1
|
Zannini F, Herrmann JM, Couturier J, Rouhier N. Oxidation of Arabidopsis thaliana COX19 Using the Combined Action of ERV1 and Glutathione. Antioxidants (Basel) 2023; 12:1949. [PMID: 38001802 PMCID: PMC10669224 DOI: 10.3390/antiox12111949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Protein import and oxidative folding within the intermembrane space (IMS) of mitochondria relies on the MIA40-ERV1 couple. The MIA40 oxidoreductase usually performs substrate recognition and oxidation and is then regenerated by the FAD-dependent oxidase ERV1. In most eukaryotes, both proteins are essential; however, MIA40 is dispensable in Arabidopsis thaliana. Previous complementation experiments have studied yeast mia40 mutants expressing a redox inactive, but import-competent versions of yeast Mia40 using A. thaliana ERV1 (AtERV1) suggest that AtERV1 catalyzes the oxidation of MIA40 substrates. We assessed the ability of both yeast and Arabidopsis MIA40 and ERV1 recombinant proteins to oxidize the apo-cytochrome reductase CCMH and the cytochrome c oxidase assembly protein COX19, a typical MIA40 substrate, in the presence or absence of glutathione, using in vitro cysteine alkylation and cytochrome c reduction assays. The presence of glutathione used at a physiological concentration and redox potential was sufficient to support the oxidation of COX19 by AtERV1, providing a likely explanation for why MIA40 is not essential for the import and oxidative folding of IMS-located proteins in Arabidopsis. The results point to fundamental biochemical differences between Arabidopsis and yeast ERV1 in catalyzing protein oxidation.
Collapse
Affiliation(s)
- Flavien Zannini
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France; (F.Z.); (J.C.)
| | - Johannes M. Herrmann
- Cell Biology, University of Kaiserslautern, RPTU, 67663 Kaiserslautern, Germany;
| | - Jérémy Couturier
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France; (F.Z.); (J.C.)
| | - Nicolas Rouhier
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France; (F.Z.); (J.C.)
| |
Collapse
|
2
|
Salman AA, Goldring JPD. Expression and copper binding studies of a Plasmodium falciparum protein with Cox19 copper binding motifs. Exp Parasitol 2023:108572. [PMID: 37348640 DOI: 10.1016/j.exppara.2023.108572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/25/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Copper can exist in an oxidized and a reduced form, which enables the metal to play essential roles as a catalytic co-factor in redox reactions in many organisms. Copper confers redox activity to the terminal electron transport chain cytochrome c oxidase protein. Cytochrome c oxidase in yeast obtains copper for the CuB site in the Cox1 subunit from Cox11 in association with Cox19. When copper is chelated in growth medium, Plasmodium falciparum parasite development in infected red blood cells is inhibited and excess copper is toxic for the parasite. The gene of a 26 kDa Plasmodium falciparum PfCox19 protein with two Cx9C Cox19 copper binding motifs, was cloned and expressed as a 66 kDa fusion protein with maltose binding protein and affinity purified (rMBP-PfCox19). rMBP-PfCox19 bound copper measured by: a bicinchoninic acid release assay; an in vivo bacterial host growth inhibition assay; ascorbate oxidation inhibition and differential scanning fluorimetry. The native protein was detected by antibodies raised against rMBP-PfCox19. PfCox19 binds copper and is predicted to associate with PfCox11 in the insertion of copper into the CuB site of Plasmodium cytochrome c oxidase. Characterisation of the proteins involved in Plasmodium spp. copper metabolism will help us understand the role of cytochrome c oxidase and this essential metal in Plasmodium homeostasis.
Collapse
Affiliation(s)
| | - J P Dean Goldring
- Biochemistry, University of KwaZulu-Natal, Pietermaritzburg, 3201, South Africa.
| |
Collapse
|
3
|
The essential cysteines in the CIPC motif of the thioredoxin-like Trypanosoma brucei MICOS subunit TbMic20 do not form an intramolecular disulfide bridge in vivo. Mol Biochem Parasitol 2022; 248:111463. [DOI: 10.1016/j.molbiopara.2022.111463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/07/2022] [Accepted: 02/09/2022] [Indexed: 11/17/2022]
|
4
|
Pedra-Rezende Y, Bombaça ACS, Menna-Barreto/ RFS. Is the mitochondrion a promising drug target in trypanosomatids? Mem Inst Oswaldo Cruz 2022; 117:e210379. [PMID: 35195164 PMCID: PMC8862782 DOI: 10.1590/0074-02760210379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/13/2021] [Indexed: 12/23/2022] Open
|
5
|
Abstract
Import and oxidative folding of proteins in the mitochondrial intermembrane space differ among eukaryotic lineages. While opisthokonts such as yeast rely on the receptor and oxidoreductase Mia40 in combination with the Mia40:cytochrome c oxidoreductase Erv, kinetoplastid parasites and other Excavata/Discoba lack Mia40 but have a functional Erv homologue. Whether excavate Erv homologues rely on a Mia40 replacement or directly interact with imported protein substrates remains controversial. Here, we used the CRISPR-Cas9 system to generate a set of tagged and untagged homozygous mutants of LTERV from the kinetoplastid model parasite Leishmania tarentolae. Modifications of the shuttle cysteine motif of LtErv were lethal, whereas replacement of clamp residue Cys17 or removal of the kinetoplastida-specific second (KISS) domain had no impact on parasite viability under standard growth conditions. However, removal of the KISS domain rendered parasites sensitive to heat stress and led to the accumulation of homodimeric and mixed LtErv disulfides. We therefore determined and compared the redox interactomes of tagged wild-type LtErv and LtErvΔKISS using stable isotope labeling by amino acids in cell culture (SILAC) and quantitative mass spectrometry. While the Mia40-replacement candidate Mic20 and all but one typical substrate with twin Cx3/9C-motifs were absent in both redox interactomes, we identified a small set of alternative potential interaction partners with putative redox-active cysteine residues. In summary, our study reveals parasite-specific intracellular structure-function relationships and redox interactomes of LtErv with implications for current hypotheses on mitochondrial protein import in nonopisthokonts. IMPORTANCE The discovery of the redox proteins Mia40/CHCHD4 and Erv1/ALR, as well as the elucidation of their relevance for oxidative protein folding in the mitochondrial intermembrane space of yeast and mammals, founded a new research topic in redox biology and mitochondrial protein import. The lack of Mia40/CHCHD4 in protist lineages raises fundamental and controversial questions regarding the conservation and evolution of this essential pathway. Do protist Erv homologues act alone, or do they use the candidate Mic20 or another protein as a Mia40 replacement? Furthermore, we previously showed that Erv homologues in L. tarentolae and the human pathogen L. infantum are not only essential but also differ structurally and mechanistically from yeast and human Erv1/ALR. Here, we analyzed the relevance of such structural differences in vivo and determined the first redox interactomes of a nonopisthokont Erv homologue. Our data challenge recent hypotheses on mitochondrial protein import in nonopisthokonts.
Collapse
|
6
|
Leishmania type II dehydrogenase is essential for parasite viability irrespective of the presence of an active complex I. Proc Natl Acad Sci U S A 2021; 118:2103803118. [PMID: 34654744 DOI: 10.1073/pnas.2103803118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2021] [Indexed: 11/18/2022] Open
Abstract
Type II NADH dehydrogenases (NDH2) are monotopic enzymes present in the external or internal face of the mitochondrial inner membrane that contribute to NADH/NAD+ balance by conveying electrons from NADH to ubiquinone without coupled proton translocation. Herein, we characterize the product of a gene present in all species of the human protozoan parasite Leishmania as a bona fide, matrix-oriented, type II NADH dehydrogenase. Within mitochondria, this respiratory activity concurs with that of type I NADH dehydrogenase (complex I) in some Leishmania species but not others. To query the significance of NDH2 in parasite physiology, we attempted its genetic disruption in two parasite species, exhibiting a silent (Leishmania infantum, Li) and a fully operational (Leishmania major, Lm) complex I. Strikingly, this analysis revealed that NDH2 abrogation is not tolerated by Leishmania, not even by complex I-expressing Lm species. Conversely, complex I is dispensable in both species, provided that NDH2 is sufficiently expressed. That a type II dehydrogenase is essential even in the presence of an active complex I places Leishmania NADH metabolism into an entirely unique perspective and suggests unexplored functions for NDH2 that span beyond its complex I-overlapping activities. Notably, by showing that the essential character of NDH2 extends to the disease-causing stage of Leishmania, we genetically validate NDH2-an enzyme without a counterpart in mammals-as a candidate target for leishmanicidal drugs.
Collapse
|
7
|
Erv1 and Cytochrome c Mediate Rapid Electron Transfer via A Collision-Type Interaction. J Mol Biol 2021; 433:167045. [PMID: 33971209 DOI: 10.1016/j.jmb.2021.167045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/01/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022]
Abstract
Being essential for oxidative protein folding in the mitochondrial intermembrane space, the mitochondrial disulfide relay relies on the electron transfer (ET) from the sulfhydryl oxidase Erv1 to cytochrome c (Cc). Using solution NMR spectroscopy, we demonstrate that while the yeast Cc-Erv1 system is functionally active, no observable binding of the protein partners takes place. The transient interaction between Erv1 and Cc can be rationalized by molecular modeling, suggesting that a large surface area of Erv1 can sustain a fast ET to Cc via a collision-type mechanism, without the need for a canonical protein complex formation. We suggest that, by preventing the direct ET to molecular oxygen (O2), the collision-type Cc-Erv1 interaction plays a role in protecting the organism against reactive oxygen species.
Collapse
|
8
|
Effects of Liposome and Cardiolipin on Folding and Function of Mitochondrial Erv1. Int J Mol Sci 2020; 21:ijms21249402. [PMID: 33321986 PMCID: PMC7764442 DOI: 10.3390/ijms21249402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 11/25/2022] Open
Abstract
Erv1 (EC number 1.8.3.2) is an essential mitochondrial enzyme catalyzing protein import and oxidative folding in the mitochondrial intermembrane space. Erv1 has both oxidase and cytochrome c reductase activities. While both Erv1 and cytochrome c were reported to be membrane associated in mitochondria, it is unknown how the mitochondrial membrane environment may affect the function of Erv1. Here, in this study, we used liposomes to mimic the mitochondrial membrane and investigated the effect of liposomes and cardiolipin on the folding and function of yeast Erv1. Enzyme kinetics of both the oxidase and cytochrome c reductase activity of Erv1 were studied using oxygen consumption analysis and spectroscopic methods. Our results showed that the presence of liposomes has mild impacts on Erv1 oxidase activity, but significantly inhibited the catalytic efficiency of Erv1 cytochrome c reductase activity in a cardiolipin-dependent manner. Taken together, the results of this study provide important insights into the function of Erv1 in the mitochondria, suggesting that molecular oxygen is a better substrate than cytochrome c for Erv1 in the yeast mitochondria.
Collapse
|
9
|
Testing the CRISPR-Cas9 and glmS ribozyme systems in Leishmania tarentolae. Mol Biochem Parasitol 2020; 241:111336. [PMID: 33166572 DOI: 10.1016/j.molbiopara.2020.111336] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/25/2020] [Accepted: 10/28/2020] [Indexed: 02/03/2023]
Abstract
Leishmania parasites include important pathogens and model organisms and are even used for the production of recombinant proteins. However, functional genomics and the characterization of essential genes are often limited in Leishmania because of low-throughput technologies for gene disruption or tagging and the absence of components for RNA interference. Here, we tested the T7 RNA polymerase-dependent CRISPR-Cas9 system by Beneke et al. and the glmS ribozyme-based knock-down system in the model parasite Leishmania tarentolae. We successfully deleted two reference genes encoding the flagellar motility factor Pf16 and the salvage-pathway enzyme adenine phosphoribosyltransferase, resulting in immotile and drug-resistant parasites, respectively. In contrast, we were unable to disrupt the gene encoding the mitochondrial flavoprotein Erv. Cultivation of L. tarentolae in standard BHI medium resulted in a constitutive down-regulation of an episomal mCherry-glmS reporter by 40 to 60%. For inducible knock-downs, we evaluated the growth of L. tarentolae in alternative media and identified supplemented MEM, IMDM and McCoy's 5A medium as candidates. Cultivation in supplemented MEM allowed an inducible, glucosamine concentration-dependent down-regulation of the episomal mCherry-glmS reporter by more than 70%. However, chromosomal glmS-tagging of the genes encoding Pf16, adenine phosphoribosyltransferase or Erv did not reveal a knock-down phenotype. Our data demonstrate the suitability of the CRISPR-Cas9 system for the disruption and tagging of genes in L. tarentolae as well as the limitations of the glmS system, which was restricted to moderate efficiencies for episomal knock-downs and caused no detectable phenotype for chromosomal knock-downs.
Collapse
|
10
|
Schneider A. Evolution of mitochondrial protein import – lessons from trypanosomes. Biol Chem 2020; 401:663-676. [DOI: 10.1515/hsz-2019-0444] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/02/2020] [Indexed: 01/02/2023]
Abstract
AbstractThe evolution of mitochondrial protein import and the systems that mediate it marks the boundary between the endosymbiotic ancestor of mitochondria and a true organelle that is under the control of the nucleus. Protein import has been studied in great detail inSaccharomyces cerevisiae. More recently, it has also been extensively investigated in the parasitic protozoanTrypanosoma brucei, making it arguably the second best studied system. A comparative analysis of the protein import complexes of yeast and trypanosomes is provided. Together with data from other systems, this allows to reconstruct the ancestral features of import complexes that were present in the last eukaryotic common ancestor (LECA) and to identify which subunits were added later in evolution. How these data can be translated into plausible scenarios is discussed, providing insights into the evolution of (i) outer membrane protein import receptors, (ii) proteins involved in biogenesis of α-helically anchored outer membrane proteins, and (iii) of the intermembrane space import and assembly system. Finally, it is shown that the unusual presequence-associated import motor of trypanosomes suggests a scenario of how the two ancestral inner membrane protein translocases present in LECA evolved into the single bifunctional one found in extant trypanosomes.
Collapse
Affiliation(s)
- André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| |
Collapse
|
11
|
Ceh-Pavia E, Tang X, Liu Y, Heyes DJ, Zhao B, Xiao P, Lu H. Redox characterisation of Erv1, a key component for protein import and folding in yeast mitochondria. FEBS J 2019; 287:2281-2291. [PMID: 31713999 PMCID: PMC7318334 DOI: 10.1111/febs.15136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/08/2019] [Accepted: 11/10/2019] [Indexed: 11/29/2022]
Abstract
The mitochondrial import and assembly (MIA) pathway plays a vitally important role in import and oxidative folding of mitochondrial proteins. Erv1, a member of the FAD-dependent Erv1/ALR disulphide bond generating enzyme family, is a key player of the MIA pathway. Although considerable progress has been made, the molecular mechanism of electron transfer within Erv1 is still not fully understood. The reduction potentials of the three redox centres were previously determined to be -320 mV for the shuttle disulphide, -150 mV for the active-site disulphide and -215 mV for FAD cofactor. However, it is unknown why FAD of Erv1 has such a low potential compared with other sulfhydryl oxidases, and why the shuttle disulphide has a potential as low as many of the stable structural disulphides of the substrates of MIA pathway. In this study, the three reduction potentials of Erv1 were reassessed using the wild-type and inactive mutants of Erv1 under anaerobic conditions. Our results show that the standard potentials for the shuttle and active-site disulphides are approximately -250 mV and -215 ~ -260 mV, respectively, and the potential for FAD cofactor is -148 mV. Our results support a model that both disulphide bonds are redox-active, and electron flow in Erv1 is thermodynamically favourable. Furthermore, the redox behaviour of Erv1 was confirmed, for the first time using Mia40, the physiological electron donor of Erv1. Together with previous studies on proteins of MIA pathway, we conclude that electron flow in the MIA pathway is a thermodynamically favourable, smoothly downhill process for all steps. DATABASE: Erv1: EC 1.8.3.2.
Collapse
Affiliation(s)
- Efrain Ceh-Pavia
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, UK
| | - Xiaofan Tang
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, UK.,School of Materials, University of Manchester, UK
| | - Yawen Liu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, China
| | - Derren J Heyes
- Manchester Institute of Biotechnology, University of Manchester, UK
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, China
| | - Ping Xiao
- School of Materials, University of Manchester, UK
| | - Hui Lu
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, UK
| |
Collapse
|
12
|
Tang X, Ang SK, Ceh-Pavia E, Heyes DJ, Lu H. Kinetic characterisation of Erv1, a key component for protein import and folding in yeast mitochondria. FEBS J 2019; 287:1220-1231. [PMID: 31569302 PMCID: PMC7155059 DOI: 10.1111/febs.15077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/22/2019] [Accepted: 09/29/2019] [Indexed: 12/04/2022]
Abstract
Yeast (Saccharomyces cerevisiae) essential for respiration and viability 1 (Erv1; EC number http://www.chem.qmul.ac.uk/iubmb/enzyme/1/8/3/2.html), a member of the flavin adenine dinucleotide‐dependent Erv1/ALR disulphide bond generating enzyme family, works together with Mia40 to catalyse protein import and oxidative folding in the mitochondrial intermembrane space. Erv1/ALR functions either as an oxidase or cytochrome c reductase by passing electrons from a thiol substrate to molecular oxygen (O2) or cytochrome c, respectively. However, the substrate specificity for oxygen and cytochrome c is not fully understood. In this study, the oxidase and cytochrome c reductase kinetics of yeast Erv1 were investigated in detail, under aerobic and anaerobic conditions, using stopped‐flow absorption spectroscopy and oxygen consumption analysis. Using DTT as an electron donor, our results show that cytochrome c is ~ 7‐ to 15‐fold more efficient than O2 as electron acceptors for yeast Erv1, and that O2 is a competitive inhibitor of Erv1 cytochrome c reductase activity. In addition, Mia40, the physiological thiol substrate of Erv1, was used as an electron donor for Erv1 in a detailed enzyme kinetic study. Different enzyme kinetic kcat and Km values were obtained with Mia40 compared to DTT, suggesting that Mia40 modulates Erv1 enzyme kinetics. Taken together, this study shows that Erv1 is a moderately active enzyme with the ability to use both O2 and cytochrome c as the electron acceptors, indicating that Erv1 contributes to mitochondrial hydrogen peroxide production. Our results also suggest that Mia40‐Erv1 system may involve in regulation of the redox state of glutathione in the mitochondrial intermembrane space. Erv1 EC number http://www.chem.qmul.ac.uk/iubmb/enzyme/1/8/3/2.html.
Collapse
Affiliation(s)
- Xiaofan Tang
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK.,School of Materials, University of Manchester, UK
| | - Swee Kim Ang
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Efrain Ceh-Pavia
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Derren J Heyes
- Manchester Institute of Biotechnology, University of Manchester, UK
| | - Hui Lu
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| |
Collapse
|
13
|
Kaurov I, Vancová M, Schimanski B, Cadena LR, Heller J, Bílý T, Potěšil D, Eichenberger C, Bruce H, Oeljeklaus S, Warscheid B, Zdráhal Z, Schneider A, Lukeš J, Hashimi H. The Diverged Trypanosome MICOS Complex as a Hub for Mitochondrial Cristae Shaping and Protein Import. Curr Biol 2018; 28:3393-3407.e5. [PMID: 30415698 DOI: 10.1016/j.cub.2018.09.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/02/2018] [Accepted: 09/04/2018] [Indexed: 12/20/2022]
Abstract
The mitochondrial contact site and cristae organization system (MICOS) is a multiprotein complex responsible for cristae formation. Even though cristae are found in all mitochondria capable of oxidative phosphorylation, only Mic10 and Mic60 appear to be conserved throughout eukaryotes. The remaining 4 or 5 known MICOS subunits are specific to the supergroup Opisthokonta, which includes yeast and mammals that are the only organisms in which this complex has been analyzed experimentally. We have isolated the MICOS from Trypanosoma brucei, a member of the supergroup Excavata that is profoundly diverged from opisthokonts. We show that it is required for the maintenance of the unique discoidal cristae that typify excavates, such as euglenids and kinetoplastids, the latter of which include trypanosomes. The trypanosome MICOS consists of 9 subunits, most of which are essential for normal growth. Unlike in opisthokonts, it contains two distinct Mic10 orthologs and an unconventional putative Mic60 that lacks a mitofilin domain. Interestingly, one of the essential trypanosomatid-specific MICOS subunits called TbMic20 is a thioredoxin-like protein that appears to be involved in import of intermembrane space proteins, including respiratory chain complex assembly factors. This result points to trypanosome MICOS coordinating cristae shaping and population of its membrane with proteins involved in respiration, the latter via the catalytic activity of TbMic20. Thus, trypanosome MICOS allows us to define which of its features are conserved in all eukaryotes and decipher those that represent lineage-specific adaptations.
Collapse
Affiliation(s)
- Iosif Kaurov
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Marie Vancová
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Bernd Schimanski
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Lawrence Rudy Cadena
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Jiří Heller
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
| | - Tomáš Bílý
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - David Potěšil
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Claudia Eichenberger
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Hannah Bruce
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Silke Oeljeklaus
- Faculty of Biology, Biochemistry and Functional Proteomics, Institute of Biology II, University of Freiburg, 79104 Freiburg, Germany
| | - Bettina Warscheid
- Faculty of Biology, Biochemistry and Functional Proteomics, Institute of Biology II, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Zbyněk Zdráhal
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Julius Lukeš
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Hassan Hashimi
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic.
| |
Collapse
|
14
|
Mallo N, Fellows J, Johnson C, Sheiner L. Protein Import into the Endosymbiotic Organelles of Apicomplexan Parasites. Genes (Basel) 2018; 9:E412. [PMID: 30110980 PMCID: PMC6115763 DOI: 10.3390/genes9080412] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 07/31/2018] [Accepted: 08/07/2018] [Indexed: 01/26/2023] Open
Abstract
: The organelles of endosymbiotic origin, plastids, and mitochondria, evolved through the serial acquisition of endosymbionts by a host cell. These events were accompanied by gene transfer from the symbionts to the host, resulting in most of the organellar proteins being encoded in the cell nuclear genome and trafficked into the organelle via a series of translocation complexes. Much of what is known about organelle protein translocation mechanisms is based on studies performed in common model organisms; e.g., yeast and humans or Arabidopsis. However, studies performed in divergent organisms are gradually accumulating. These studies provide insights into universally conserved traits, while discovering traits that are specific to organisms or clades. Apicomplexan parasites feature two organelles of endosymbiotic origin: a secondary plastid named the apicoplast and a mitochondrion. In the context of the diseases caused by apicomplexan parasites, the essential roles and divergent features of both organelles make them prime targets for drug discovery. This potential and the amenability of the apicomplexan Toxoplasma gondii to genetic manipulation motivated research about the mechanisms controlling both organelles' biogenesis. Here we provide an overview of what is known about apicomplexan organelle protein import. We focus on work done mainly in T. gondii and provide a comparison to model organisms.
Collapse
Affiliation(s)
- Natalia Mallo
- Wellcome Centre for Molecular Parasitology, University of Glasgow, 120 University Place Glasgow, Glasgow G12 8QQ, UK.
| | - Justin Fellows
- Genetics and Biochemistry Branch, National Institute for Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Carla Johnson
- Wellcome Centre for Molecular Parasitology, University of Glasgow, 120 University Place Glasgow, Glasgow G12 8QQ, UK.
| | - Lilach Sheiner
- Wellcome Centre for Molecular Parasitology, University of Glasgow, 120 University Place Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
15
|
Wojtkowska M, Buczek D, Suzuki Y, Shabardina V, Makałowski W, Kmita H. The emerging picture of the mitochondrial protein import complexes of Amoebozoa supergroup. BMC Genomics 2017; 18:997. [PMID: 29284403 PMCID: PMC5747110 DOI: 10.1186/s12864-017-4383-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/14/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The existence of mitochondria-related organelles (MROs) is proposed for eukaryotic organisms. The Amoebozoa includes some organisms that are known to have mitosomes but also organisms that have aerobic mitochondria. However, the mitochondrial protein apparatus of this supergroup remains largely unsampled, except for the mitochondrial outer membrane import complexes studied recently. Therefore, in this study we investigated the mitochondrial inner membrane and intermembrane space complexes, using the available genome and transcriptome sequences. RESULTS When compared with the canonical cognate complexes described for the yeast Saccharomyces cerevisiae, amoebozoans with aerobic mitochondria, display lower differences in the number of subunits predicted for these complexes than the mitochondrial outer membrane complexes, although the predicted subunits appear to display different levels of diversity in regard to phylogenetic position and isoform numbers. For the putative mitosome-bearing amoebozoans, the number of predicted subunits suggests the complex elimination distinctly more pronounced than in the case of the outer membrane ones. CONCLUSION The results concern the problem of mitochondrial and mitosome protein import machinery structural variability and the reduction of their complexity within the currently defined supergroup of Amoebozoa. This results are crucial for better understanding of the Amoebozoa taxa of both biomedical and evolutionary importance.
Collapse
Affiliation(s)
- Małgorzata Wojtkowska
- Laboratory of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Dorota Buczek
- Laboratory of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
- Institute of Bioinformatics, Faculty of Medicine, University of Muenster, Niels Stensen Strasse 14, 48149 Muenster, Germany
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8562 Japan
| | - Victoria Shabardina
- Institute of Bioinformatics, Faculty of Medicine, University of Muenster, Niels Stensen Strasse 14, 48149 Muenster, Germany
| | - Wojciech Makałowski
- Institute of Bioinformatics, Faculty of Medicine, University of Muenster, Niels Stensen Strasse 14, 48149 Muenster, Germany
| | - Hanna Kmita
- Laboratory of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| |
Collapse
|
16
|
A single-cysteine mutant and chimeras of essential Leishmania Erv can complement the loss of Erv1 but not of Mia40 in yeast. Redox Biol 2017; 15:363-374. [PMID: 29310075 PMCID: PMC5760468 DOI: 10.1016/j.redox.2017.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/17/2017] [Accepted: 12/21/2017] [Indexed: 11/21/2022] Open
Abstract
Mia40/CHCHD4 and Erv1/ALR are essential for oxidative protein folding in the mitochondrial intermembrane space of yeast and mammals. In contrast, many protists, including important apicomplexan and kinetoplastid parasites, lack Mia40. Furthermore, the Erv homolog of the model parasite Leishmania tarentolae (LtErv) was shown to be incompatible with Saccharomyces cerevisiae Mia40 (ScMia40). Here we addressed structure-function relationships of ScErv1 and LtErv as well as their compatibility with the oxidative protein folding system in yeast using chimeric, truncated, and mutant Erv constructs. Chimeras between the N-terminal arm of ScErv1 and a variety of truncated LtErv constructs were able to rescue yeast cells that lack ScErv1. Yeast cells were also viable when only a single cysteine residue was replaced in LtErvC17S. Thus, the presence and position of the C-terminal arm and the kinetoplastida-specific second (KISS) domain of LtErv did not interfere with its functionality in the yeast system, whereas a relatively conserved cysteine residue before the flavodomain rendered LtErv incompatible with ScMia40. The question whether parasite Erv homologs might also exert the function of Mia40 was addressed in another set of complementation assays. However, neither the KISS domain nor other truncated or mutant LtErv constructs were able to rescue yeast cells that lack ScMia40. The general relevance of Erv and its candidate substrate small Tim1 was analyzed for the related parasite L. infantum. Repeated unsuccessful knockout attempts suggest that both genes are essential in this human pathogen and underline the potential of mitochondrial protein import pathways for future intervention strategies.
Collapse
|
17
|
Carrie C, Soll J. To Mia or not to Mia: stepwise evolution of the mitochondrial intermembrane space disulfide relay. BMC Biol 2017; 15:119. [PMID: 29241459 PMCID: PMC5731054 DOI: 10.1186/s12915-017-0468-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The disulfide relay system found in the intermembrane space (IMS) of mitochondria is an essential pathway for the import and oxidative folding of IMS proteins. Erv1, an essential member of this pathway, has been previously found to be ubiquitously present in mitochondria-containing eukaryotes. However, the other essential protein, Mia40, was found to be absent or not required in some organisms, raising questions about how the disulfide relay functions in these organisms. A recent study published in BMC Biology demonstrates for the first time that some Erv1 proteins can function in oxidative folding independently of a Mia40 protein, providing for the first time strong evidence that the IMS disulfide relay evolved in a stepwise manner. See research article: 10.1186/s12915-017-0445-8
Collapse
Affiliation(s)
- Chris Carrie
- Department of Biology I, Botany, Ludwig-Maximilians-Universität München, Großhaderner Strasse 2-4, D-82152, Planegg-Martinsried, Germany.
| | - Jürgen Soll
- Department of Biology I, Botany, Ludwig-Maximilians-Universität München, Großhaderner Strasse 2-4, D-82152, Planegg-Martinsried, Germany.,Munich Center for Integrated Protein Science, CiPSM, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, D-81377, Munich, Germany
| |
Collapse
|
18
|
Backes S, Herrmann JM. Protein Translocation into the Intermembrane Space and Matrix of Mitochondria: Mechanisms and Driving Forces. Front Mol Biosci 2017; 4:83. [PMID: 29270408 PMCID: PMC5725982 DOI: 10.3389/fmolb.2017.00083] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 11/24/2017] [Indexed: 11/17/2022] Open
Abstract
Mitochondria contain two aqueous subcompartments, the matrix and the intermembrane space (IMS). The matrix is enclosed by both the inner and outer mitochondrial membranes, whilst the IMS is sandwiched between the two. Proteins of the matrix are synthesized in the cytosol as preproteins, which contain amino-terminal matrix targeting sequences that mediate their translocation through translocases embedded in the outer and inner membrane. For these proteins, the translocation reaction is driven by the import motor which is part of the inner membrane translocase. The import motor employs matrix Hsp70 molecules and ATP hydrolysis to ratchet proteins into the mitochondrial matrix. Most IMS proteins lack presequences and instead utilize the IMS receptor Mia40, which facilitates their translocation across the outer membrane in a reaction that is coupled to the formation of disulfide bonds within the protein. This process requires neither ATP nor the mitochondrial membrane potential. Mia40 fulfills two roles: First, it acts as a holdase, which is crucial in the import of IMS proteins and second, it functions as a foldase, introducing disulfide bonds into newly imported proteins, which induces and stabilizes their natively folded state. For several Mia40 substrates, oxidative folding is an essential prerequisite for their assembly into oligomeric complexes. Interestingly, recent studies have shown that the two functions of Mia40 can be experimentally separated from each other by the use of specific mutants, hence providing a powerful new way to dissect the different physiological roles of Mia40. In this review we summarize the current knowledge relating to the mitochondrial matrix-targeting and the IMS-targeting/Mia40 pathway. Moreover, we discuss the mechanistic properties by which the mitochondrial import motor on the one hand and Mia40 on the other, drive the translocation of their substrates into the organelle. We propose that the lateral diffusion of Mia40 in the inner membrane and the oxidation-mediated folding of incoming polypeptides supports IMS import.
Collapse
Affiliation(s)
- Sandra Backes
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | | |
Collapse
|
19
|
Peleh V, Zannini F, Backes S, Rouhier N, Herrmann JM. Erv1 of Arabidopsis thaliana can directly oxidize mitochondrial intermembrane space proteins in the absence of redox-active Mia40. BMC Biol 2017; 15:106. [PMID: 29117860 PMCID: PMC5679390 DOI: 10.1186/s12915-017-0445-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/19/2017] [Indexed: 11/20/2022] Open
Abstract
Background Many proteins of the mitochondrial intermembrane space (IMS) contain structural disulfide bonds formed by the mitochondrial disulfide relay. In fungi and animals, the sulfhydryl oxidase Erv1 ‘generates’ disulfide bonds that are passed on to the oxidoreductase Mia40, which oxidizes substrate proteins. A different structural organization of plant Erv1 proteins compared to that of animal and fungal orthologs was proposed to explain its inability to complement the corresponding yeast mutant. Results Herein, we have revisited the biochemical and functional properties of Arabidopsis thaliana Erv1 by both in vitro reconstituted activity assays and complementation of erv1 and mia40 yeast mutants. These mutants were viable, however, they showed severe defects in the biogenesis of IMS proteins. The plant Erv1 was unable to oxidize yeast Mia40 and rather even blocked its activity. Nevertheless, it was able to mediate the import and folding of mitochondrial proteins. Conclusions We observed that plant Erv1, unlike its homologs in fungi and animals, can promote protein import and oxidative protein folding in the IMS independently of the oxidoreductase Mia40. In accordance to the absence of Mia40 in many protists, our study suggests that the mitochondrial disulfide relay evolved in a stepwise reaction from an Erv1-only system to which Mia40 was added in order to improve substrate specificity. The mitochondrial disulfide relay evolved in a step-wise manner from an Erv1-only system. ![]()
Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0445-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Valentina Peleh
- Cell Biology, University of Kaiserslautern, Erwin-Schrödinger-Strasse 13, 67663, Kaiserslautern, Germany
| | - Flavien Zannini
- Unité Mixte de Recherches 1136 Interactions Arbres-Microorganismes, Université de Lorraine/INRA, Faculté des sciences et technologies, 54500 Vandoeuvre-lès-Nancy, Nancy, France
| | - Sandra Backes
- Cell Biology, University of Kaiserslautern, Erwin-Schrödinger-Strasse 13, 67663, Kaiserslautern, Germany
| | - Nicolas Rouhier
- Unité Mixte de Recherches 1136 Interactions Arbres-Microorganismes, Université de Lorraine/INRA, Faculté des sciences et technologies, 54500 Vandoeuvre-lès-Nancy, Nancy, France.
| | - Johannes M Herrmann
- Cell Biology, University of Kaiserslautern, Erwin-Schrödinger-Strasse 13, 67663, Kaiserslautern, Germany.
| |
Collapse
|
20
|
Abstract
Cysteine thiols are among the most reactive functional groups in proteins, and their pairing in disulfide linkages is a common post-translational modification in proteins entering the secretory pathway. This modest amino acid alteration, the mere removal of a pair of hydrogen atoms from juxtaposed cysteine residues, contrasts with the substantial changes that characterize most other post-translational reactions. However, the wide variety of proteins that contain disulfides, the profound impact of cross-linking on the behavior of the protein polymer, the numerous and diverse players in intracellular pathways for disulfide formation, and the distinct biological settings in which disulfide bond formation can take place belie the simplicity of the process. Here we lay the groundwork for appreciating the mechanisms and consequences of disulfide bond formation in vivo by reviewing chemical principles underlying cysteine pairing and oxidation. We then show how enzymes tune redox-active cofactors and recruit oxidants to improve the specificity and efficiency of disulfide formation. Finally, we discuss disulfide bond formation in a cellular context and identify important principles that contribute to productive thiol oxidation in complex, crowded, dynamic environments.
Collapse
Affiliation(s)
- Deborah Fass
- Department of Structural Biology, Weizmann Institute of Science , Rehovot 7610001, Israel
| | - Colin Thorpe
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| |
Collapse
|
21
|
Harsman A, Schneider A. Mitochondrial protein import in trypanosomes: Expect the unexpected. Traffic 2017; 18:96-109. [PMID: 27976830 DOI: 10.1111/tra.12463] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/01/2016] [Accepted: 12/06/2016] [Indexed: 12/11/2022]
Abstract
Mitochondria have many different functions, the most important one of which is oxidative phosphorylation. They originated from an endosymbiotic event between a bacterium and an archaeal host cell. It was the evolution of a protein import system that marked the boundary between the endosymbiotic ancestor of the mitochondrion and a true organelle that is under the control of the nucleus. In present day mitochondria more than 95% of all proteins are imported from the cytosol in a proces mediated by hetero-oligomeric protein complexes in the outer and inner mitochondrial membranes. In this review we compare mitochondrial protein import in the best studied model system yeast and the parasitic protozoan Trypanosoma brucei. The 2 organisms are phylogenetically only remotely related. Despite the fact that mitochondrial protein import has the same function in both species, only very few subunits of their import machineries are conserved. Moreover, while yeast has 2 inner membrane protein translocases, one specialized for presequence-containing and one for mitochondrial carrier proteins, T. brucei has a single inner membrane translocase only, that mediates import of both types of substrates. The evolutionary implications of these findings are discussed.
Collapse
Affiliation(s)
- Anke Harsman
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| |
Collapse
|
22
|
Horáková E, Changmai P, Paris Z, Salmon D, Lukeš J. Simultaneous depletion of Atm and Mdl rebalances cytosolic Fe-S cluster assembly but not heme import into the mitochondrion ofTrypanosoma brucei. FEBS J 2015; 282:4157-75. [DOI: 10.1111/febs.13411] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 07/24/2015] [Accepted: 08/10/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Eva Horáková
- Biology Centre; Institute of Parasitology; Czech Academy of Sciences; České Budějovice (Budweis) Czech Republic
| | - Piya Changmai
- Biology Centre; Institute of Parasitology; Czech Academy of Sciences; České Budějovice (Budweis) Czech Republic
- Faculty of Sciences; University of South Bohemia; České Budějovice (Budweis) Czech Republic
| | - Zdeněk Paris
- Biology Centre; Institute of Parasitology; Czech Academy of Sciences; České Budějovice (Budweis) Czech Republic
| | - Didier Salmon
- Institute of Medical Biochemistry Leopoldo de Meis; Centro de Ciências e da Saude; Federal University of Rio de Janeiro; Brazil
| | - Julius Lukeš
- Biology Centre; Institute of Parasitology; Czech Academy of Sciences; České Budějovice (Budweis) Czech Republic
- Faculty of Sciences; University of South Bohemia; České Budějovice (Budweis) Czech Republic
- Canadian Institute for Advanced Research; Toronto Ontario Canada
| |
Collapse
|
23
|
Verner Z, Basu S, Benz C, Dixit S, Dobáková E, Faktorová D, Hashimi H, Horáková E, Huang Z, Paris Z, Peña-Diaz P, Ridlon L, Týč J, Wildridge D, Zíková A, Lukeš J. Malleable mitochondrion of Trypanosoma brucei. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 315:73-151. [PMID: 25708462 DOI: 10.1016/bs.ircmb.2014.11.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The importance of mitochondria for a typical aerobic eukaryotic cell is undeniable, as the list of necessary mitochondrial processes is steadily growing. Here, we summarize the current knowledge of mitochondrial biology of an early-branching parasitic protist, Trypanosoma brucei, a causative agent of serious human and cattle diseases. We present a comprehensive survey of its mitochondrial pathways including kinetoplast DNA replication and maintenance, gene expression, protein and metabolite import, major metabolic pathways, Fe-S cluster synthesis, ion homeostasis, organellar dynamics, and other processes. As we describe in this chapter, the single mitochondrion of T. brucei is everything but simple and as such rivals mitochondria of multicellular organisms.
Collapse
Affiliation(s)
- Zdeněk Verner
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Present address: Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia; Present address: Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Somsuvro Basu
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic; Present address: Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Germany
| | - Corinna Benz
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Sameer Dixit
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Eva Dobáková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Present address: Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Drahomíra Faktorová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Hassan Hashimi
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Eva Horáková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Zhenqiu Huang
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Zdeněk Paris
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Priscila Peña-Diaz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Lucie Ridlon
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic; Present address: Salk Institute, La Jolla, San Diego, USA
| | - Jiří Týč
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - David Wildridge
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
24
|
Mitochondrial thiol oxidase Erv1: both shuttle cysteine residues are required for its function with distinct roles. Biochem J 2014; 460:199-210. [PMID: 24625320 PMCID: PMC4019985 DOI: 10.1042/bj20131540] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Erv1 (essential for respiration and viability 1), is an essential component of the MIA (mitochondrial import and assembly) pathway, playing an important role in the oxidative folding of mitochondrial intermembrane space proteins. In the MIA pathway, Mia40, a thiol oxidoreductase with a CPC motif at its active site, oxidizes newly imported substrate proteins. Erv1 a FAD-dependent thiol oxidase, in turn reoxidizes Mia40 via its N-terminal Cys30–Cys33 shuttle disulfide. However, it is unclear how the two shuttle cysteine residues of Erv1 relay electrons from the Mia40 CPC motif to the Erv1 active-site Cys130–Cys133 disulfide. In the present study, using yeast genetic approaches we showed that both shuttle cysteine residues of Erv1 are required for cell growth. In organelle and in vitro studies confirmed that both shuttle cysteine residues were indeed required for import of MIA pathway substrates and Erv1 enzyme function to oxidize Mia40. Furthermore, our results revealed that the two shuttle cysteine residues of Erv1 are functionally distinct. Although Cys33 is essential for forming the intermediate disulfide Cys33–Cys130′ and transferring electrons to the redox active-site directly, Cys30 plays two important roles: (i) dominantly interacts and receives electrons from the Mia40 CPC motif; and (ii) resolves the Erv1 Cys33–Cys130 intermediate disulfide. Taken together, we conclude that both shuttle cysteine residues are required for Erv1 function, and play complementary, but distinct, roles to ensure rapid turnover of active Erv1. Erv1 is a sulfydryl oxidase, an essential component of mitochondrial MIA pathway. The present study shows that both shuttle cysteine residues of Erv1 are required for its function, they play complementary, but distinct, roles to ensure rapid turnover of active enzyme.
Collapse
|
25
|
Koumandou VL, Wickstead B, Ginger ML, van der Giezen M, Dacks JB, Field MC. Molecular paleontology and complexity in the last eukaryotic common ancestor. Crit Rev Biochem Mol Biol 2014; 48:373-96. [PMID: 23895660 PMCID: PMC3791482 DOI: 10.3109/10409238.2013.821444] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Eukaryogenesis, the origin of the eukaryotic cell, represents one of the fundamental evolutionary transitions in the history of life on earth. This event, which is estimated to have occurred over one billion years ago, remains rather poorly understood. While some well-validated examples of fossil microbial eukaryotes for this time frame have been described, these can provide only basic morphology and the molecular machinery present in these organisms has remained unknown. Complete and partial genomic information has begun to fill this gap, and is being used to trace proteins and cellular traits to their roots and to provide unprecedented levels of resolution of structures, metabolic pathways and capabilities of organisms at these earliest points within the eukaryotic lineage. This is essentially allowing a molecular paleontology. What has emerged from these studies is spectacular cellular complexity prior to expansion of the eukaryotic lineages. Multiple reconstructed cellular systems indicate a very sophisticated biology, which by implication arose following the initial eukaryogenesis event but prior to eukaryotic radiation and provides a challenge in terms of explaining how these early eukaryotes arose and in understanding how they lived. Here, we provide brief overviews of several cellular systems and the major emerging conclusions, together with predictions for subsequent directions in evolution leading to extant taxa. We also consider what these reconstructions suggest about the life styles and capabilities of these earliest eukaryotes and the period of evolution between the radiation of eukaryotes and the eukaryogenesis event itself.
Collapse
Affiliation(s)
- V Lila Koumandou
- Biomedical Research Foundation, Academy of Athens, Soranou Efesiou 4, Athens 115 27, Greece
| | | | | | | | | | | |
Collapse
|
26
|
Singh K, Veluru NK, Trivedi V, Gupta CM, Sahasrabuddhe AA. An actin-like protein is involved in regulation of mitochondrial and flagellar functions as well as in intramacrophage survival of Leishmania donovani. Mol Microbiol 2014; 91:562-78. [PMID: 24354789 DOI: 10.1111/mmi.12477] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2013] [Indexed: 11/30/2022]
Abstract
Actin-related proteins are ubiquitous actin-like proteins that show high similarity with actin in terms of their amino acid sequence and three-dimensional structure. However, in lower eukaryotes, such as trypanosomatids, their functions have not yet been explored. Here, we show that a novel actin-related protein (ORF LmjF.13.0950) is localized mainly in the Leishmania mitochondrion. We further reveal that depletion of the intracellular levels of this protein leads to an appreciable decrease in the mitochondrial membrane potential as well as in the ATP production, which appears to be accompanied with impairment in the flagellum assembly and motility. Additionally, we report that the mutants so generated fail to survive inside the mouse peritoneal macrophages. These abnormalities are, however, reversed by the episomal gene complementation. Our results, for the first time indicate that apart from their classical roles in the cytoplasm and nucleus, actin-related proteins may also regulate the mitochondrial function, and in case of Leishmania donovani they may also serve as the essential factor for their survival in the host cells.
Collapse
Affiliation(s)
- Kuldeep Singh
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, PIN-226031, Uttar Pradesh, India
| | | | | | | | | |
Collapse
|
27
|
Murcha MW, Wang Y, Narsai R, Whelan J. The plant mitochondrial protein import apparatus - the differences make it interesting. Biochim Biophys Acta Gen Subj 2013; 1840:1233-45. [PMID: 24080405 DOI: 10.1016/j.bbagen.2013.09.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 09/17/2013] [Accepted: 09/18/2013] [Indexed: 12/25/2022]
Abstract
BACKGROUND Mitochondria play essential roles in the life and death of almost all eukaryotic cells, ranging from single-celled to multi-cellular organisms that display tissue and developmental differentiation. As mitochondria only arose once in evolution, much can be learned from studying single celled model systems such as yeast and applying this knowledge to other organisms. However, two billion years of evolution have also resulted in substantial divergence in mitochondrial function between eukaryotic organisms. SCOPE OF REVIEW Here we review our current understanding of the mechanisms of mitochondrial protein import between plants and yeast (Saccharomyces cerevisiae) and identify a high level of conservation for the essential subunits of plant mitochondrial import apparatus. Furthermore, we investigate examples whereby divergence and acquisition of functions have arisen and highlight the emerging examples of interactions between the import apparatus and components of the respiratory chain. MAJOR CONCLUSIONS After more than three decades of research into the components and mechanisms of mitochondrial protein import of plants and yeast, the differences between these systems are examined. Specifically, expansions of the small gene families that encode the mitochondrial protein import apparatus in plants are detailed, and their essential role in seed viability is revealed. GENERAL SIGNIFICANCE These findings point to the essential role of the inner mitochondrial protein translocases in Arabidopsis, establishing their necessity for seed viability and the crucial role of mitochondrial biogenesis during germination. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.
Collapse
Affiliation(s)
- Monika W Murcha
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia.
| | - Yan Wang
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| | - Reena Narsai
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia; Computational Systems Biology, Bayliss Building M316, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia
| | - James Whelan
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia; Department of Botany, School of Life Science, La Trobe University, Bundoora 3086, Victoria, Australia
| |
Collapse
|