM U1182, Ecole Polytechnique, Palaiseau 91128, France
| | - Isabelle Lamarre
- Laboratoire d'Optique et Biosciences, CNRS UMR7645, INSERM U1182, Ecole Polytechnique, Palaiseau 91128, France
| | - Jean-Christophe Lambry
- Laboratoire d'Optique et Biosciences, CNRS UMR7645, INSERM U1182, Ecole Polytechnique, Palaiseau 91128, France
| | - Karine Anger
- Department of Microbiology, Institut Pasteur, Unité Pathogenèse de Helicobacter, 28 rue du Dr. Roux, Paris 75724, France
| | - Julien Briffotaux
- Laboratoire d'Optique et Biosciences, CNRS UMR7645, INSERM U1182, Ecole Polytechnique, Palaiseau 91128, France
| | - Ursula Liebl
- Laboratoire d'Optique et Biosciences, CNRS UMR7645, INSERM U1182, Ecole Polytechnique, Palaiseau 91128, France
| | - Hilde de Reuse
- Department of Microbiology, Institut Pasteur, Unité Pathogenèse de Helicobacter, 28 rue du Dr. Roux, Paris 75724, France
| | - Hannu Myllykallio
- Laboratoire d'Optique et Biosciences, CNRS UMR7645, INSERM U1182, Ecole Polytechnique, Palaiseau 91128, France
| |
Collapse
|
46
|
Abstract
The development and application of a highly versatile suite of tools for mycobacterial genetics, coupled with widespread use of "omics" approaches to elucidate the structure, function, and regulation of mycobacterial proteins, has led to spectacular advances in our understanding of the metabolism and physiology of mycobacteria. In this article, we provide an update on nucleotide metabolism and DNA replication in mycobacteria, highlighting key findings from the past 10 to 15 years. In the first section, we focus on nucleotide metabolism, ranging from the biosynthesis, salvage, and interconversion of purine and pyrimidine ribonucleotides to the formation of deoxyribonucleotides. The second part of the article is devoted to DNA replication, with a focus on replication initiation and elongation, as well as DNA unwinding. We provide an overview of replication fidelity and mutation rates in mycobacteria and summarize evidence suggesting that DNA replication occurs during states of low metabolic activity, and conclude by suggesting directions for future research to address key outstanding questions. Although this article focuses primarily on observations from Mycobacterium tuberculosis, it is interspersed, where appropriate, with insights from, and comparisons with, other mycobacterial species as well as better characterized bacterial models such as Escherichia coli. Finally, a common theme underlying almost all studies of mycobacterial metabolism is the potential to identify and validate functions or pathways that can be exploited for tuberculosis drug discovery. In this context, we have specifically highlighted those processes in mycobacterial DNA replication that might satisfy this critical requirement.
Collapse
|
47
|
Widhalm JR, Rhodes D. Biosynthesis and molecular actions of specialized 1,4-naphthoquinone natural products produced by horticultural plants. HORTICULTURE RESEARCH 2016; 3:16046. [PMID: 27688890 PMCID: PMC5030760 DOI: 10.1038/hortres.2016.46] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/23/2016] [Indexed: 05/20/2023]
Abstract
The 1,4-naphthoquinones (1,4-NQs) are a diverse group of natural products found in every kingdom of life. Plants, including many horticultural species, collectively synthesize hundreds of specialized 1,4-NQs with ecological roles in plant-plant (allelopathy), plant-insect and plant-microbe interactions. Numerous horticultural plants producing 1,4-NQs have also served as sources of traditional medicines for hundreds of years. As a result, horticultural species have been at the forefront of many basic studies conducted to understand the metabolism and function of specialized plant 1,4-NQs. Several 1,4-NQ natural products derived from horticultural plants have also emerged as promising scaffolds for developing new drugs. In this review, the current understanding of the core metabolic pathways leading to plant 1,4-NQs is provided with additional emphasis on downstream natural products originating from horticultural species. An overview on the biochemical mechanisms of action, both from an ecological and pharmacological perspective, of 1,4-NQs derived from horticultural plants is also provided. In addition, future directions for improving basic knowledge about plant 1,4-NQ metabolism are discussed.
Collapse
Affiliation(s)
- Joshua R Widhalm
- Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907-2010, USA
- ()
| | - David Rhodes
- Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907-2010, USA
| |
Collapse
|
48
|
Lin TY, Nagano S, Gardiner Heddle J. Functional Analyses of the Toxoplasma gondii DNA Gyrase Holoenzyme: A Janus Topoisomerase with Supercoiling and Decatenation Abilities. Sci Rep 2015; 5:14491. [PMID: 26412236 PMCID: PMC4585971 DOI: 10.1038/srep14491] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/19/2015] [Indexed: 12/29/2022] Open
Abstract
A number of important protozoan parasites including those responsible for toxoplasmosis and malaria belong to the phylum Apicomplexa and are characterised by their possession of a relict plastid, the apicoplast. Being required for survival, apicoplasts are potentially useful drug targets and their attractiveness is increased by the fact that they contain “bacterial” gyrase, a well-established antibacterial drug target. We have cloned and purified the gyrase proteins from the apicoplast of Toxoplasma gondii (the cause of toxoplasmosis), reconstituted the functional enzyme and succeeded in characterising it. We discovered that the enzyme is inhibited by known gyrase inhibitors and that, as well as the expected supercoiling activity, it is also able to decatenate DNA with high efficiency. This unusual dual functionality may be related to the apparent lack of topoisomerase IV in the apicoplast.
Collapse
Affiliation(s)
- Ting-Yu Lin
- Heddle Initiative Research Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Soshichiro Nagano
- Heddle Initiative Research Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | | |
Collapse
|
49
|
Chiriac AI, Kloss F, Krämer J, Vuong C, Hertweck C, Sahl HG. Mode of action of closthioamide: the first member of the polythioamide class of bacterial DNA gyrase inhibitors. J Antimicrob Chemother 2015; 70:2576-88. [PMID: 26174721 DOI: 10.1093/jac/dkv161] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 05/23/2015] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES The spread of MDR bacteria represents a serious threat to human society and novel antibiotic drugs, preferably from new chemical classes, are urgently needed. Closthioamide was isolated from the strictly anaerobic bacterium Clostridium cellulolyticum and belongs to a new class of natural products, the polythioamides. Here, we investigated the antimicrobial activity and mechanism of action of closthioamide. METHODS For assessing the antimicrobial activity of closthioamide, MIC values and killing kinetics were determined. To identify its target pathway, whole-cell-based assays were used including analysis of macromolecular synthesis and recording the susceptibility profile of a library of clones with down-regulated potential target genes. Subsequently, the inhibitory effect of closthioamide on the activity of isolated target enzymes, e.g. DNA gyrase and topoisomerase IV, was evaluated. RESULTS Closthioamide had broad-spectrum activity against Gram-positive bacteria. Notably, closthioamide was very potent against MRSA and VRE strains. Closthioamide impaired DNA replication and inhibited DNA gyrase activity, in particular the ATPase function of gyrase and of topoisomerase IV, whereas there was little effect on the cleavage-rejoining function. Closthioamide also inhibited the relaxation activity of DNA gyrase, which does not require ATP hydrolysis, and thus may allosterically rather than directly interfere with the ATPase activity of gyrase. Cross-resistance to ciprofloxacin and novobiocin could not be detected in experimental mutants and clinical isolates. CONCLUSIONS Closthioamide, a member of an unprecedented class of antibiotics, is a potent inhibitor of bacterial DNA gyrase; however, its molecular mechanism differs from that of the quinolones and aminocoumarins.
Collapse
Affiliation(s)
- Alina Iulia Chiriac
- Pharmaceutical Microbiology Section, Institute for Medical Microbiology, Immunology and Parasitology, University of Bonn, Bonn, Germany
| | - Florian Kloss
- Biomolecular Chemistry Department, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Jena, Germany
| | - Jonas Krämer
- Pharmaceutical Microbiology Section, Institute for Medical Microbiology, Immunology and Parasitology, University of Bonn, Bonn, Germany
| | - Cuong Vuong
- Department of Bacteriology, AiCuris GmbH & Co. KG, Wuppertal, Germany
| | - Christian Hertweck
- Biomolecular Chemistry Department, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Jena, Germany
| | - Hans-Georg Sahl
- Pharmaceutical Microbiology Section, Institute for Medical Microbiology, Immunology and Parasitology, University of Bonn, Bonn, Germany
| |
Collapse
|
50
|
Abstract
DNA topoisomerases are enzymes that control the topology of DNA in all cells. There are two types, I and II, classified according to whether they make transient single- or double-stranded breaks in DNA. Their reactions generally involve the passage of a single- or double-strand segment of DNA through this transient break, stabilized by DNA-protein covalent bonds. All topoisomerases can relax DNA, but DNA gyrase, present in all bacteria, can also introduce supercoils into DNA. Because of their essentiality in all cells and the fact that their reactions proceed via DNA breaks, topoisomerases have become important drug targets; the bacterial enzymes are key targets for antibacterial agents. This article discusses the structure and mechanism of topoisomerases and their roles in the bacterial cell. Targeting of the bacterial topoisomerases by inhibitors, including antibiotics in clinical use, is also discussed.
Collapse
|