1
|
Parada-Márquez JF, Maldonado-Rodriguez ND, Triana-Fonseca P, Contreras-Bravo NC, Calderón-Ospina CA, Restrepo CM, Morel A, Ortega-Recalde OJ, Silgado-Guzmán DF, Angulo-Aguado M, Fonseca-Mendoza DJ. Pharmacogenomic profile of actionable molecular variants related to drugs commonly used in anesthesia: WES analysis reveals new mutations. Front Pharmacol 2023; 14:1047854. [PMID: 37021041 PMCID: PMC10069477 DOI: 10.3389/fphar.2023.1047854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
Background: Genetic interindividual variability is associated with adverse drug reactions (ADRs) and affects the response to common drugs used in anesthesia. Despite their importance, these variants remain largely underexplored in Latin-American countries. This study describes rare and common variants found in genes related to metabolism of analgesic and anaesthetic drug in the Colombian population. Methods: We conducted a study that included 625 Colombian healthy individuals. We generated a subset of 14 genes implicated in metabolic pathways of common medications used in anesthesia and assessed them by whole-exome sequencing (WES). Variants were filtered using two pipelines: A) novel or rare (minor allele frequency-MAF <1%) variants including missense, loss-of-function (LoF, e.g., frameshift, nonsense), and splice site variants with potential deleterious effect and B) clinically validated variants described in the PharmGKB (categories 1, 2 and 3) and/or ClinVar databases. For rare and novel missense variants, we applied an optimized prediction framework (OPF) to assess the functional impact of pharmacogenetic variants. Allelic, genotypic frequencies and Hardy-Weinberg equilibrium were calculated. We compare our allelic frequencies with these from populations described in the gnomAD database. Results: Our study identified 148 molecular variants potentially related to variability in the therapeutic response to 14 drugs commonly used in anesthesiology. 83.1% of them correspond to rare and novel missense variants classified as pathogenic according to the pharmacogenetic optimized prediction framework, 5.4% were loss-of-function (LoF), 2.7% led to potential splicing alterations and 8.8% were assigned as actionable or informative pharmacogenetic variants. Novel variants were confirmed by Sanger sequencing. Allelic frequency comparison showed that the Colombian population has a unique pharmacogenomic profile for anesthesia drugs with some allele frequencies different from other populations. Conclusion: Our results demonstrated high allelic heterogeneity among the analyzed sampled, enriched by rare (91.2%) variants in pharmacogenes related to common drugs used in anesthesia. The clinical implications of these results highlight the importance of implementation of next-generation sequencing data into pharmacogenomic approaches and personalized medicine.
Collapse
Affiliation(s)
| | | | - Paula Triana-Fonseca
- Department of Molecular Diagnosis, Genética Molecular de Colombia SAS, Bogotá, Colombia
| | - Nora Constanza Contreras-Bravo
- School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Universidad Del Rosario, Bogotá, Colombia
| | - Carlos Alberto Calderón-Ospina
- School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Universidad Del Rosario, Bogotá, Colombia
| | - Carlos M. Restrepo
- School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Universidad Del Rosario, Bogotá, Colombia
| | - Adrien Morel
- School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Universidad Del Rosario, Bogotá, Colombia
| | - Oscar Javier Ortega-Recalde
- School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Universidad Del Rosario, Bogotá, Colombia
| | | | - Mariana Angulo-Aguado
- School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Universidad Del Rosario, Bogotá, Colombia
- *Correspondence: Mariana Angulo-Aguado, ; Dora Janeth Fonseca-Mendoza,
| | - Dora Janeth Fonseca-Mendoza
- School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Universidad Del Rosario, Bogotá, Colombia
- *Correspondence: Mariana Angulo-Aguado, ; Dora Janeth Fonseca-Mendoza,
| |
Collapse
|
2
|
Greene D, Barton M, Luchko T, Shiferaw Y. Molecular Dynamics Simulations of the Cardiac Ryanodine Receptor Type 2 (RyR2) Gating Mechanism. J Phys Chem B 2022; 126:9790-9809. [PMID: 36384028 PMCID: PMC9720719 DOI: 10.1021/acs.jpcb.2c03031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mutations in the cardiac ryanodine receptor type 2 (RyR2) have been linked to fatal cardiac arrhythmias such as catecholaminergic polymorphic ventricular tachycardia (CPVT). While many CPVT mutations are associated with an increase in Ca2+ leak from the sarcoplasmic reticulum, the mechanistic details of RyR2 channel gating are not well understood, and this poses a barrier in the development of new pharmacological treatments. To address this, we explore the gating mechanism of the RyR2 using molecular dynamics (MD) simulations. We test the effect of changing the conformation of certain structural elements by constructing chimera RyR2 structures that are derived from the currently available closed and open cryo-electron microscopy (cryo-EM) structures, and we then use MD simulations to relax the system. Our key finding is that the position of the S4-S5 linker (S4S5L) on a single subunit can determine whether the channel as a whole is open or closed. Our analysis reveals that the position of the S4S5L is regulated by interactions with the U-motif on the same subunit and with the S6 helix on an adjacent subunit. We find that, in general, channel gating is crucially dependent on high percent occupancy interactions between adjacent subunits. We compare our interaction analysis to 49 CPVT1 mutations in the literature and find that 73% appear near a high percent occupancy interaction between adjacent subunits. This suggests that disruption of cooperative, high percent occupancy interactions between adjacent subunits is a primary cause of channel leak and CPVT in mutant RyR2 channels.
Collapse
|
3
|
Plattner H. Membrane Traffic and Ca 2+ -Signals in Ciliates. J Eukaryot Microbiol 2022; 69:e12895. [PMID: 35156735 DOI: 10.1111/jeu.12895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 11/30/2022]
Abstract
A Paramecium cell has as many types of membrane interactions as mammalian cells, as established with monoclonal antibodies by R. Allen and A. Fok. Since then, we have identified key-players, such as SNARE-proteins, Ca2+ -regulating proteins, including Ca2+ -channels, Ca2+ -pumps, Ca2+ -binding proteins of different affinity etc. at the molecular level, probed their function and localized them at the light and electron microscopy level. SNARE-proteins, in conjunction with a synaptotagmin-like Ca2+ -sensor protein, mediate membrane fusion. This interaction is additionally regulated by monomeric GTPases whose spectrum in Tetrahymena and Paramecium has been established by A. Turkewitz. As known from mammalian cells, GTPases are activated on membranes in conjunction with lumenal acidification by an H+ -ATPase. For these complex molecules we found in Paramecium an unsurpassed number of 17 a-subunit paralogs which connect the polymeric head and basis part, V1 and V0. (This multitude may reflect different local functional requirements.) Together with plasmalemmal Ca2+ -influx-channels, locally enriched intracellular InsP3 -type (InsP3 R, mainly in osmoregulatory system) and ryanodine receptor-like Ca2+ -release channels (ryanodine receptor-like proteins, RyR-LP), this complexity mediates Ca2+ signals for most flexible local membrane-to-membrane interactions. As we found, the latter channel types miss a substantial portion of the N-terminal part. Caffeine and 4-chloro-meta-cresol (the agent used to probe mutations of RyRs in man during surgery in malignant insomnia patients) initiate trichocyst exocytosis by activating Ca2+ -release channels type CRC-IV in the peripheral part of alveolar sacs. This is superimposed by Ca2+ -influx, i.e. a mechanism called "store-operated Ca2+ -entry" (SOCE). For the majority of key players, we have mapped paralogs throughout the Paramecium cell, with features in common or at variance in the different organelles participating in vesicle trafficking. Local values of free Ca2+ -concentration, [Ca2+ ]i , and their change, e.g. upon exocytosis stimulation, have been registered by flurochromes and chelator effects. In parallel we have registered release of Ca2+ from alveolar sacs by quenched-flow analysis combined with cryofixation and x-ray microanalysis.
Collapse
|
4
|
Chirasani VR, Popov KI, Meissner G, Dokholyan NV. Mapping co-regulatory interactions among ligand-binding sites in ryanodine receptor 1. Proteins 2022; 90:385-394. [PMID: 34455637 PMCID: PMC8738105 DOI: 10.1002/prot.26228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/05/2021] [Accepted: 08/25/2021] [Indexed: 02/03/2023]
Abstract
Ryanodine receptor 1 (RyR1) is an intracellular calcium ion (Ca2+ ) release channel required for skeletal muscle contraction. Although cryo-electron microscopy identified binding sites of three coactivators Ca2+ , ATP, and caffeine (CFF), the mechanism of co-regulation and synergy of these activators is unknown. Here, we report allosteric connections among the three ligand-binding sites and pore region in (i) Ca2+ bound-closed, (ii) ATP/CFF bound-closed, (iii) Ca2+ /ATP/CFF bound-closed, and (iv) Ca2+ /ATP/CFF bound-open RyR1 states. We identified two dominant networks of interactions that mediate communication between the Ca2+ -binding site and pore region in Ca2+ bound-closed state, which partially overlapped with the pore communications in ATP/CFF bound-closed RyR1 state. In Ca2+ /ATP/CFF bound-closed and -open RyR1 states, co-regulatory interactions were analogous to communications in the Ca2+ bound-closed and ATP/CFF bound-closed states. Both ATP- and CFF-binding sites mediate communication between the Ca2+ -binding site and the pore region in Ca2+ /ATP/CFF bound-open RyR1 structure. We conclude that Ca2+ , ATP, and CFF propagate their effects to the pore region through a network of overlapping interactions that mediate allosteric control and molecular synergy in channel regulation.
Collapse
Affiliation(s)
- Venkat R Chirasani
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA.,Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania, USA.,Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Konstantin I Popov
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Gerhard Meissner
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA.,Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
5
|
Zheng W, Wen H. Investigating dual Ca 2+ modulation of the ryanodine receptor 1 by molecular dynamics simulation. Proteins 2020; 88:1528-1539. [PMID: 32557910 DOI: 10.1002/prot.25971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 05/26/2020] [Accepted: 06/14/2020] [Indexed: 11/09/2022]
Abstract
The ryanodine receptors (RyR) are essential to calcium signaling in striated muscles. A deep understanding of the complex Ca2+ -activation/inhibition mechanism of RyRs requires detailed structural and dynamic information for RyRs in different functional states (eg, with Ca2+ bound to activating or inhibitory sites). Recently, high-resolution structures of the RyR isoform 1 (RyR1) were solved by cryo-electron microscopy, revealing the location of a Ca2+ binding site for activation. Toward elucidating the Ca2+ -modulation mechanism of RyR1, we performed extensive molecular dynamics simulation of the core RyR1 structure in the presence and absence of activating and solvent Ca2+ (total simulation time is >5 μs). In the presence of solvent Ca2+ , Ca2+ binding to the activating site enhanced dynamics of RyR1 with higher inter-subunit flexibility, asymmetric inter-subunit motions, outward domain motions and partial pore dilation, which may prime RyR1 for subsequent channel opening. In contrast, the solvent Ca2+ alone reduced dynamics of RyR1 and led to inward domain motions and pore contraction, which may cause inhibition. Combining our simulation with the map of disease mutation sites in RyR1, we constructed a wiring diagram of key domains coupled via specific hydrogen bonds involving the mutation sites, some of which were modulated by Ca2+ binding. The structural and dynamic information gained from this study will inform future mutational and functional studies of RyR1 activation and inhibition by Ca2+ .
Collapse
Affiliation(s)
- Wenjun Zheng
- Department of Physics, University at Buffalo, Buffalo, New York, USA
| | - Han Wen
- Department of Physics, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
6
|
Dokholyan NV. Experimentally-driven protein structure modeling. J Proteomics 2020; 220:103777. [PMID: 32268219 PMCID: PMC7214187 DOI: 10.1016/j.jprot.2020.103777] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/17/2020] [Accepted: 04/02/2020] [Indexed: 11/25/2022]
Abstract
Revolutions in natural and exact sciences started at the dawn of last century have led to the explosion of theoretical, experimental, and computational approaches to determine structures of molecules, complexes, as well as their rich conformational dynamics. Since different experimental methods produce information that is attributed to specific time and length scales, corresponding computational methods have to be tailored to these scales and experiments. These methods can be then combined and integrated in scales, hence producing a fuller picture of molecular structure and motion from the "puzzle pieces" offered by various experiments. Here, we describe a number of computational approaches to utilize experimental data to glance into structure of proteins and understand their dynamics. We will also discuss the limitations and the resolution of the constraints-based modeling approaches. SIGNIFICANCE: Experimentally-driven computational structure modeling and determination is a rapidly evolving alternative to traditional approaches for molecular structure determination. These new hybrid experimental-computational approaches are proving to be a powerful microscope to glance into the structural features of intrinsically or partially disordered proteins, dynamics of molecules and complexes. In this review, we describe various approaches in the field of experimentally-driven computational structure modeling.
Collapse
Affiliation(s)
- Nikolay V Dokholyan
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, USA; Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA.; Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA.; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
7
|
Sun Z, Xu H. Ryanodine Receptors for Drugs and Insecticides: An Overview. Mini Rev Med Chem 2018; 19:22-33. [DOI: 10.2174/1389557518666180330112908] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/27/2017] [Accepted: 02/12/2018] [Indexed: 11/22/2022]
Abstract
Ryanodine receptors (RyRs) are calcium channels located on the endo(sarco)plasmic reticulum
of muscle cells and neurons. They regulate the release of stored intracellular calcium and play a
critical role in muscle contraction. The N-terminal part of these receptors accounts for roughly 80%
and contains the binding sites for diverse RyRs modulators. The C-terminal domain contains the
transmembrane region. This review summarizes the current knowledge about the molecular biology of
insect RyRs, chemicals targeting mammal or insect RyRs, and the reasons for mammal RyR-related
diseases and diamides resistances. It may lay the foundation for effective management of mammal
RyR-related diseases and diamides resistances.
Collapse
Affiliation(s)
- Zhiqiang Sun
- Research Institute of Pesticidal Design & Synthesis, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Hui Xu
- Research Institute of Pesticidal Design & Synthesis, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| |
Collapse
|
8
|
Xu L, Chirasani VR, Carter JS, Pasek DA, Dokholyan NV, Yamaguchi N, Meissner G. Ca 2+-mediated activation of the skeletal-muscle ryanodine receptor ion channel. J Biol Chem 2018; 293:19501-19509. [PMID: 30341173 DOI: 10.1074/jbc.ra118.004453] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/14/2018] [Indexed: 02/05/2023] Open
Abstract
Cryo-electron micrograph studies recently have identified a Ca2+-binding site in the 2,200-kDa ryanodine receptor ion channel (RyR1) in skeletal muscle. To clarify the role of this site in regulating RyR1 activity, here we applied mutational, electrophysiological, and computational methods. Three amino acid residues that interact directly with Ca2+ were replaced, and these RyR1 variants were expressed in HEK293 cells. Single-site RyR1-E3893Q, -E3893V, -E3967Q, -E3967V, and -T5001A variants and double-site RyR1-E3893Q/E3967Q and -E3893V/E3967V variants displayed cellular Ca2+ release in response to caffeine, which indicated that they retained functionality as caffeine-sensitive, Ca2+-conducting channels in the HEK293 cell system. Using [3H]ryanodine binding and single-channel measurements of membrane isolates, we found that single- and double-site RyR1-E3893 and -E3967 variants are not activated by Ca2+ We also noted that RyR1-E3893Q/E3967Q and -E3893V/E3967V variants maintain caffeine- and ATP-induced activation and that RyR1-E3893Q/E3967Q is inhibited by Mg2+ and elevated Ca2+ RyR1-T5001A exhibited decreased Ca2+ sensitivity compared with WT-RyR1 in single-channel measurements. Computational methods suggested that electrostatic interactions between Ca2+ and negatively charged glutamate residues have a critical role in transducing the functional effects of Ca2+ on RyR1. We conclude that the removal of negative charges in the recently identified RyR1 Ca2+-binding site impairs RyR1 activation by physiological Ca2+ concentrations and results in loss of binding to Ca2+ or reduced Ca2+ affinity of the binding site.
Collapse
Affiliation(s)
- Le Xu
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599-7260
| | - Venkat R Chirasani
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599-7260.,the Departments of Pharmacology and Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033-0850
| | - Jordan S Carter
- the Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425, and.,the Cardiac Signaling Center, Clemson University, Charleston, South Carolina 29425
| | - Daniel A Pasek
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599-7260
| | - Nikolay V Dokholyan
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599-7260.,the Departments of Pharmacology and Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033-0850
| | - Naohiro Yamaguchi
- the Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425, and.,the Cardiac Signaling Center, Clemson University, Charleston, South Carolina 29425
| | - Gerhard Meissner
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599-7260,
| |
Collapse
|
9
|
Abstract
This article reviews advancements in the genetics of malignant hyperthermia, new technologies and approaches for its diagnosis, and the existing limitations of genetic testing for malignant hyperthermia. It also reviews the various RYR1-related disorders and phenotypes, such as myopathies, exertional rhabdomyolysis, and bleeding disorders, and examines the connection between these disorders and malignant hyperthermia.
Collapse
|
10
|
Xu L, Mowrey DD, Chirasani VR, Wang Y, Pasek DA, Dokholyan NV, Meissner G. G4941K substitution in the pore-lining S6 helix of the skeletal muscle ryanodine receptor increases RyR1 sensitivity to cytosolic and luminal Ca 2. J Biol Chem 2017; 293:2015-2028. [PMID: 29255089 DOI: 10.1074/jbc.m117.803247] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 12/18/2017] [Indexed: 11/06/2022] Open
Abstract
The ryanodine receptor ion channel RyR1 is present in skeletal muscle and has a large cytoplasmic N-terminal domain and smaller C-terminal pore-forming domain comprising six transmembrane helices, a pore helix, and a selectivity filter. The RyR1 S6 pore-lining helix has two conserved glycines, Gly-4934 and Gly-4941, that facilitate RyR1 channel gating by providing S6 flexibility and minimizing amino acid clashes. Here, we report that substitution of Gly-4941 with Asp or Lys results in functional channels as indicated by caffeine-induced Ca2+ release response in HEK293 cells, whereas a low response of the corresponding Gly-4934 variants suggested loss of function. Following purification, the RyR1 mutants G4934D, G4934K, and G4941D did not noticeably conduct Ca2+ in single-channel measurements. Gly-4941 replacement with Lys resulted in channels having reduced K+ conductance and reduced selectivity for Ca2+ compared with wildtype. RyR1-G4941K did not fully close at nanomolar cytosolic Ca2+ concentrations and nearly fully opened at 2 μm cytosolic or sarcoplasmic reticulum luminal Ca2+, and Ca2+- and voltage-dependent regulation of RyR1-G4941K mutant channels was demonstrated. Computational methods and single-channel recordings indicated that the open G4941K variant results in the formation of a salt bridge to Asp-4938. In contrast, wildtype RyR1 was closed and not activated by luminal Ca2+ at low cytosolic Ca2+ levels. A model suggested that luminal Ca2+ activates RyR1 by accessing a recently identified cytosolic Ca2+-binding site in the open channel as the Ca2+ ions pass through the pore.
Collapse
Affiliation(s)
- Le Xu
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - David D Mowrey
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Venkat R Chirasani
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Ying Wang
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Daniel A Pasek
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Nikolay V Dokholyan
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Gerhard Meissner
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
11
|
Cassandrini D, Trovato R, Rubegni A, Lenzi S, Fiorillo C, Baldacci J, Minetti C, Astrea G, Bruno C, Santorelli FM. Congenital myopathies: clinical phenotypes and new diagnostic tools. Ital J Pediatr 2017; 43:101. [PMID: 29141652 PMCID: PMC5688763 DOI: 10.1186/s13052-017-0419-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/02/2017] [Indexed: 12/26/2022] Open
Abstract
Congenital myopathies are a group of genetic muscle disorders characterized clinically by hypotonia and weakness, usually from birth, and a static or slowly progressive clinical course. Historically, congenital myopathies have been classified on the basis of major morphological features seen on muscle biopsy. However, different genes have now been identified as associated with the various phenotypic and histological expressions of these disorders, and in recent years, because of their unexpectedly wide genetic and clinical heterogeneity, next-generation sequencing has increasingly been used for their diagnosis. We reviewed clinical and genetic forms of congenital myopathy and defined possible strategies to improve cost-effectiveness in histological and imaging diagnosis.
Collapse
Affiliation(s)
| | - Rosanna Trovato
- Molecular Medicine, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Anna Rubegni
- Molecular Medicine, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Sara Lenzi
- Neurology, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Chiara Fiorillo
- Molecular Medicine, IRCCS Fondazione Stella Maris, Pisa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genoa, Italy
| | - Jacopo Baldacci
- Molecular Medicine, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Carlo Minetti
- Unit of Pediatric Neurology and Muscular Disorders, Istituto G. Gaslini, Genoa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genoa, Italy
| | - Guja Astrea
- Neurology, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Claudio Bruno
- Department of Neuroscience, Center of Myology and Neurodegenerative Disorders, Istituto G. Gaslini, Genoa, Italy
| | | | | |
Collapse
|
12
|
Meissner G. The structural basis of ryanodine receptor ion channel function. J Gen Physiol 2017; 149:1065-1089. [PMID: 29122978 PMCID: PMC5715910 DOI: 10.1085/jgp.201711878] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/12/2017] [Indexed: 01/25/2023] Open
Abstract
Large-conductance Ca2+ release channels known as ryanodine receptors (RyRs) mediate the release of Ca2+ from an intracellular membrane compartment, the endo/sarcoplasmic reticulum. There are three mammalian RyR isoforms: RyR1 is present in skeletal muscle; RyR2 is in heart muscle; and RyR3 is expressed at low levels in many tissues including brain, smooth muscle, and slow-twitch skeletal muscle. RyRs form large protein complexes comprising four 560-kD RyR subunits, four ∼12-kD FK506-binding proteins, and various accessory proteins including calmodulin, protein kinases, and protein phosphatases. RyRs share ∼70% sequence identity, with the greatest sequence similarity in the C-terminal region that forms the transmembrane, ion-conducting domain comprising ∼500 amino acids. The remaining ∼4,500 amino acids form the large regulatory cytoplasmic "foot" structure. Experimental evidence for Ca2+, ATP, phosphorylation, and redox-sensitive sites in the cytoplasmic structure have been described. Exogenous effectors include the two Ca2+ releasing agents caffeine and ryanodine. Recent work describing the near atomic structures of mammalian skeletal and cardiac muscle RyRs provides a structural basis for the regulation of the RyRs by their multiple effectors.
Collapse
Affiliation(s)
- Gerhard Meissner
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
13
|
Zuo Y, Wang H, Xu Y, Huang J, Wu S, Wu Y, Yang Y. CRISPR/Cas9 mediated G4946E substitution in the ryanodine receptor of Spodoptera exigua confers high levels of resistance to diamide insecticides. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 89:79-85. [PMID: 28912111 DOI: 10.1016/j.ibmb.2017.09.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 09/06/2017] [Accepted: 09/10/2017] [Indexed: 06/07/2023]
Abstract
Diamide insecticides selectively activate insect ryanodine receptors (RyRs), inducing uncontrolled release of calcium ions, and causing muscle contraction, paralysis and eventually death. The RyRG4946E substitution associated with diamide resistance has been identified in three lepidopteran pests, Plutella xylostella, Tuta absoluta and Chilo suppressalis. Recently, the T. absoluta RyRG4946V mutation was knocked into the model insect Drosophila melanogaster by CRISPR/Cas9 mediated genome editing and provided in vivo functional confirmation for its role in diamide resistance. In the present study, we successfully introduced the RyRG4946E mutation with CRISPR/Cas9 technology into a lepidopteran pest of global importance, Spodoptera exigua. The genome-edited strain (named 4946E) homozygous for the SeRyRG4946E mutation exhibited 223-, 336- and >1000-fold resistance to chlorantraniliprole, cyantraniliprole and flubendiamide, respectively when compared to the wild type strain (WHS) of S. exigua. Reciprocal crossing experiments revealed that the target-site resistance in strain 4946E underlies an autosomal and almost recessive mode of inheritance for anthranilic diamides, whereas it was completely recessive for flubendiamide. Our results not only provided in vivo functional validation of the RyRG4946E mutation in conferring high levels of resistance to diamide insecticides for the first time in a controlled genetic background of a lepidopteran pest, but also revealed slight differences on the level of resistance between anthranilic diamides (chlorantraniliprole and cyantraniliprole) and flubendiamide conferred by the SeRyRG4946E mutation.
Collapse
Affiliation(s)
- Yayun Zuo
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Hui Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yanjun Xu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jianlei Huang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shuwen Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yihua Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
14
|
Dhindwal S, Lobo J, Cabra V, Santiago DJ, Nayak AR, Dryden K, Samsó M. A cryo-EM–based model of phosphorylation- and FKBP12.6-mediated allosterism of the cardiac ryanodine receptor. Sci Signal 2017; 10:10/480/eaai8842. [DOI: 10.1126/scisignal.aai8842] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
15
|
Uehara A, Murayama T, Yasukochi M, Fill M, Horie M, Okamoto T, Matsuura Y, Uehara K, Fujimoto T, Sakurai T, Kurebayashi N. Extensive Ca2+ leak through K4750Q cardiac ryanodine receptors caused by cytosolic and luminal Ca2+ hypersensitivity. J Gen Physiol 2017; 149:199-218. [PMID: 28082361 PMCID: PMC5299618 DOI: 10.1085/jgp.201611624] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 10/19/2016] [Accepted: 12/07/2016] [Indexed: 12/20/2022] Open
Abstract
The K4750Q mutation in ryanodine receptor 2 causes severe catecholaminergic polymorphic ventricular tachycardia. Uehara et al. reveal extensive Ca2+ leak through this mutant receptor and show it is caused by altered gating kinetics, increased Ca2+ sensitivity, and the absence of Ca2+-dependent inactivation. Various ryanodine receptor 2 (RyR2) point mutations cause catecholamine-induced polymorphic ventricular tachycardia (CPVT), a life-threatening arrhythmia evoked by diastolic intracellular Ca2+ release dysfunction. These mutations occur in essential regions of RyR2 that regulate Ca2+ release. The molecular dysfunction caused by CPVT-associated RyR2 mutations as well as the functional consequences remain unresolved. Here, we study the most severe CPVT-associated RyR2 mutation (K4750Q) known to date. We define the molecular and cellular dysfunction generated by this mutation and detail how it alters RyR2 function, using Ca2+ imaging, ryanodine binding, and single-channel recordings. HEK293 cells and cardiac HL-1 cells expressing RyR2-K4750Q show greatly enhanced spontaneous Ca2+ oscillations. An endoplasmic reticulum–targeted Ca2+ sensor, R-CEPIA1er, revealed that RyR2-K4750Q mediates excessive diastolic Ca2+ leak, which dramatically reduces luminal [Ca2+]. We further show that the K4750Q mutation causes three RyR2 defects: hypersensitization to activation by cytosolic Ca2+, loss of cytosolic Ca2+/Mg2+-mediated inactivation, and hypersensitization to luminal Ca2+ activation. These defects combine to kinetically stabilize RyR2-K4750Q openings, thus explaining the extensive diastolic Ca2+ leak from the sarcoplasmic reticulum, frequent Ca2+ waves, and severe CPVT phenotype. As the multiple concurrent defects are induced by a single point mutation, the K4750 residue likely resides at a critical structural point at which cytosolic and luminal RyR2 control input converge.
Collapse
Affiliation(s)
- Akira Uehara
- Department of Physiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| | - Takashi Murayama
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Midori Yasukochi
- Laboratory of Human Biology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| | - Michael Fill
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL 60612
| | - Minoru Horie
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Toru Okamoto
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Kiyoko Uehara
- Department of Cell Biology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| | - Takahiro Fujimoto
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Takashi Sakurai
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Nagomi Kurebayashi
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
16
|
Roditakis E, Steinbach D, Moritz G, Vasakis E, Stavrakaki M, Ilias A, García-Vidal L, Martínez-Aguirre MDR, Bielza P, Morou E, Silva JE, Silva WM, Siqueira ΗAA, Iqbal S, Troczka BJ, Williamson MS, Bass C, Tsagkarakou A, Vontas J, Nauen R. Ryanodine receptor point mutations confer diamide insecticide resistance in tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 80:11-20. [PMID: 27845250 DOI: 10.1016/j.ibmb.2016.11.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 10/14/2016] [Accepted: 11/11/2016] [Indexed: 06/06/2023]
Abstract
Insect ryanodine receptors (RyR) are the molecular target-site for the recently introduced diamide insecticides. Diamides are particularly active on Lepidoptera pests, including tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae). High levels of diamide resistance were recently described in some European populations of T. absoluta, however, the mechanisms of resistance remained unknown. In this study the molecular basis of diamide resistance was investigated in a diamide resistant strain from Italy (IT-GELA-SD4), and additional resistant field populations collected in Greece, Spain and Brazil. The genetics of resistance was investigated by reciprocally crossing strain IT-GELA-SD4 with a susceptible strain and revealed an autosomal incompletely recessive mode of inheritance. To investigate the possible role of target-site mutations as known from diamondback moth (Plutella xylostella), we sequenced respective domains of the RyR gene of T. absoluta. Genotyping of individuals of IT-GELA-SD4 and field-collected strains showing different levels of diamide resistance revealed the presence of G4903E and I4746M RyR target-site mutations. These amino acid substitutions correspond to those recently described for diamide resistant diamondback moth, i.e. G4946E and I4790M. We also detected two novel mutations, G4903V and I4746T, in some of the resistant T. absoluta strains. Radioligand binding studies with thoracic membrane preparations of the IT-GELA-SD4 strain provided functional evidence that these mutations alter the affinity of the RyR to diamides. In combination with previous work on P. xylostella our study highlights the importance of position G4903 (G4946 in P. xylostella) of the insect RyR in defining sensitivity to diamides. The discovery of diamide resistance mutations in T. absoluta populations of diverse geographic origin has serious implications for the efficacy of diamides under applied conditions. The implementation of appropriate resistance management strategies is strongly advised to delay the further spread of resistance.
Collapse
Affiliation(s)
- Emmanouil Roditakis
- Hellenic Agricultural Organisation - 'Demeter', Institute of Olive Tree, Subtropical Crops and Viticulture, Heraklion, Crete, Greece.
| | - Denise Steinbach
- Bayer CropScience, R&D Pest Control, Monheim, Germany; Department of Biology, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Gerald Moritz
- Department of Biology, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Emmanouil Vasakis
- Hellenic Agricultural Organisation - 'Demeter', Institute of Olive Tree, Subtropical Crops and Viticulture, Heraklion, Crete, Greece
| | - Marianna Stavrakaki
- Hellenic Agricultural Organisation - 'Demeter', Institute of Olive Tree, Subtropical Crops and Viticulture, Heraklion, Crete, Greece
| | - Aris Ilias
- Hellenic Agricultural Organisation - 'Demeter', Institute of Olive Tree, Subtropical Crops and Viticulture, Heraklion, Crete, Greece
| | - Lidia García-Vidal
- Departamento de Producción Vegetal, Universidad Politécnica de Cartagena, Cartagena, Spain
| | | | - Pablo Bielza
- Departamento de Producción Vegetal, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Evangelia Morou
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, Crete, Greece
| | - Jefferson E Silva
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco - UFRPE, Recife, Brazil
| | - Wellington M Silva
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco - UFRPE, Recife, Brazil
| | - Ηerbert A A Siqueira
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco - UFRPE, Recife, Brazil
| | | | | | | | - Chris Bass
- College of Life and Environmental Sciences, University of Exeter, Penryn, UK
| | - Anastasia Tsagkarakou
- Hellenic Agricultural Organisation - 'Demeter', Institute of Olive Tree, Subtropical Crops and Viticulture, Heraklion, Crete, Greece
| | - John Vontas
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, Crete, Greece; Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Ralf Nauen
- Bayer CropScience, R&D Pest Control, Monheim, Germany.
| |
Collapse
|
17
|
Samsó M. A guide to the 3D structure of the ryanodine receptor type 1 by cryoEM. Protein Sci 2016; 26:52-68. [PMID: 27671094 DOI: 10.1002/pro.3052] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 01/04/2023]
Abstract
Signal transduction by the ryanodine receptor (RyR) is essential in many excitable cells including all striated contractile cells and some types of neurons. While its transmembrane domain is a classic tetrameric, six-transmembrane cation channel, the cytoplasmic domain is uniquely large and complex, hosting a multiplicity of specialized domains. The overall outline and substructure readily recognizable by electron microscopy make RyR a geometrically well-behaved specimen. Hence, for the last two decades, the 3D structural study of the RyR has tracked closely the technological advances in electron microscopy, cryo-electron microscopy (cryoEM), and computerized 3D reconstruction. This review summarizes the progress in the structural determination of RyR by cryoEM and, bearing in mind the leap in resolution provided by the recent implementation of direct electron detection, analyzes the first near-atomic structures of RyR. These reveal a complex orchestration of domains controlling the channel's function, and help to understand how this could break down as a consequence of disease-causing mutations.
Collapse
Affiliation(s)
- Montserrat Samsó
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
18
|
Unambiguous observation of blocked states reveals altered, blocker-induced, cardiac ryanodine receptor gating. Sci Rep 2016; 6:34452. [PMID: 27703263 PMCID: PMC5050499 DOI: 10.1038/srep34452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/12/2016] [Indexed: 11/08/2022] Open
Abstract
The flow of ions through membrane channels is precisely regulated by gates. The architecture and function of these elements have been studied extensively, shedding light on the mechanisms underlying gating. Recent investigations have focused on ion occupancy of the channel’s selectivity filter and its ability to alter gating, with most studies involving prokaryotic K+ channels. Some studies used large quaternary ammonium blocker molecules to examine the effects of altered ionic flux on gating. However, the absence of blocking events that are visibly distinct from closing events in K+ channels makes unambiguous interpretation of data from single channel recordings difficult. In this study, the large K+ conductance of the RyR2 channel permits direct observation of blocking events as distinct subconductance states and for the first time demonstrates the differential effects of blocker molecules on channel gating. This experimental platform provides valuable insights into mechanisms of blocker-induced modulation of ion channel gating.
Collapse
|
19
|
Wei R, Wang X, Zhang Y, Mukherjee S, Zhang L, Chen Q, Huang X, Jing S, Liu C, Li S, Wang G, Xu Y, Zhu S, Williams AJ, Sun F, Yin CC. Structural insights into Ca(2+)-activated long-range allosteric channel gating of RyR1. Cell Res 2016; 26:977-94. [PMID: 27573175 PMCID: PMC5034117 DOI: 10.1038/cr.2016.99] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 07/31/2016] [Accepted: 08/03/2016] [Indexed: 12/12/2022] Open
Abstract
Ryanodine receptors (RyRs) are a class of giant ion channels with molecular mass over 2.2 mega-Daltons. These channels mediate calcium signaling in a variety of cells. Since more than 80% of the RyR protein is folded into the cytoplasmic assembly and the remaining residues form the transmembrane domain, it has been hypothesized that the activation and regulation of RyR channels occur through an as yet uncharacterized long-range allosteric mechanism. Here we report the characterization of a Ca2+-activated open-state RyR1 structure by cryo-electron microscopy. The structure has an overall resolution of 4.9 Å and a resolution of 4.2 Å for the core region. In comparison with the previously determined apo/closed-state structure, we observed long-range allosteric gating of the channel upon Ca2+ activation. In-depth structural analyses elucidated a novel channel-gating mechanism and a novel ion selectivity mechanism of RyR1. Our work not only provides structural insights into the molecular mechanisms of channel gating and regulation of RyRs, but also sheds light on structural basis for channel-gating and ion selectivity mechanisms for the six-transmembrane-helix cation channel family.
Collapse
Affiliation(s)
- Risheng Wei
- Department of Biophysics, The Health Science Center, Peking University, Beijing 100191, China
| | - Xue Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Saptarshi Mukherjee
- Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Lei Zhang
- Department of Biophysics, The Health Science Center, Peking University, Beijing 100191, China.,Electron Microscopy Analysis Laboratory, The Health Science Center, Peking University, Beijing 100191, China
| | - Qiang Chen
- Department of Biophysics, The Health Science Center, Peking University, Beijing 100191, China
| | - Xinrui Huang
- Department of Biophysics, The Health Science Center, Peking University, Beijing 100191, China
| | - Shan Jing
- Department of Biophysics, The Health Science Center, Peking University, Beijing 100191, China
| | - Congcong Liu
- Department of Biophysics, The Health Science Center, Peking University, Beijing 100191, China
| | - Shuang Li
- Department of Biophysics, The Health Science Center, Peking University, Beijing 100191, China
| | - Guangyu Wang
- Department of Biophysics, The Health Science Center, Peking University, Beijing 100191, China
| | - Yaofang Xu
- Department of Biophysics, The Health Science Center, Peking University, Beijing 100191, China
| | - Sujie Zhu
- Department of Biophysics, The Health Science Center, Peking University, Beijing 100191, China
| | - Alan J Williams
- Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Fei Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China.,Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chang-Cheng Yin
- Department of Biophysics, The Health Science Center, Peking University, Beijing 100191, China.,Electron Microscopy Analysis Laboratory, The Health Science Center, Peking University, Beijing 100191, China.,Center for Protein Science, Peking University, Beijing 100871, China
| |
Collapse
|
20
|
Clarke OB, Hendrickson WA. Structures of the colossal RyR1 calcium release channel. Curr Opin Struct Biol 2016; 39:144-152. [PMID: 27687475 PMCID: PMC5419430 DOI: 10.1016/j.sbi.2016.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 09/05/2016] [Indexed: 01/19/2023]
Abstract
Ryanodine receptors (RyRs) are intracellular cation channels that mediate the rapid and voluminous release of Ca2+ from the sarcoplasmic reticulum (SR) as required for excitation-contraction coupling in cardiac and skeletal muscle. Understanding of the architecture and gating of RyRs has advanced dramatically over the past two years, due to the publication of high resolution cryo-electron microscopy (cryoEM) reconstructions and associated atomic models of multiple functional states of the skeletal muscle receptor, RyR1. Here we review recent advances in our understanding of RyR architecture and gating, and highlight remaining gaps in understanding which we anticipate will soon be filled.
Collapse
Affiliation(s)
- Oliver B Clarke
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Wayne A Hendrickson
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
21
|
Treves S, Jungbluth H, Voermans N, Muntoni F, Zorzato F. Ca 2+ handling abnormalities in early-onset muscle diseases: Novel concepts and perspectives. Semin Cell Dev Biol 2016; 64:201-212. [PMID: 27427513 DOI: 10.1016/j.semcdb.2016.07.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 07/14/2016] [Indexed: 12/17/2022]
Abstract
The physiological process by which Ca2+ is released from the sarcoplasmic reticulum is called excitation-contraction coupling; it is initiated by an action potential which travels deep into the muscle fiber where it is sensed by the dihydropyridine receptor, a voltage sensing L-type Ca2+channel localized on the transverse tubules. Voltage-induced conformational changes in the dihydropyridine receptor activate the ryanodine receptor Ca2+ release channel of the sarcoplasmic reticulum. The released Ca2+ binds to troponin C, enabling contractile thick-thin filament interactions. The Ca2+ is subsequently transported back into the sarcoplasmic reticulum by specialized Ca2+ pumps (SERCA), preparing the muscle for a new cycle of contraction. Although other proteins are involved in excitation-contraction coupling, the mechanism described above emphasizes the unique role played by the two Ca2+ channels (the dihydropyridine receptor and the ryanodine receptor), the SERCA Ca2+ pumps and the exquisite spatial organization of the membrane compartments endowed with the proteins responsible for this mechanism to function rapidly and efficiently. Research over the past two decades has uncovered the fine details of excitation-contraction coupling under normal conditions while advances in genomics have helped to identify mutations in novel genes in patients with neuromuscular disorders. While it is now clear that many patients with congenital muscle diseases carry mutations in genes encoding proteins directly involved in Ca2+ homeostasis, it has become apparent that mutations are also present in genes encoding for proteins not thought to be directly involved in Ca2+ regulation. Ongoing research in the field now focuses on understanding the functional effect of individual mutations, as well as understanding the role of proteins not specifically located in the sarcoplasmic reticulum which nevertheless are involved in Ca2+ regulation or excitation-contraction coupling. The principal challenge for the future is the identification of drug targets that can be pharmacologically manipulated by small molecules, with the ultimate aim to improve muscle function and quality of life of patients with congenital muscle disorders. The aim of this review is to give an overview of the most recent findings concerning Ca2+ dysregulation and its impact on muscle function in patients with congenital muscle disorders due to mutations in proteins involved in excitation-contraction coupling and more broadly on Ca2+ homeostasis.
Collapse
Affiliation(s)
- Susan Treves
- Departments of Biomedicine and Anesthesia, Basel University Hospital, 4031 Basel, Switzerland; Department of Life Sciences, General Pathology Section, University of Ferrara, 44100 Ferrara, Italy.
| | - Heinz Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina Children's Hospital, St. Thomas' Hospital, London, United Kingdom; Randall Division for Cell and Molecular Biophysics, Muscle Signalling Section, King's College, London, United Kingdom; Department of Basic and Clinical Neuroscience, IoPPN, King's College, London, United Kingdom
| | - Nicol Voermans
- Department of Neurology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, United Kingdom
| | - Francesco Zorzato
- Departments of Biomedicine and Anesthesia, Basel University Hospital, 4031 Basel, Switzerland; Department of Life Sciences, General Pathology Section, University of Ferrara, 44100 Ferrara, Italy
| |
Collapse
|
22
|
Abstract
The ryanodine receptor/Ca2+ release channel plays a pivotal role in skeletal and cardiac muscle excitation-contraction coupling. Defective regulation leads to neuromuscular disorders and arrhythmogenic cardiac disease. This mini-review focuses on channel regulation through structural intra- and inter-subunit interactions and their implications in ryanodine receptor pathophysiology.
Collapse
|
23
|
Schilling R, Fink RHA, Fischer WB. Interaction of ions with the luminal sides of wild-type and mutated skeletal muscle ryanodine receptors. J Mol Model 2016; 22:37. [PMID: 26781665 DOI: 10.1007/s00894-015-2906-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 12/28/2015] [Indexed: 12/22/2022]
Abstract
Ryanodine receptors (RyRs) are the largest known ion channels, and are of central importance for the release of Ca(2+) from the sarco/endoplasmic reticulum (SR/ER) in a variety of cells. In cardiac and skeletal muscle cells, contraction is triggered by the release of Ca(2+) into the cytoplasm and thus depends crucially on correct RyR function. In this work, in silico mutants of the RyR pore were generated and MD simulations were conducted to examine the impact of the mutations on the Ca(2+) distribution. The Ca(2+) distribution pattern on the luminal side of the RyR was most affected by G4898R, D4899Q, E4900Q, R4913E, and D4917A mutations. MD simulations with our wild-type model and various ion species showed a preference for Ca(2+) over other cations at the luminal pore entrance. This Ca(2+)-accumulating characteristic of the luminal RyR side may be essential to the conductance properties of the channel.
Collapse
Affiliation(s)
- Roman Schilling
- Medical Biophysics Group, Institute of Physiology and Pathophysiology, University of Heidelberg, 69120, Heidelberg, Germany
| | - Rainer H A Fink
- Medical Biophysics Group, Institute of Physiology and Pathophysiology, University of Heidelberg, 69120, Heidelberg, Germany
| | - Wolfgang B Fischer
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang-Ming University, 155, Li-Non St., Sec. 2, Taipei, 112, Taiwan.
- Biophotonics & Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei, 112, Taiwan.
| |
Collapse
|
24
|
Steinbach D, Gutbrod O, Lümmen P, Matthiesen S, Schorn C, Nauen R. Geographic spread, genetics and functional characteristics of ryanodine receptor based target-site resistance to diamide insecticides in diamondback moth, Plutella xylostella. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 63:14-22. [PMID: 25976541 DOI: 10.1016/j.ibmb.2015.05.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 04/27/2015] [Accepted: 05/01/2015] [Indexed: 06/04/2023]
Abstract
Anthranilic diamides and flubendiamide belong to a new chemical class of insecticides acting as conformation sensitive activators of the insect ryanodine receptor (RyR). These compounds control a diverse range of different herbivorous insects including diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae), a notorious global pest on cruciferous crops, which recently developed resistance due to target-site mutations located in the trans-membrane domain of the Plutella RyR. In the present study we further investigated the genetics and functional implications of a RyR G4946E target-site mutation we recently identified in a Philippine diamondback moth strain (Sudlon). Strain Sudlon is homozygous for the G4946E mutation and has been maintained under laboratory conditions without selection pressure for almost four years, and still exhibit stable resistance ratios of >2000-fold to all commercial diamides. Its F1 progeny resulting from reciprocal crosses with a susceptible strain (BCS-S) revealed no maternal effects and a diamide susceptible phenotype, suggesting an autosomally almost recessive mode of inheritance. Subsequent back-crosses indicate a near monogenic nature of the diamide resistance in strain Sudlon. Radioligand binding studies with Plutella thoracic microsomal membrane preparations provided direct evidence for the dramatic functional implications of the RyR G4946E mutation on both diamide specific binding and its concentration dependent modulation of [(3)H]ryanodine binding. Computational modelling based on a cryo-EM structure of rabbit RyR1 suggests that Plutella G4946E is located in trans-membrane helix S4 close to S4-S5 linker domain supposed to be involved in the modulation of the voltage sensor, and another recently described mutation, I4790M in helix S2 approx. 13 Å opposite of G4946E. Genotyping by pyrosequencing revealed the presence of the RyR G4946E mutation in larvae collected in 2013/14 in regions of ten different countries where diamide insecticides largely failed to control diamondback moth populations. Thus, our study highlights the global importance of the G4946E RyR target-site mutation, which as a mechanism on its own, confers high-level resistance to diamide insecticides in diamondback moth.
Collapse
Affiliation(s)
- Denise Steinbach
- Bayer CropScience AG, R&D, Pest Control Biology, Monheim, Germany; Martin-Luther-University Halle-Wittenberg, Institute for Biology, Halle, Germany
| | - Oliver Gutbrod
- Bayer CropScience AG, R&D, Research Technologies, Monheim, Germany
| | - Peter Lümmen
- Bayer CropScience AG, R&D, Pest Control Biology, Monheim, Germany
| | - Svend Matthiesen
- Bayer CropScience AG, R&D, Research Technologies, Monheim, Germany
| | - Corinna Schorn
- Bayer CropScience AG, R&D, Pest Control Biology, Monheim, Germany
| | - Ralf Nauen
- Bayer CropScience AG, R&D, Pest Control Biology, Monheim, Germany.
| |
Collapse
|
25
|
FRET-based trilateration of probes bound within functional ryanodine receptors. Biophys J 2015; 107:2037-48. [PMID: 25418089 DOI: 10.1016/j.bpj.2014.09.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/08/2014] [Accepted: 09/19/2014] [Indexed: 02/05/2023] Open
Abstract
To locate the biosensor peptide DPc10 bound to ryanodine receptor (RyR) Ca(2+) channels, we developed an approach that combines fluorescence resonance energy transfer (FRET), simulated-annealing, cryo-electron microscopy, and crystallographic data. DPc10 is identical to the 2460-2495 segment within the cardiac muscle RyR isoform (RyR2) central domain. DPc10 binding to RyR2 results in a pathologically elevated Ca(2+) leak by destabilizing key interactions between the RyR2 N-terminal and central domains (unzipping). To localize the DPc10 binding site within RyR2, we measured FRET between five single-cysteine variants of the FK506-binding protein (FKBP) labeled with a donor probe, and DPc10 labeled with an acceptor probe (A-DPc10). Effective donor positions were calculated from simulated-annealing constrained by both the RyR cryo-EM map and the FKBP atomic structure docked to the RyR. FRET to A-DPc10 was measured in permeabilized cardiomyocytes via confocal microscopy, converted to distances, and used to trilaterate the acceptor locus within RyR. Additional FRET measurements between donor-labeled calmodulin and A-DPc10 were used to constrain the trilaterations. Results locate the DPc10 probe within RyR domain 3, ?35 Å from the previously docked N-terminal domain crystal structure. This multiscale approach may be useful in mapping other RyR sites of mechanistic interest within FRET range of FKBP.
Collapse
|
26
|
Mei Y, Xu L, Mowrey DD, Mendez Giraldez R, Wang Y, Pasek DA, Dokholyan NV, Meissner G. Channel Gating Dependence on Pore Lining Helix Glycine Residues in Skeletal Muscle Ryanodine Receptor. J Biol Chem 2015; 290:17535-45. [PMID: 25998124 DOI: 10.1074/jbc.m115.659672] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Indexed: 02/04/2023] Open
Abstract
Type 1 ryanodine receptors (RyR1s) release Ca(2+) from the sarcoplasmic reticulum to initiate skeletal muscle contraction. The role of RyR1-G4934 and -G4941 in the pore-lining helix in channel gating and ion permeation was probed by replacing them with amino acid residues of increasing side chain volume. RyR1-G4934A, -G4941A, and -G4941V mutant channels exhibited a caffeine-induced Ca(2+) release response in HEK293 cells and bound the RyR-specific ligand [(3)H]ryanodine. In single channel recordings, significant differences in the number of channel events and mean open and close times were observed between WT and RyR1-G4934A and -G4941A. RyR1-G4934A had reduced K(+) conductance and ion selectivity compared with WT. Mutations further increasing the side chain volume at these positions (G4934V and G4941I) resulted in reduced caffeine-induced Ca(2+) release in HEK293 cells, low [(3)H]ryanodine binding levels, and channels that were not regulated by Ca(2+) and did not conduct Ca(2+) in single channel measurements. Computational predictions of the thermodynamic impact of mutations on protein stability indicated that although the G4934A mutation was tolerated, the G4934V mutation decreased protein stability by introducing clashes with neighboring amino acid residues. In similar fashion, the G4941A mutation did not introduce clashes, whereas the G4941I mutation resulted in intersubunit clashes among the mutated isoleucines. Co-expression of RyR1-WT with RyR1-G4934V or -G4941I partially restored the WT phenotype, which suggested lessening of amino acid clashes in heterotetrameric channel complexes. The results indicate that both glycines are important for RyR1 channel function by providing flexibility and minimizing amino acid clashes.
Collapse
Affiliation(s)
- Yingwu Mei
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Le Xu
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - David D Mowrey
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Raul Mendez Giraldez
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Ying Wang
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Daniel A Pasek
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Nikolay V Dokholyan
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Gerhard Meissner
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
27
|
Arrhythmogenesis in a catecholaminergic polymorphic ventricular tachycardia mutation that depresses ryanodine receptor function. Proc Natl Acad Sci U S A 2015; 112:E1669-77. [PMID: 25775566 DOI: 10.1073/pnas.1419795112] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Current mechanisms of arrhythmogenesis in catecholaminergic polymorphic ventricular tachycardia (CPVT) require spontaneous Ca(2+) release via cardiac ryanodine receptor (RyR2) channels affected by gain-of-function mutations. Hence, hyperactive RyR2 channels eager to release Ca(2+) on their own appear as essential components of this arrhythmogenic scheme. This mechanism, therefore, appears inadequate to explain lethal arrhythmias in patients harboring RyR2 channels destabilized by loss-of-function mutations. We aimed to elucidate arrhythmia mechanisms in a RyR2-linked CPVT mutation (RyR2-A4860G) that depresses channel activity. Recombinant RyR2-A4860G protein was expressed equally as wild type (WT) RyR2, but channel activity was dramatically inhibited, as inferred by [(3)H]ryanodine binding and single channel recordings. Mice heterozygous for the RyR2-A4860G mutation (RyR2-A4860G(+/-)) exhibited basal bradycardia but no cardiac structural alterations; in contrast, no homozygotes were detected at birth, suggesting a lethal phenotype. Sympathetic stimulation elicited malignant arrhythmias in RyR2-A4860G(+/-) hearts, recapitulating the phenotype originally described in a human patient with the same mutation. In isoproterenol-stimulated ventricular myocytes, the RyR2-A4860G mutation decreased the peak of Ca(2+) release during systole, gradually overloading the sarcoplasmic reticulum with Ca(2+). The resultant Ca(2+) overload then randomly caused bursts of prolonged Ca(2+) release, activating electrogenic Na(+)-Ca(2+) exchanger activity and triggering early afterdepolarizations. The RyR2-A4860G mutation reveals novel pathways by which RyR2 channels engage sarcolemmal currents to produce life-threatening arrhythmias.
Collapse
|
28
|
Plattner H. Molecular aspects of calcium signalling at the crossroads of unikont and bikont eukaryote evolution – The ciliated protozoan Paramecium in focus. Cell Calcium 2015; 57:174-85. [DOI: 10.1016/j.ceca.2014.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 12/19/2022]
|
29
|
Li L, Mirza S, Richardson SJ, Gallant EM, Thekkedam C, Pace SM, Zorzato F, Liu D, Beard NA, Dulhunty AF. A new cytoplasmic interaction between junctin and ryanodine receptor Ca2+ release channels. J Cell Sci 2015; 128:951-63. [PMID: 25609705 PMCID: PMC4342579 DOI: 10.1242/jcs.160689] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Junctin, a non-catalytic splice variant encoded by the aspartate-β-hydroxylase (Asph) gene, is inserted into the membrane of the sarcoplasmic reticulum (SR) Ca2+ store where it modifies Ca2+ signalling in the heart and skeletal muscle through its regulation of ryanodine receptor (RyR) Ca2+ release channels. Junctin is required for normal muscle function as its knockout leads to abnormal Ca2+ signalling, muscle dysfunction and cardiac arrhythmia. However, the nature of the molecular interaction between junctin and RyRs is largely unknown and was assumed to occur only in the SR lumen. We find that there is substantial binding of RyRs to full junctin, and the junctin luminal and, unexpectedly, cytoplasmic domains. Binding of these different junctin domains had distinct effects on RyR1 and RyR2 activity: full junctin in the luminal solution increased RyR channel activity by ∼threefold, the C-terminal luminal interaction inhibited RyR channel activity by ∼50%, and the N-terminal cytoplasmic binding produced an ∼fivefold increase in RyR activity. The cytoplasmic interaction between junctin and RyR is required for luminal binding to replicate the influence of full junctin on RyR1 and RyR2 activity. The C-terminal domain of junctin binds to residues including the S1–S2 linker of RyR1 and N-terminal domain of junctin binds between RyR1 residues 1078 and 2156.
Collapse
Affiliation(s)
- Linwei Li
- John Curtin School of Medical Research, ACT 0200, Australia
| | - Shamaruh Mirza
- John Curtin School of Medical Research, ACT 0200, Australia
| | | | | | | | - Suzy M Pace
- John Curtin School of Medical Research, ACT 0200, Australia
| | | | - Dan Liu
- John Curtin School of Medical Research, ACT 0200, Australia
| | - Nicole A Beard
- John Curtin School of Medical Research, ACT 0200, Australia
| | | |
Collapse
|
30
|
Baker MR, Fan G, Serysheva II. Single-particle cryo-EM of the ryanodine receptor channel in an aqueous environment. Eur J Transl Myol 2015; 25:4803. [PMID: 25844145 PMCID: PMC4748972 DOI: 10.4081/ejtm.2015.4803] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/22/2014] [Accepted: 12/31/2014] [Indexed: 12/31/2022] Open
Abstract
Ryanodine receptors (RyRs) are tetrameric ligand-gated Ca2+ release channels that are responsible for the increase of cytosolic Ca2+ concentration leading to muscle contraction. Our current understanding of RyR channel gating and regulation is greatly limited due to the lack of a high-resolution structure of the channel protein. The enormous size and unwieldy shape of Ca2+ release channels make X-ray or NMR methods difficult to apply for high-resolution structural analysis of the full-length functional channel. Single-particle electron cryo-microscopy (cryo-EM) is one of the only effective techniques for the study of such a large integral membrane protein and its molecular interactions. Despite recent developments in cryo-EM technologies and break-through single-particle cryo-EM studies of ion channels, cryospecimen preparation, particularly the presence of detergent in the buffer, remains the main impediment to obtaining atomic-resolution structures of ion channels and a multitude of other integral membrane protein complexes. In this review we will discuss properties of several detergents that have been successfully utilized in cryo-EM studies of ion channels and the emergence of the detergent alternative amphipol to stabilize ion channels for structure-function characterization. Future structural studies of challenging specimen like ion channels are likely to be facilitated by cryo-EM amenable detergents or alternative surfactants.
Collapse
Affiliation(s)
| | | | - Irina I. Serysheva
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| |
Collapse
|
31
|
Gillespie D, Xu L, Meissner G. Selecting ions by size in a calcium channel: the ryanodine receptor case study. Biophys J 2014; 107:2263-73. [PMID: 25418295 PMCID: PMC4241444 DOI: 10.1016/j.bpj.2014.09.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 09/25/2014] [Accepted: 09/30/2014] [Indexed: 10/24/2022] Open
Abstract
Many calcium channels can distinguish between ions of the same charge but different size. For example, when cations are in direct competition with each other, the ryanodine receptor (RyR) calcium channel preferentially conducts smaller cations such as Li(+) and Na(+) over larger ones such as K(+) and Cs(+). Here, we analyze the physical basis for this preference using a previously established model of RyR permeation and selectivity. Like other calcium channels, RyR has four aspartate residues in its GGGIGDE selectivity filter. These aspartates have their terminal carboxyl group in the pore lumen, which take up much of the available space for permeating ions. We find that small ions are preferred by RyR because they can fit into this crowded environment more easily.
Collapse
Affiliation(s)
- Dirk Gillespie
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois.
| | - Le Xu
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina
| | - Gerhard Meissner
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
32
|
Plattner H. Calcium signalling in the ciliated protozoan model, Paramecium: strict signal localisation by epigenetically controlled positioning of different Ca²⁺-channels. Cell Calcium 2014; 57:203-13. [PMID: 25277862 DOI: 10.1016/j.ceca.2014.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/01/2014] [Indexed: 11/17/2022]
Abstract
The Paramecium tetraurelia cell is highly organised, with regularly spaced elements pertinent to Ca(2+) signalling under epigenetic control. Vesicles serving as stationary Ca(2+) stores or undergoing trafficking contain Ca(2+)-release channels (PtCRCs) which, according to sequence and domain comparison, are related either to inositol 1,4,5-trisphosphate (InsP3) receptors (IP3R) or to ryanodine receptor-like proteins (RyR-LP) or to both, with intermediate characteristics or deviation from conventional domain structure. Six groups of such PtCRCs have been found. The ryanodine-InsP3-receptor homology (RIH) domain is not always recognisable, in contrast to the channel domain with six trans-membrane domains and the pore between transmembrane domain 5 and 6. Two CRC subtypes tested more closely, PtCRC-II and PtCRC-IV, with and without an InsP3-binding domain, reacted to InsP3 and to caffeine, respectively, and hence represent IP3Rs and RyR-LPs. IP3Rs occur in the contractile vacuole complex where they allow for stochastic constitutive Ca(2+) reflux into the cytosol. RyR-LPs are localised to cortical Ca(2+) stores; they are engaged in dense core-secretory vesicle exocytosis by Ca(2+) release, superimposed by Ca(2+)-influx via non-ciliary Ca(2+)-channels. One or two different types of PtCRCs also occur in other vesicles undergoing trafficking. Since the PtCRCs described combine different features they are considered derivatives of primitive precursors. The highly regular, epigenetically controlled design of a Paramecium cell allows it to make Ca(2+) available very locally, in a most efficient way, along predetermined trafficking pathways, including regulation of exocytosis, endocytosis, phagocytosis and recycling phenomena. The activity of cilia is also regulated by Ca(2+), yet independently from any CRCs, by de- and hyperpolarisation of the cell membrane potential.
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, P.O. Box M625, 78457 Konstanz, Germany.
| |
Collapse
|
33
|
Mukherjee S, Thomas NL, Williams AJ. Insights into the gating mechanism of the ryanodine-modified human cardiac Ca2+-release channel (ryanodine receptor 2). Mol Pharmacol 2014; 86:318-29. [PMID: 25002270 PMCID: PMC4216943 DOI: 10.1124/mol.114.093757] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ryanodine receptors (RyRs) are intracellular membrane channels playing key roles in many Ca(2+) signaling pathways and, as such, are emerging novel therapeutic and insecticidal targets. RyRs are so named because they bind the plant alkaloid ryanodine with high affinity and although it is established that ryanodine produces profound changes in all aspects of function, our understanding of the mechanisms underlying altered gating is minimal. We address this issue using detailed single-channel gating analysis, mathematical modeling, and energetic evaluation of state transitions establishing that, with ryanodine bound, the RyR pore adopts an extremely stable open conformation. We demonstrate that stability of this state is influenced by interaction of divalent cations with both activating and inhibitory cytosolic sites and, in the absence of activating Ca(2+), trans-membrane voltage. Comparison of the conformational stability of ryanodine- and Imperatoxin A-modified channels identifies significant differences in the mechanisms of action of these qualitatively similar ligands.
Collapse
Affiliation(s)
- Saptarshi Mukherjee
- Institute of Molecular and Experimental Medicine, Wales Heart Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - N Lowri Thomas
- Institute of Molecular and Experimental Medicine, Wales Heart Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Alan J Williams
- Institute of Molecular and Experimental Medicine, Wales Heart Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| |
Collapse
|
34
|
Shirvanyants D, Ramachandran S, Mei Y, Xu L, Meissner G, Dokholyan NV. Pore dynamics and conductance of RyR1 transmembrane domain. Biophys J 2014; 106:2375-84. [PMID: 24896116 PMCID: PMC4052289 DOI: 10.1016/j.bpj.2014.04.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 04/17/2014] [Indexed: 11/25/2022] Open
Abstract
Ryanodine receptors (RyR) are calcium release channels, playing a major role in the regulation of muscular contraction. Mutations in skeletal muscle RyR (RyR1) are associated with congenital diseases such as malignant hyperthermia and central core disease (CCD). The absence of high-resolution structures of RyR1 has limited our understanding of channel function and disease mechanisms at the molecular level. Previously, we have reported a hypothetical structure of the RyR1 pore-forming region, obtained by homology modeling and supported by mutational scans, electrophysiological measurements, and cryo-electron microscopy. Here, we utilize the expanded model encompassing six transmembrane helices to calculate the RyR1 pore region conductance, to analyze its structural stability, and to hypothesize the mechanism of the Ile4897 CCD-associated mutation. The calculated conductance of the wild-type RyR1 suggests that the proposed pore structure can sustain ion currents measured in single-channel experiments. We observe a stable pore structure on timescales of 0.2 μs, with multiple cations occupying the selectivity filter and cytosolic vestibule, but not the inner chamber. We further suggest that stability of the selectivity filter critically depends on the interactions between the I4897 residue and several hydrophobic residues of the neighboring subunit. Loss of these interactions in the case of polar substitution I4897T results in destabilization of the selectivity filter, a possible cause of the CCD-specific reduced Ca(2+) conductance.
Collapse
Affiliation(s)
- David Shirvanyants
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Srinivas Ramachandran
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Yingwu Mei
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Le Xu
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Gerhard Meissner
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina.
| | - Nikolay V Dokholyan
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina.
| |
Collapse
|
35
|
Schilling R, Fink RH, Fischer WB. MD simulations of the central pore of ryanodine receptors and sequence comparison with 2B protein from coxsackie virus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1122-31. [DOI: 10.1016/j.bbamem.2013.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 11/16/2013] [Accepted: 12/12/2013] [Indexed: 02/08/2023]
|
36
|
Gomez AC, Yamaguchi N. Two regions of the ryanodine receptor calcium channel are involved in Ca(2+)-dependent inactivation. Biochemistry 2014; 53:1373-9. [PMID: 24521037 PMCID: PMC3985739 DOI: 10.1021/bi401586h] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Skeletal (RyR1) and cardiac muscle (RyR2) isoforms of ryanodine receptor calcium channels are inhibited by millimollar Ca(2+), but the affinity of RyR2 for inhibitory Ca(2+) is ~10 times lower than that of RyR1. Previous studies demonstrated that the C-terminal quarter of RyR has critical domain(s) for Ca(2+) inactivation. To obtain further insights into the molecular basis of regulation of RyRs by Ca(2+), we constructed and expressed 18 RyR1-RyR2 chimeras in HEK293 cells and determined the Ca(2+) activation and inactivation affinities of these channels using the [(3)H]ryanodine binding assay. Replacing two distinct regions of RyR1 with corresponding RyR2 sequences reduced the affinity for Ca(2+) inactivation. The first region (RyR2 amino acids 4020-4250) contains two EF-hand Ca(2+) binding motifs (EF1, amino acids 4036-4047; EF2, amino acids 4071-4082), and the second region includes the putative second transmembrane segment (S2). A RyR1-backbone chimera containing only EF2 from RyR2 had a modest (not significant) change in Ca(2+) inactivation, whereas another chimera channel carrying only EF1 from RyR2 had a significantly reduced level of Ca(2+) inactivation. The results suggest that EF1 is a more critical determinant for RyR inactivation by Ca(2+). In addition, activities of the chimera carrying RyR2 EF-hands were suppressed at 10-100 μM Ca(2+), and the suppression was relieved by 1 mM Mg(2+). The same effects have been observed with wild-type RyR2. A mutant RyR1 carrying both regions replaced with RyR2 sequences (amino acids 4020-4250 and 4560-4618) showed a Ca(2+) inactivation affinity comparable to that of RyR2, indicating that these regions are sufficient to confer RyR2-type Ca(2+)-dependent inactivation on RyR1.
Collapse
Affiliation(s)
- Angela C Gomez
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina , and Cardiac Signaling Center, University of South Carolina , Medical University of South Carolina , and Clemson University , Charleston, South Carolina 29425, United States
| | | |
Collapse
|
37
|
The ryanodine receptor store-sensing gate controls Ca2+ waves and Ca2+-triggered arrhythmias. Nat Med 2014; 20:184-92. [PMID: 24441828 DOI: 10.1038/nm.3440] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 12/03/2013] [Indexed: 12/12/2022]
Abstract
Spontaneous Ca(2+) release from intracellular stores is important for various physiological and pathological processes. In cardiac muscle cells, spontaneous store overload-induced Ca(2+) release (SOICR) can result in Ca(2+) waves, a major cause of ventricular tachyarrhythmias (VTs) and sudden death. The molecular mechanism underlying SOICR has been a mystery for decades. Here we show that a point mutation, E4872A, in the helix bundle crossing region (the proposed gate) of the cardiac ryanodine receptor (RyR2) completely abolishes luminal, but not cytosolic, Ca(2+) activation of RyR2. The introduction of metal-binding histidines at this site converts RyR2 into a luminal Ni(2+)-gated channel. Mouse hearts harboring a heterozygous RyR2 mutation at this site (E4872Q) are resistant to SOICR and are completely protected against Ca(2+)-triggered VTs. These data show that the RyR2 gate directly senses luminal (store) Ca(2+), explaining the regulation of RyR2 by luminal Ca(2+), the initiation of Ca(2+) waves and Ca(2+)-triggered arrhythmias. This newly identified store-sensing gate structure is conserved in all RyR and inositol 1,4,5-trisphosphate receptor isoforms.
Collapse
|
38
|
Abstract
Ca(2+)-signaling pathways and intracellular Ca(2+) channels are present in protozoa. Ancient origin of inositol 1,4,5-trisphosphate receptors (IP3Rs) and other intracellular channels predates the divergence of animals and fungi as evidenced by their presence in the choanoflagellate Monosiga brevicollis, the closest known relative to metazoans. The first protozoan IP3R cloned, from the ciliate Paramecium, displays strong sequence similarity to the rat type 3 IP3R. This ciliate has a large number of IP3- and ryanodine(Ry)-like receptors in six subfamilies suggesting the evolutionary adaptation to local requirements for an expanding diversification of vesicle trafficking. IP3Rs have also been functionally characterized in trypanosomatids, where they are essential for growth, differentiation, and establishment of infection. The presence of the mitochondrial calcium uniporter (MCU) in a number of protozoa indicates that mitochondrial regulation of Ca(2+) signaling is also an early appearance in evolution, and contributed to the discovery of the molecular nature of this channel in mammalian cells. There is only sequence evidence for the occurrence of two-pore channels (TPCs), transient receptor potential Ca(2+) channels (TRPCs) and intracellular mechanosensitive Ca(2+)-channels in Paramecium and in parasitic protozoa.
Collapse
|
39
|
Plattner H. Calcium regulation in the protozoan model, Paramecium tetraurelia. J Eukaryot Microbiol 2013; 61:95-114. [PMID: 24001309 DOI: 10.1111/jeu.12070] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/21/2013] [Accepted: 06/28/2013] [Indexed: 01/24/2023]
Abstract
Early in eukaryotic evolution, the cell has evolved a considerable inventory of proteins engaged in the regulation of intracellular Ca(2+) concentrations, not only to avoid toxic effects but beyond that to exploit the signaling capacity of Ca(2+) by small changes in local concentration. Among protozoa, the ciliate Paramecium may now be one of the best analyzed models. Ciliary activity and exo-/endocytosis are governed by Ca(2+) , the latter by Ca(2+) mobilization from alveolar sacs and a superimposed store-operated Ca(2+) -influx. Paramecium cells possess plasma membrane- and endoplasmic reticulum-resident Ca(2+) -ATPases/pumps (PMCA, SERCA), a variety of Ca(2+) influx channels, including mechanosensitive and voltage-dependent channels in the plasma membrane, furthermore a plethora of Ca(2+) -release channels (CRC) of the inositol 1,4,5-trisphosphate and ryanodine receptor type in different compartments, notably the contractile vacuole complex and the alveolar sacs, as well as in vesicles participating in vesicular trafficking. Additional types of CRC probably also occur but they have not been identified at a molecular level as yet, as is the equivalent of synaptotagmin as a Ca(2+) sensor for exocytosis. Among established targets and sensors of Ca(2+) in Paramecium are calmodulin, calcineurin, as well as Ca(2+) /calmodulin-dependent protein kinases, all with multiple functions. Thus, basic elements of Ca(2+) signaling are available for Paramecium.
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, P.O. Box 5544, 78457, Konstanz, Germany
| |
Collapse
|
40
|
Euden J, Mason SA, Williams AJ. Functional characterization of the cardiac ryanodine receptor pore-forming region. PLoS One 2013; 8:e66542. [PMID: 23776685 PMCID: PMC3680380 DOI: 10.1371/journal.pone.0066542] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 05/07/2013] [Indexed: 01/16/2023] Open
Abstract
Ryanodine receptors are homotetrameric intracellular calcium release channels. The efficiency of these channels is underpinned by exceptional rates of cation translocation through the open channel and this is achieved at the expense of the high degree of selectivity characteristic of many other types of channel. Crystallization of prokaryotic potassium channels has provided insights into the structures and mechanisms responsible for ion selection and movement in these channels, however no equivalent structural detail is currently available for ryanodine receptors. Nevertheless both molecular modeling and cryo-electron microscopy have identified the probable pore-forming region (PFR) of the ryanodine receptor (RyR) and suggest that this region contains structural elements equivalent to those of the PFRs of potassium-selective channels. The aim of the current study was to establish if the isolated putative cardiac RyR (RyR2) PFR could form a functional ion channel. We have expressed and purified the RyR2 PFR and shown that function is retained following reconstitution into planar phospholipid bilayers. Our data provide the first direct experimental evidence to support the proposal that the conduction pathway of RyR2 is formed by structural elements equivalent to those of the potassium channel PFR.
Collapse
Affiliation(s)
- Joanne Euden
- Institute of Molecular and Experimental Medicine, Cardiff University, Cardiff, United Kingdom.
| | | | | |
Collapse
|
41
|
Abstract
Early in evolution, Ca(2+) emerged as the most important second messenger for regulating widely different cellular functions. In eukaryotic cells Ca(2+) signals originate from several sources, i.e. influx from the outside medium, release from internal stores or from both. In mammalian cells, Ca(2+)-release channels represented by inositol 1,4,5-trisphosphate receptors and ryanodine receptors (InsP3R and RyR, respectively) are the most important. In unicellular organisms and plants, these channels are characterised with much less precision. In the ciliated protozoan, Paramecium tetraurelia, 34 molecularly distinct Ca(2+)-release channels that can be grouped in six subfamilies, based on criteria such as domain structure, pore, selectivity filter and activation mechanism have been identified. Some of these channels are genuine InsP3Rs and some are related to RyRs. Others show some--but not all--features that are characteristic for one or the other type of release channel. Localisation and gene silencing experiments revealed widely different--yet distinct--localisation, activation and functional engagement of the different Ca(2+)-release channels. Here, we shall discuss early evolutionary routes of Ca(2+)-release machinery in protozoa and demonstrate that detailed domain analyses and scrutinised functional analyses are instrumental for in-depth evolutionary mapping of Ca(2+)-release channels in unicellular organisms.
Collapse
Affiliation(s)
- Helmut Plattner
- Faculty of Biology, University of Konstanz, 78457 Konstanz, Germany.
| | | |
Collapse
|
42
|
Euden J, Mason SA, Viero C, Thomas NL, Williams AJ. Investigations of the contribution of a putative glycine hinge to ryanodine receptor channel gating. J Biol Chem 2013; 288:16671-16679. [PMID: 23632022 PMCID: PMC3675601 DOI: 10.1074/jbc.m113.465310] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Ryanodine receptor channels (RyR) are key components of striated muscle excitation-contraction coupling, and alterations in their function underlie both inherited and acquired disease. A full understanding of the disease process will require a detailed knowledge of the mechanisms and structures involved in RyR function. Unfortunately, high-resolution structural data, such as exist for K+-selective channels, are not available for RyR. In the absence of these data, we have used modeling to identify similarities in the structural elements of K+ channel pore-forming regions and postulated equivalent regions of RyR. This has identified a sequence of residues in the cytosolic cavity-lining transmembrane helix of RyR (G4864LIIDA4869 in RyR2) analogous to the glycine hinge motif present in many K+ channels. Gating in these K+ channels can be disrupted by substitution of residues for the hinge glycine. We investigated the involvement of glycine 4864 in RyR2 gating by monitoring properties of recombinant human RyR2 channels in which this glycine is replaced by residues that alter gating in K+ channels. Our data demonstrate that introducing alanine at position 4864 produces no significant change in RyR2 function. In contrast, function is altered when glycine 4864 is replaced by either valine or proline, the former preventing channel opening and the latter modifying both ion translocation and gating. Our studies reveal novel information on the structural basis of RyR gating, identifying both similarities with, and differences from, K+ channels. Glycine 4864 is not absolutely required for channel gating, but some flexibility at this point in the cavity-lining transmembrane helix is necessary for normal RyR function.
Collapse
Affiliation(s)
- Joanne Euden
- Institute of Molecular and Experimental Medicine, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom
| | - Sammy A Mason
- Institute of Molecular and Experimental Medicine, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom
| | - Cedric Viero
- Institute of Molecular and Experimental Medicine, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom
| | - N Lowri Thomas
- Institute of Molecular and Experimental Medicine, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom
| | - Alan J Williams
- Institute of Molecular and Experimental Medicine, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom.
| |
Collapse
|