1
|
King DR, Sedovy MW, Eaton X, Dunaway LS, Good ME, Isakson BE, Johnstone SR. Cell-To-Cell Communication in the Resistance Vasculature. Compr Physiol 2022; 12:3833-3867. [PMID: 35959755 DOI: 10.1002/cphy.c210040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The arterial vasculature can be divided into large conduit arteries, intermediate contractile arteries, resistance arteries, arterioles, and capillaries. Resistance arteries and arterioles primarily function to control systemic blood pressure. The resistance arteries are composed of a layer of endothelial cells oriented parallel to the direction of blood flow, which are separated by a matrix layer termed the internal elastic lamina from several layers of smooth muscle cells oriented perpendicular to the direction of blood flow. Cells within the vessel walls communicate in a homocellular and heterocellular fashion to govern luminal diameter, arterial resistance, and blood pressure. At rest, potassium currents govern the basal state of endothelial and smooth muscle cells. Multiple stimuli can elicit rises in intracellular calcium levels in either endothelial cells or smooth muscle cells, sourced from intracellular stores such as the endoplasmic reticulum or the extracellular space. In general, activation of endothelial cells results in the production of a vasodilatory signal, usually in the form of nitric oxide or endothelial-derived hyperpolarization. Conversely, activation of smooth muscle cells results in a vasoconstriction response through smooth muscle cell contraction. © 2022 American Physiological Society. Compr Physiol 12: 1-35, 2022.
Collapse
Affiliation(s)
- D Ryan King
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA
| | - Meghan W Sedovy
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA.,Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, Virginia, USA
| | - Xinyan Eaton
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA
| | - Luke S Dunaway
- Robert M. Berne Cardiovascular Research Centre, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Miranda E Good
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Centre, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Scott R Johnstone
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA.,Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
2
|
Zhang N, Pan H, Liang X, Xie J, Han W. The roles of transmembrane family proteins in the regulation of store-operated Ca 2+ entry. Cell Mol Life Sci 2022; 79:118. [PMID: 35119538 PMCID: PMC11071953 DOI: 10.1007/s00018-021-04034-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022]
Abstract
Store-operated Ca2+ entry (SOCE) is a major pathway for calcium signaling, which regulates almost every biological process, involving cell proliferation, differentiation, movement and death. Stromal interaction molecule (STIM) and ORAI calcium release-activated calcium modulator (ORAI) are the two major proteins involved in SOCE. With the deepening of studies, more and more proteins are found to be able to regulate SOCE, among which the transmembrane (TMEM) family proteins are worth paying more attention. In addition, the ORAI proteins belong to the TMEM family themselves. As the name suggests, TMEM family is a type of proteins that spans biological membranes including plasma membrane and membrane of organelles. TMEM proteins are in a large family with more than 300 proteins that have been already identified, while the functional knowledge about the proteins is preliminary. In this review, we mainly summarized the TMEM proteins that are involved in SOCE, to better describe a picture of the interaction between STIM and ORAI proteins during SOCE and its downstream signaling pathways, as well as to provide an idea for the study of the TMEM family proteins.
Collapse
Affiliation(s)
- Ningxia Zhang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaojing Liang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jiansheng Xie
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
- Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
3
|
Meinke P, Kerr ARW, Czapiewski R, de Las Heras JI, Dixon CR, Harris E, Kölbel H, Muntoni F, Schara U, Straub V, Schoser B, Wehnert M, Schirmer EC. A multistage sequencing strategy pinpoints novel candidate alleles for Emery-Dreifuss muscular dystrophy and supports gene misregulation as its pathomechanism. EBioMedicine 2019; 51:102587. [PMID: 31862442 PMCID: PMC7000448 DOI: 10.1016/j.ebiom.2019.11.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/18/2019] [Accepted: 11/26/2019] [Indexed: 12/27/2022] Open
Abstract
Background As genome-wide approaches prove difficult with genetically heterogeneous orphan diseases, we developed a new approach to identify candidate genes. We applied this to Emery-Dreifuss muscular dystrophy (EDMD), characterised by early onset contractures, slowly progressive muscular wasting, and life-threatening heart conduction disturbances with wide intra- and inter-familial clinical variability. Roughly half of EDMD patients are linked to six genes encoding nuclear envelope proteins, but the disease mechanism remains unclear because the affected proteins function in both cell mechanics and genome regulation. Methods A primer library was generated to test for mutations in 301 genes from four categories: (I) all known EDMD-linked genes; (II) genes mutated in related muscular dystrophies; (III) candidates generated by exome sequencing in five families; (IV) functional candidates — other muscle nuclear envelope proteins functioning in mechanical/genome processes affected in EDMD. This was used to sequence 56 unlinked patients with EDMD-like phenotype. Findings Twenty-one patients could be clearly assigned: 18 with mutations in genes of similar muscular dystrophies; 3 with previously missed mutations in EDMD-linked genes. The other categories yielded novel candidate genes, most encoding nuclear envelope proteins with functions in gene regulation. Interpretation Our multi-pronged approach identified new disease alleles and many new candidate EDMD genes. Their known functions strongly argue the EDMD pathomechanism is from altered gene regulation and mechanotransduction due to connectivity of candidates from the nuclear envelope to the plasma membrane. This approach highlights the value of testing for related diseases using primer libraries and may be applied for other genetically heterogeneous orphan diseases. Funding The Wellcome Trust, Muscular Dystrophy UK, Medical Research Council, European Community's Seventh Framework Programme “Integrated European –omics research project for diagnosis and therapy in rare neuromuscular and neurodegenerative diseases (NEUROMICS)”.
Collapse
Affiliation(s)
- Peter Meinke
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK; Friedrich Baur Institute at the Department of Neurology, University Hospital, LMU Munich, Germany
| | - Alastair R W Kerr
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Rafal Czapiewski
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | | | - Charles R Dixon
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Elizabeth Harris
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Heike Kölbel
- Department of Pediatric Neurology, Developmental Neurology and Social Pediatrics, University of Essen, Germany
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, University College London Great Ormond Street Institute of Child Health, London, UK; 1 NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, & Great Ormond Street Hospital Trust, London, UK
| | - Ulrike Schara
- Department of Pediatric Neurology, Developmental Neurology and Social Pediatrics, University of Essen, Germany
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Benedikt Schoser
- Friedrich Baur Institute at the Department of Neurology, University Hospital, LMU Munich, Germany
| | - Manfred Wehnert
- Institute of Human Genetics, University of Greifswald (retired), Greifswald, Germany
| | - Eric C Schirmer
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
4
|
Zhou X, Park KH, Yamazaki D, Lin PH, Nishi M, Ma Z, Qiu L, Murayama T, Zou X, Takeshima H, Zhou J, Ma J. TRIC-A Channel Maintains Store Calcium Handling by Interacting With Type 2 Ryanodine Receptor in Cardiac Muscle. Circ Res 2019; 126:417-435. [PMID: 31805819 DOI: 10.1161/circresaha.119.316241] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
RATIONALE Trimeric intracellular cation (TRIC)-A and B are distributed to endoplasmic reticulum/sarcoplasmic reticulum intracellular Ca2+ stores. The crystal structure of TRIC has been determined, confirming the homotrimeric structure of a potassium channel. While the pore architectures of TRIC-A and TRIC-B are conserved, the carboxyl-terminal tail (CTT) domains of TRIC-A and TRIC-B are different from each other. Aside from its recognized role as a counterion channel that participates in excitation-contraction coupling of striated muscles, the physiological function of TRIC-A in heart physiology and disease has remained largely unexplored. OBJECTIVE In cardiomyocytes, spontaneous Ca2+ waves, triggered by store overload-induced Ca2+ release mediated by the RyR2 (type 2 ryanodine receptor), develop extrasystolic contractions often associated with arrhythmic events. Here, we test the hypothesis that TRIC-A is a physiological component of RyR2-mediated Ca2+ release machinery that directly modulates store overload-induced Ca2+ release activity via CTT. METHODS AND RESULTS We show that cardiomyocytes derived from the TRIC-A-/- (TRIC-A knockout) mice display dysregulated Ca2+ movement across sarcoplasmic reticulum. Biochemical studies demonstrate a direct interaction between CTT-A and RyR2. Modeling and docking studies reveal potential sites on RyR2 that show differential interactions with CTT-A and CTT-B. In HEK293 (human embryonic kidney) cells with stable expression of RyR2, transient expression of TRIC-A, but not TRIC-B, leads to apparent suppression of spontaneous Ca2+ oscillations. Ca2+ measurements using the cytosolic indicator Fura-2 and the endoplasmic reticulum luminal store indicator D1ER suggest that TRIC-A enhances Ca2+ leak across the endoplasmic reticulum by directly targeting RyR2 to modulate store overload-induced Ca2+ release. Moreover, synthetic CTT-A peptide facilitates RyR2 activity in lipid bilayer reconstitution system, enhances Ca2+ sparks in permeabilized TRIC-A-/- cardiomyocytes, and induces intracellular Ca2+ release after microinjection into isolated cardiomyocytes, whereas such effects were not observed with the CTT-B peptide. In response to isoproterenol stimulation, the TRIC-A-/- mice display irregular ECG and develop more fibrosis than the WT (wild type) littermates. CONCLUSIONS In addition to the ion-conducting function, TRIC-A functions as an accessory protein of RyR2 to modulate sarcoplasmic reticulum Ca2+ handling in cardiac muscle.
Collapse
Affiliation(s)
- Xinyu Zhou
- From the Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus (X. Zhou, K.H.P., P.-h.L., J.M.)
| | - Ki Ho Park
- From the Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus (X. Zhou, K.H.P., P.-h.L., J.M.)
| | - Daiju Yamazaki
- Department of Biological Chemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Japan (D.Y., M.N., H.T.)
| | - Pei-Hui Lin
- From the Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus (X. Zhou, K.H.P., P.-h.L., J.M.)
| | - Miyuki Nishi
- Department of Biological Chemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Japan (D.Y., M.N., H.T.)
| | - Zhiwei Ma
- Department of Physics and Astronomy, Dalton Cardiovascular Research Center (Z.M., L.Q., X. Zou), University of Missouri, Columbia.,Department of Biochemistry (Z.M., L.Q., X. Zou), University of Missouri, Columbia
| | - Liming Qiu
- Department of Physics and Astronomy, Dalton Cardiovascular Research Center (Z.M., L.Q., X. Zou), University of Missouri, Columbia.,Department of Biochemistry (Z.M., L.Q., X. Zou), University of Missouri, Columbia
| | - Takashi Murayama
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan (T.M.)
| | - Xiaoqin Zou
- Department of Physics and Astronomy, Dalton Cardiovascular Research Center (Z.M., L.Q., X. Zou), University of Missouri, Columbia.,Department of Biochemistry (Z.M., L.Q., X. Zou), University of Missouri, Columbia
| | - Hiroshi Takeshima
- Department of Biological Chemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Japan (D.Y., M.N., H.T.)
| | - Jingsong Zhou
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington (J.Z.)
| | - Jianjie Ma
- From the Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus (X. Zhou, K.H.P., P.-h.L., J.M.)
| |
Collapse
|
5
|
Crystal structures of the TRIC trimeric intracellular cation channel orthologues. Cell Res 2017; 26:1288-1301. [PMID: 27909292 PMCID: PMC5143425 DOI: 10.1038/cr.2016.140] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 10/23/2016] [Accepted: 10/27/2016] [Indexed: 12/30/2022] Open
Abstract
Ca2+ release from the sarcoplasmic reticulum (SR) and endoplasmic reticulum (ER) is crucial for muscle contraction, cell growth, apoptosis, learning and memory. The trimeric intracellular cation (TRIC) channels were recently identified as cation channels balancing the SR and ER membrane potentials, and are implicated in Ca2+ signaling and homeostasis. Here we present the crystal structures of prokaryotic TRIC channels in the closed state and structure-based functional analyses of prokaryotic and eukaryotic TRIC channels. Each trimer subunit consists of seven transmembrane (TM) helices with two inverted repeated regions. The electrophysiological, biochemical and biophysical analyses revealed that TRIC channels possess an ion-conducting pore within each subunit, and that the trimer formation contributes to the stability of the protein. The symmetrically related TM2 and TM5 helices are kinked at the conserved glycine clusters, and these kinks are important for the channel activity. Furthermore, the kinks of the TM2 and TM5 helices generate lateral fenestrations at each subunit interface. Unexpectedly, these lateral fenestrations are occupied with lipid molecules. This study provides the structural and functional framework for the molecular mechanism of this ion channel superfamily.
Collapse
|
6
|
Ou X, Guo J, Wang L, Yang H, Liu X, Sun J, Liu Z. Ion- and water-binding sites inside an occluded hourglass pore of a trimeric intracellular cation (TRIC) channel. BMC Biol 2017; 15:31. [PMID: 28431535 PMCID: PMC5401562 DOI: 10.1186/s12915-017-0372-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 04/05/2017] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Trimeric intracellular cation (TRIC) channels are crucial for Ca2+ handling in eukaryotes and are involved in K+ uptake in prokaryotes. Recent studies on the representative members of eukaryotic and prokaryotic TRIC channels demonstrated that they form homotrimeric units with the ion-conducting pores contained within each individual monomer. RESULTS Here we report detailed insights into the ion- and water-binding sites inside the pore of a TRIC channel from Sulfolobus solfataricus (SsTRIC). Like the mammalian TRIC channels, SsTRIC is permeable to both K+ and Na+ with a slight preference for K+, and is nearly impermeable to Ca2+, Mg2+, or Cl-. In the 2.2-Å resolution K+-bound structure of SsTRIC, ion/water densities have been well resolved inside the pore. At the central region, a filter-like structure is shaped by the kinks on the second and fifth transmembrane helices and two nearby phenylalanine residues. Below the filter, the cytoplasmic vestibule is occluded by a plug-like motif attached to an array of pore-lining charged residues. CONCLUSIONS The asymmetric filter-like structure at the pore center of SsTRIC might serve as the basis for the channel to bind and select monovalent cations. A Velcro-like plug-pore interacting model has been proposed and suggests a unified framework accounting for the gating mechanisms of prokaryotic and eukaryotic TRIC channels.
Collapse
Affiliation(s)
- Xiaomin Ou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jianli Guo
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Longfei Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hanting Yang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiuying Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianyuan Sun
- State Key Laboratory of Brain & Cognitive Sciences, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhenfeng Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
8
|
Abstract
Trimeric intracellular cation (TRIC) channel subtypes, namely TRIC-A and TRIC-B, are expressed in the endoplasmic/sarcoplasmic reticulum and nuclear envelope, and likely function as monovalent cation channels in various cell types. Our studies using knockout mice so far suggest that TRIC subtypes support Ca2+ release from intracellular stores by mediating counter-cationic fluxes. Several genetic mutations within the TRIC-B locus were recently identified in autosomal recessive osteogenesis imperfecta (OI) patients. However, the molecular mechanism by which the mutations cause human disease is not fully addressed. We found that Tric-b-knockout mice exhibit poor bone ossification and thus serve as an OI-model animal. Studies on Tric-b-knockout bones and cultured cell lines derived from the patients currently reveal the main part of the pathophysiological mechanism involved in the TRIC-B-mutated OI form. This mini-review focuses on the essential role of TRIC-B channels in bone ossification.
Collapse
|
9
|
Le Thanh P, Meinke P, Korfali N, Srsen V, Robson MI, Wehnert M, Schoser B, Sewry CA, Schirmer EC. Immunohistochemistry on a panel of Emery-Dreifuss muscular dystrophy samples reveals nuclear envelope proteins as inconsistent markers for pathology. Neuromuscul Disord 2016; 27:338-351. [PMID: 28214269 PMCID: PMC5380655 DOI: 10.1016/j.nmd.2016.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/22/2016] [Accepted: 12/09/2016] [Indexed: 11/08/2022]
Abstract
Altered distribution of EDMD-linked proteins is not a general characteristic of EDMD. Tissue-specific proteins exhibit altered distributions in some EDMD patients. Variation in redistributed proteins in EDMD may underlie its clinical variability.
Reports of aberrant distribution for some nuclear envelope proteins in cells expressing a few Emery–Dreifuss muscular dystrophy mutations raised the possibility that such protein redistribution could underlie pathology and/or be diagnostic. However, this disorder is linked to 8 different genes encoding nuclear envelope proteins, raising the question of whether a particular protein is most relevant. Therefore, myoblast/fibroblast cultures from biopsy and tissue sections from a panel of nine Emery–Dreifuss muscular dystrophy patients (4 male, 5 female) including those carrying emerin and FHL1 (X-linked) and several lamin A (autosomal dominant) mutations were stained for the proteins linked to the disorder. As tissue-specific nuclear envelope proteins have been postulated to mediate the tissue-specific pathologies of different nuclear envelopathies, patient samples were also stained for several muscle-specific nuclear membrane proteins. Although linked proteins nesprin 1 and SUN2 and muscle-specific proteins NET5/Samp1 and Tmem214 yielded aberrant distributions in individual patient cells, none exhibited defects through the larger patient panel. Muscle-specific Tmem38A normally appeared in both the nuclear envelope and sarcoplasmic reticulum, but most patient samples exhibited a moderate redistribution favouring the sarcoplasmic reticulum. The absence of striking uniform defects in nuclear envelope protein distribution indicates that such staining will be unavailing for general diagnostics, though it remains possible that specific mutations exhibiting protein distribution defects might reflect a particular clinical variant. These findings further argue that multiple pathways can lead to the generally similar pathologies of this disorder while at the same time the different cellular phenotypes observed possibly may help explain the considerable clinical variation of EDMD.
Collapse
Affiliation(s)
- Phu Le Thanh
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Peter Meinke
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK; Friedrich-Baur-Institute, Ludwig Maximilian University, Munich, Germany
| | - Nadia Korfali
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Vlastimil Srsen
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Michael I Robson
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Manfred Wehnert
- Institute of Human Genetics, University of Greifswald, Greifswald, Germany
| | - Benedikt Schoser
- Friedrich-Baur-Institute, Ludwig Maximilian University, Munich, Germany
| | - Caroline A Sewry
- Dubowitz Neuromuscular Centre, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Eric C Schirmer
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
10
|
Pore architecture of TRIC channels and insights into their gating mechanism. Nature 2016; 538:537-541. [PMID: 27698420 DOI: 10.1038/nature19767] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 08/16/2016] [Indexed: 01/23/2023]
Abstract
Intracellular Ca2+ signalling processes are fundamental to muscle contraction, neurotransmitter release, cell growth and apoptosis. Release of Ca2+ from the intracellular stores is supported by a series of ion channels in sarcoplasmic or endoplasmic reticulum (SR/ER). Among them, two isoforms of the trimeric intracellular cation (TRIC) channel family, named TRIC-A and TRIC-B, modulate the release of Ca2+ through the ryanodine receptor or inositol triphosphate receptor, and maintain the homeostasis of ions within SR/ER lumen. Genetic ablations or mutations of TRIC channels are associated with hypertension, heart disease, respiratory defects and brittle bone disease. Despite the pivotal function of TRIC channels in Ca2+ signalling, their pore architectures and gating mechanisms remain unknown. Here we present the structures of TRIC-B1 and TRIC-B2 channels from Caenorhabditis elegans in complex with endogenous phosphatidylinositol-4,5-biphosphate (PtdIns(4,5)P2, also known as PIP2) lipid molecules. The TRIC-B1/B2 proteins and PIP2 assemble into a symmetrical homotrimeric complex. Each monomer contains an hourglass-shaped hydrophilic pore contained within a seven-transmembrane-helix domain. Structural and functional analyses unravel the central role of PIP2 in stabilizing the cytoplasmic gate of the ion permeation pathway and reveal a marked Ca2+-induced conformational change in a cytoplasmic loop above the gate. A mechanistic model has been proposed to account for the complex gating mechanism of TRIC channels.
Collapse
|
11
|
Lopez RJ, Byrne S, Vukcevic M, Sekulic-Jablanovic M, Xu L, Brink M, Alamelu J, Voermans N, Snoeck M, Clement E, Muntoni F, Zhou H, Radunovic A, Mohammed S, Wraige E, Zorzato F, Treves S, Jungbluth H. An RYR1 mutation associated with malignant hyperthermia is also associated with bleeding abnormalities. Sci Signal 2016; 9:ra68. [PMID: 27382027 DOI: 10.1126/scisignal.aad9813] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Malignant hyperthermia is a potentially fatal hypermetabolic disorder triggered by halogenated anesthetics and the myorelaxant succinylcholine in genetically predisposed individuals. About 50% of susceptible individuals carry dominant, gain-of-function mutations in RYR1 [which encodes ryanodine receptor type 1 (RyR1)], though they have normal muscle function and no overt clinical symptoms. RyR1 is predominantly found in skeletal muscle but also at lower amounts in immune and smooth muscle cells, suggesting that RYR1 mutations may have a wider range of effects than previously suspected. Mild bleeding abnormalities have been described in patients with malignant hyperthermia carrying gain-of-function RYR1 mutations. We sought to determine the frequency and molecular basis for this symptom. We found that some patients with specific RYR1 mutations had abnormally high bleeding scores, whereas their healthy relatives did not. Knock-in mice with the malignant hyperthermia susceptibility RYR1 mutation Y522S (MHS RYR1Y522S) had longer bleeding times than their wild-type littermates. Primary vascular smooth muscle cells from RYR1Y522S knock-in mice exhibited a higher frequency of subplasmalemmal Ca(2+) sparks, leading to a more negative resting membrane potential. The bleeding defect of RYR1Y522S mice and of one patient was reversed by treatment with the RYR1 antagonist dantrolene, and Ca(2+) sparks in primary vascular smooth muscle cells from the MHS RYR1Y522S mice were blocked by ryanodine or dantrolene. Thus, RYR1 mutations may lead to prolonged bleeding by altering vascular smooth muscle cell function. The reversibility of the bleeding phenotype emphasizes the potential therapeutic value of dantrolene in the treatment of such bleeding disorders.
Collapse
Affiliation(s)
- Rubén J Lopez
- Departments of Biomedicine and Anesthesia, Basel University Hospital, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Susan Byrne
- Department of Paediatric Neurology, Neuromuscular Service, Evelina Children's Hospital, St Thomas' Hospital, London SE1 7EH, UK
| | - Mirko Vukcevic
- Departments of Biomedicine and Anesthesia, Basel University Hospital, Hebelstrasse 20, 4031 Basel, Switzerland. Department of Biomedicine, Basel University Hospital, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Marijana Sekulic-Jablanovic
- Departments of Biomedicine and Anesthesia, Basel University Hospital, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Lifen Xu
- Department of Biomedicine, Basel University Hospital, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Marijke Brink
- Department of Biomedicine, Basel University Hospital, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Jay Alamelu
- Department of Haematology, Evelina Children's Hospital, St Thomas' Hospital, London SE1 7EH, UK
| | - Nicol Voermans
- Department of Neurology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Marc Snoeck
- National MH Investigation Unit, Department of Anesthesiology, Canisius Wilhelmina Hospital, 6532 Nijmegen, Netherlands
| | - Emma Clement
- Department of Clinical Genetics, Guy's Hospital, London SE1 7EH, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Haiyan Zhou
- Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, London WC1N 1EH, UK
| | | | - Shehla Mohammed
- Department of Clinical Genetics, Guy's Hospital, London SE1 7EH, UK
| | - Elizabeth Wraige
- Department of Paediatric Neurology, Neuromuscular Service, Evelina Children's Hospital, St Thomas' Hospital, London SE1 7EH, UK
| | - Francesco Zorzato
- Departments of Biomedicine and Anesthesia, Basel University Hospital, Hebelstrasse 20, 4031 Basel, Switzerland. Department of Life Sciences, General Pathology Section, University of Ferrara, Via Borsari 46, 44100 Ferrara, Italy
| | - Susan Treves
- Departments of Biomedicine and Anesthesia, Basel University Hospital, Hebelstrasse 20, 4031 Basel, Switzerland. Department of Life Sciences, General Pathology Section, University of Ferrara, Via Borsari 46, 44100 Ferrara, Italy
| | - Heinz Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina Children's Hospital, St Thomas' Hospital, London SE1 7EH, UK. Randall Division of Cell and Molecular Biophysics, Muscle Signalling Section, King's College, London SE1 1UL, UK. Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 9RX, UK
| |
Collapse
|
12
|
Zhao C, Ichimura A, Qian N, Iida T, Yamazaki D, Noma N, Asagiri M, Yamamoto K, Komazaki S, Sato C, Aoyama F, Sawaguchi A, Kakizawa S, Nishi M, Takeshima H. Mice lacking the intracellular cation channel TRIC-B have compromised collagen production and impaired bone mineralization. Sci Signal 2016; 9:ra49. [PMID: 27188440 DOI: 10.1126/scisignal.aad9055] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The trimeric intracellular cation (TRIC) channels TRIC-A and TRIC-B localize predominantly to the endoplasmic reticulum (ER) and likely support Ca(2+) release from intracellular stores by mediating cationic flux to maintain electrical neutrality. Deletion and point mutations in TRIC-B occur in families with autosomal recessive osteogenesis imperfecta. Tric-b knockout mice develop neonatal respiratory failure and exhibit poor bone ossification. We investigated the cellular defect causing the bone phenotype. Bone histology indicated collagen matrix deposition was reduced in Tric-b knockout mice. Osteoblasts, the bone-depositing cells, from Tric-b knockout mice exhibited reduced Ca(2+) release from ER and increased ER Ca(2+) content, which was associated with ER swelling. These cells also had impaired collagen release without a decrease in collagen-encoding transcripts, consistent with a defect in trafficking of collagen through ER. In contrast, osteoclasts, the bone-degrading cells, from Tric-b knockout mice were similar to those from wild-type mice. Thus, TRIC-B function is essential to support the production and release of large amounts of collagen by osteoblasts, which is necessary for bone mineralization.
Collapse
Affiliation(s)
- Chengzhu Zhao
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Atsuhiko Ichimura
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan. Keihanshin Consortium for Fostering the Next Generation of Global Leaders in Research (K-CONNEX), Kyoto University, Kyoto 606-8501, Japan
| | - Nianchao Qian
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Tsunaki Iida
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Daiju Yamazaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Naruto Noma
- Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Masataka Asagiri
- Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Koji Yamamoto
- Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | | - Chikara Sato
- National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8568, Japan
| | - Fumiyo Aoyama
- Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Akira Sawaguchi
- Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Sho Kakizawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Miyuki Nishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Hiroshi Takeshima
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
13
|
Abstract
Sarcoplasmic reticulum (SR) K+ channels are voltage-regulated channels that are thought to be actively gating when the membrane potential across the SR is close to zero as is expected physiologically. A characteristic of SR K+ channels is that they gate to subconductance open states but the relevance of the subconductance events and their contribution to the overall current flowing through the channels at physiological membrane potentials is not known. We have investigated the relationship between subconductance and full conductance openings and developed kinetic models to describe the voltage sensitivity of channel gating. Because there may be two subtypes of SR K+ channels (TRIC-A and TRIC-B) present in most tissues, to conduct our study on a homogeneous population of SR K+ channels, we incorporated SR vesicles derived from Tric-a knockout mice into artificial membranes to examine the remaining SR K+ channel (TRIC-B) function. The channels displayed very low open probability (Po) at negative potentials (≤0 mV) and opened predominantly to subconductance open states. Positive holding potentials primarily increased the frequency of subconductance state openings and thereby increased the number of subsequent transitions into the full open state, although a slowing of transitions back to the sublevels was also important. We investigated whether the subconductance gating could arise as an artifact of incomplete resolution of rapid transitions between full open and closed states; however, we were not able to produce a model that could fit the data as well as one that included multiple distinct current amplitudes. Our results suggest that the apparent subconductance openings will provide most of the K+ flux when the SR membrane potential is close to zero. The relative contribution played by openings to the full open state would increase if negative charge developed within the SR thus increasing the capacity of the channel to compensate for ionic imbalances.
Collapse
|
14
|
Zhou X, Lin P, Yamazaki D, Park KH, Komazaki S, Chen SRW, Takeshima H, Ma J. Trimeric intracellular cation channels and sarcoplasmic/endoplasmic reticulum calcium homeostasis. Circ Res 2014; 114:706-16. [PMID: 24526676 DOI: 10.1161/circresaha.114.301816] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Trimeric intracellular cation channels (TRIC) represents a novel class of trimeric intracellular cation channels. Two TRIC isoforms have been identified in both the human and the mouse genomes: TRIC-A, a subtype predominantly expressed in the sarcoplasmic reticulum (SR) of muscle cells, and TRIC-B, a ubiquitous subtype expressed in the endoplasmic reticulum (ER) of all tissues. Genetic ablation of either TRIC-A or TRIC-B leads to compromised K(+) permeation and Ca(2+) release across the SR/ER membrane, supporting the hypothesis that TRIC channels provide a counter balancing K(+) flux that reduces SR/ER membrane depolarization for maintenance of the electrochemical gradient that drives SR/ER Ca(2+) release. TRIC-A and TRIC-B seem to have differential functions in Ca(2+) signaling in excitable and nonexcitable cells. Tric-a(-/-) mice display defective Ca(2+) sparks and spontaneous transient outward currents in arterial smooth muscle and develop hypertension, in addition to skeletal muscle dysfunction. Knockout of TRIC-B results in abnormal IP3 receptor-mediated Ca(2+) release in airway epithelial cells, respiratory defects, and neonatal lethality. Double knockout mice lacking both TRIC-A and TRIC-B show embryonic lethality as a result of cardiac arrest. Such an aggravated lethality indicates that TRIC-A and TRIC-B share complementary physiological functions in Ca(2+) signaling in embryonic cardiomyocytes. Tric-a(-/-) and Tric-b(+/-) mice are viable and susceptible to stress-induced heart failure. Recent evidence suggests that TRIC-A directly modulates the function of the cardiac ryanodine receptor 2 Ca(2+) release channel, which in turn controls store-overload-induced Ca(2+) release from the SR. Thus, the TRIC channels, in addition to providing a countercurrent for SR/ER Ca(2+) release, may also function as accessory proteins that directly modulate the ryanodine receptor/IP3 receptor channel functions.
Collapse
Affiliation(s)
- Xinyu Zhou
- From the Department of Surgery, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus (X.Z., P.L., K.H.P., J.M.); Department of Biological Chemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto, Japan (D.Y., H.T.); Department of Anatomy, Saitama Medical University, Saitama, Japan (S.K.); and Departments of Physiology and Pharmacology, and Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada (W.C.)
| | | | | | | | | | | | | | | |
Collapse
|