1
|
Singh RP, Sinha A, Deb S, Kumari K. First report on in-depth genome and comparative genome analysis of a metal-resistant bacterium Acinetobacter pittii S-30, isolated from environmental sample. Front Microbiol 2024; 15:1351161. [PMID: 38741743 PMCID: PMC11089254 DOI: 10.3389/fmicb.2024.1351161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
A newly isolated bacterium Acinetobacter pittii S-30 was recovered from waste-contaminated soil in Ranchi, India. The isolated bacterium belongs to the ESKAPE organisms which represent the major nosocomial pathogens that exhibit high antibiotic resistance. Furthermore, average nucleotide identity (ANI) analysis also showed its closest match (>95%) to other A. pittii genomes. The isolate showed metal-resistant behavior and was able to survive up to 5 mM of ZnSO4. Whole genome sequencing and annotations revealed the occurrence of various genes involved in stress protection, motility, and metabolism of aromatic compounds. Moreover, genome annotation identified the gene clusters involved in secondary metabolite production (biosynthetic gene clusters) such as arylpolyene, acinetobactin like NRP-metallophore, betalactone, and hserlactone-NRPS cluster. The metabolic potential of A. pittii S-30 based on cluster of orthologous, and Kyoto Encyclopedia of Genes and Genomes indicated a high number of genes related to stress protection, metal resistance, and multiple drug-efflux systems etc., which is relatively rare in A. pittii strains. Additionally, the presence of various carbohydrate-active enzymes such as glycoside hydrolases (GHs), glycosyltransferases (GTs), and other genes associated with lignocellulose breakdown suggests that strain S-30 has strong biomass degradation potential. Furthermore, an analysis of genetic diversity and recombination in A. pittii strains was performed to understand the population expansion hypothesis of A. pittii strains. To our knowledge, this is the first report demonstrating the detailed genomic characterization of a heavy metal-resistant bacterium belonging to A. pittii. Therefore, the A. pittii S-30 could be a good candidate for the promotion of plant growth and other biotechnological applications.
Collapse
Affiliation(s)
- Rajnish Prakash Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Ayushi Sinha
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Sushanta Deb
- Department of Veterinary Microbiology and Pathology, Washington State University (WSU), Pullman, WA, United States
| | - Kiran Kumari
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| |
Collapse
|
2
|
Louis G, Cherry P, Michaux C, Rahuel-Clermont S, Dieu M, Tilquin F, Maertens L, Van Houdt R, Renard P, Perpete E, Matroule JY. A cytoplasmic chemoreceptor and reactive oxygen species mediate bacterial chemotaxis to copper. J Biol Chem 2023; 299:105207. [PMID: 37660909 PMCID: PMC10579534 DOI: 10.1016/j.jbc.2023.105207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023] Open
Abstract
Chemotaxis is a widespread strategy used by unicellular and multicellular living organisms to maintain their fitness in stressful environments. We previously showed that bacteria can trigger a negative chemotactic response to a copper (Cu)-rich environment. Cu ion toxicity on bacterial cell physiology has been mainly linked to mismetallation events and reactive oxygen species (ROS) production, although the precise role of Cu-generated ROS remains largely debated. Here, using inductively coupled plasma optical emission spectrometry on cell fractionates, we found that the cytoplasmic Cu ion content mirrors variations of the extracellular Cu ion concentration. ROS-sensitive fluorescent probe and biosensor allowed us to show that the increase of cytoplasmic Cu ion content triggers a dose-dependent oxidative stress, which can be abrogated by superoxide dismutase and catalase overexpression. The inhibition of ROS production in the cytoplasm not only improves bacterial growth but also impedes Cu chemotaxis, indicating that ROS derived from cytoplasmic Cu ions mediate the control of bacterial chemotaxis to Cu. We also identified the Cu chemoreceptor McpR, which binds Cu ions with low affinity, suggesting a labile interaction. In addition, we demonstrate that the cysteine 75 and histidine 99 within the McpR sensor domain are key residues in Cu chemotaxis and Cu coordination. Finally, we discovered that in vitro both Cu(I) and Cu(II) ions modulate McpR conformation in a distinct manner. Overall, our study provides mechanistic insights on a redox-based control of Cu chemotaxis, indicating that the cellular redox status can play a key role in bacterial chemotaxis.
Collapse
Affiliation(s)
- Gwennaëlle Louis
- Research Unit in Biology of Microorganisms (URBM), Department of Biology, Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Pauline Cherry
- Research Unit in Biology of Microorganisms (URBM), Department of Biology, Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Catherine Michaux
- Laboratoire de Chimie Physique des Biomolécules, Namur Research Institute for Life Sciences (NARILIS) and Namur Institute of Structured Matter (NISM), University of Namur, Namur, Belgium
| | | | - Marc Dieu
- MaSUN, Mass Spectrometry Facility, University of Namur, Namur, Belgium
| | - Françoise Tilquin
- Research Unit in Biology of Microorganisms (URBM), Department of Biology, Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Laurens Maertens
- Research Unit in Biology of Microorganisms (URBM), Department of Biology, Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium; Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Rob Van Houdt
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Patricia Renard
- MaSUN, Mass Spectrometry Facility, University of Namur, Namur, Belgium
| | - Eric Perpete
- Laboratoire de Chimie Physique des Biomolécules, Namur Research Institute for Life Sciences (NARILIS) and Namur Institute of Structured Matter (NISM), University of Namur, Namur, Belgium
| | - Jean-Yves Matroule
- Research Unit in Biology of Microorganisms (URBM), Department of Biology, Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium.
| |
Collapse
|
3
|
Hu G, Wang Y, Blake C, Nordgaard M, Liu X, Wang B, Kovács ÁT. Parallel genetic adaptation of Bacillus subtilis to different plant species. Microb Genom 2023; 9:mgen001064. [PMID: 37466402 PMCID: PMC10438812 DOI: 10.1099/mgen.0.001064] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/16/2023] [Indexed: 07/20/2023] Open
Abstract
Plant growth-promoting rhizobacteria benefit plants by stimulating their growth or protecting them against phytopathogens. Rhizobacteria must colonize and persist on plant roots to exert their benefits. However, little is known regarding the processes by which rhizobacteria adapt to different plant species, or behave under alternating host plant regimes. Here, we used experimental evolution and whole-population whole-genome sequencing to analyse how Bacillus subtilis evolves on Arabidopsis thaliana and tomato seedlings, and under an alternating host plant regime, in a static hydroponic setup. We observed parallel evolution across multiple levels of biological organization in all conditions, which was greatest for the two heterogeneous, multi-resource, spatially structured environments at the genetic level. Species-specific adaptation at the genetic level was also observed, possibly caused by the selection stress imposed by different host plants. Furthermore, a trade-off between motility and biofilm development was supported by mutational changes in motility- and biofilm-related genes. Finally, we identified several condition-specific and common targeted genes in different environments by comparing three different B. subtilis biofilm adaptation settings. The results demonstrate a common evolutionary pattern when B. subtilis is adapting to the plant rhizosphere in similar conditions, and reveal differences in genetic mechanisms between different host plants. These findings will likely support strain improvements for sustainable agriculture.
Collapse
Affiliation(s)
- Guohai Hu
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, PR China
- BGI-Shenzhen, Shenzhen 518083, PR China
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Yue Wang
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, PR China
- BGI-Shenzhen, Shenzhen 518083, PR China
- BGI-Beijing, Beijing 102601, PR China
| | - Christopher Blake
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Mathilde Nordgaard
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Xin Liu
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, PR China
- BGI-Shenzhen, Shenzhen 518083, PR China
- BGI-Beijing, Beijing 102601, PR China
| | - Bo Wang
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, PR China
- BGI-Shenzhen, Shenzhen 518083, PR China
- Shenzhen Key Laboratory of Environmental Microbial Genomics and Application, BGI Shenzhen, 518083 Shenzhen, PR China
| | - Ákos T. Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800 Lyngby, Denmark
- Institute of Biology Leiden, Leiden University, 2333BE Leiden, Netherlands
| |
Collapse
|
4
|
Li J, Wu H, Pu Q, Zhang C, Chen Y, Lin Z, Hu X, Li O. Complete genome of Sphingomonas paucimobilis ZJSH1, an endophytic bacterium from Dendrobium officinale with stress resistance and growth promotion potential. Arch Microbiol 2023; 205:132. [PMID: 36959350 DOI: 10.1007/s00203-023-03459-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/25/2023]
Abstract
Sphingomonas paucimobilis ZJSH1 is an endophytic bacterium isolated from the roots of Dendrobium officinale with the ability to promote plant growth. It was found that the genome of strain ZJSH1 had gene fragment rearrangement compared with the genomes of the other four strains of S. paucimobilis, and the genome was integrated with phage genes. Functional analysis showed that the strain contained colonization-related genes, chemotaxis and invasion. A variety of genes encoding active materials, such as hormones (IAA, SA, ABA and zeaxanthin), phosphate cycle, antioxidant enzymes, and polysaccharides were identified which provide the strain with growth promotion and stress-resistant characteristics. Experiments proved that S. paucimobilis ZJSH1 grew well in media containing 80 g/L sodium chloride, 240 g/L polyethylene glycol and 800 μmol/L Cd2+, indicating its potential for resistance to stresses of salt, drought and cadmium, respectively. S. paucimobilis ZJSH1 is the only endophytic bacterium of this species that has been reported to promote plant growth. The analysis of its genome is conducive to understanding its growth-promoting mechanism and laying a foundation for the development and utilization of this species in the field of agriculture.
Collapse
Affiliation(s)
- Jin Li
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 928th Second Avenue, Hangzhou, 310018, People's Republic of China
| | - Hangtao Wu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 928th Second Avenue, Hangzhou, 310018, People's Republic of China
| | - Qian Pu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 928th Second Avenue, Hangzhou, 310018, People's Republic of China
| | - Chu Zhang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 928th Second Avenue, Hangzhou, 310018, People's Republic of China
| | - Ying Chen
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 928th Second Avenue, Hangzhou, 310018, People's Republic of China
| | - Zhengxin Lin
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 928th Second Avenue, Hangzhou, 310018, People's Republic of China
| | - Xiufang Hu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 928th Second Avenue, Hangzhou, 310018, People's Republic of China.
| | - Ou Li
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 928th Second Avenue, Hangzhou, 310018, People's Republic of China.
| |
Collapse
|
5
|
Tao A, Liu G, Zhang R, Yuan J. Precise Measurement of the Stoichiometry of the Adaptive Bacterial Flagellar Switch. mBio 2023; 14:e0018923. [PMID: 36946730 PMCID: PMC10128058 DOI: 10.1128/mbio.00189-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
The cytoplasmic ring (C-ring) of the bacterial flagellar motor controls the motor rotation direction, thereby controlling bacterial run-and-tumble behavior. The C-ring has been shown to undergo adaptive remodeling in response to changes in motor directional bias. However, the stoichiometry and arrangement of the C-ring is still unclear due to contradiction between the results from fluorescence studies and cryo-electron microscopy (cryo-EM) structural analysis. Here, by using the copy number of FliG molecules (34) in the C-ring as a reference, we precisely measured the copy numbers of FliM molecules in motors rotating exclusively counterclockwise (CCW) and clockwise (CW). We surprisingly found that there are on average 45 and 58 FliM molecules in CW and CCW rotating motors, respectively, which are much higher than previous estimates. Our results suggested a new mechanism of C-ring adaptation, that is, extra FliM molecules could be bound to the primary C-ring with probability depending on the motor rotational direction. We further confirmed that all of the FliM molecules in the C-ring function in chemotaxis signaling transduction because all of them could be bound by the chemotactic response regulator CheY-P. Our measurements provided new insights into the structure and arrangement of the flagellar switch. IMPORTANCE The bacterial flagellar switch can undergo adaptive remodeling in response to changes in motor rotation direction, thereby shifting its operating point to match the output of the chemotaxis signaling pathway. However, it remains unclear how the flagellar switch accomplishes this adaptive remodeling. Here, via precise fluorescence studies, we measured the absolute copy numbers of the critical component in the switch for motors rotating counterclockwise and clockwise, obtaining much larger numbers than previous relative estimates. Our results suggested a new mechanism of adaptive remodeling of the flagellar switch and provided new insights for updating the conformation spread model of the switch.
Collapse
Affiliation(s)
- Antai Tao
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| | - Guangzhe Liu
- Wenzhou Institute, University of Chinese Academy of Science, Wenzhou, Zhejiang, P.R. China
- School of Engineering and Science, University of Chinese Academy of Science, Beijing, P.R. China
| | - Rongjing Zhang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| | - Junhua Yuan
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
6
|
Gabbert AD, Mydosh JL, Talukdar PK, Gloss LM, McDermott JE, Cooper KK, Clair GC, Konkel ME. The Missing Pieces: The Role of Secretion Systems in Campylobacter jejuni Virulence. Biomolecules 2023; 13:135. [PMID: 36671522 PMCID: PMC9856085 DOI: 10.3390/biom13010135] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/10/2023] Open
Abstract
Campylobacter jejuni is likely the most common bacterial cause of gastroenteritis worldwide, responsible for millions of cases of inflammatory diarrhea characterized by severe abdominal cramps and blood in the stool. Further, C. jejuni infections are associated with post-infection sequelae in developed countries and malnutrition and growth-stunting in low- and middle-income countries. Despite the increasing prevalence of the disease, campylobacteriosis, and the recognition that this pathogen is a serious health threat, our understanding of C. jejuni pathogenesis remains incomplete. In this review, we focus on the Campylobacter secretion systems proposed to contribute to host-cell interactions and survival in the host. Moreover, we have applied a genomics approach to defining the structural and mechanistic features of C. jejuni type III, IV, and VI secretion systems. Special attention is focused on the flagellar type III secretion system and the prediction of putative effectors, given that the proteins exported via this system are essential for host cell invasion and the inflammatory response. We conclude that C. jejuni does not possess a type IV secretion system and relies on the type III and type VI secretion systems to establish a niche and potentiate disease.
Collapse
Affiliation(s)
- Amber D. Gabbert
- School of Molecular Biosciences, College of Veterinary Sciences, Washington State University, Pullman, WA 99164, USA
| | - Jennifer L. Mydosh
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA
| | - Prabhat K. Talukdar
- School of Molecular Biosciences, College of Veterinary Sciences, Washington State University, Pullman, WA 99164, USA
| | - Lisa M. Gloss
- School of Molecular Biosciences, College of Veterinary Sciences, Washington State University, Pullman, WA 99164, USA
| | - Jason E. McDermott
- Integrative Omics, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Kerry K. Cooper
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA
| | - Geremy C. Clair
- Integrative Omics, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Michael E. Konkel
- School of Molecular Biosciences, College of Veterinary Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
7
|
Bannikova S, Khlebodarova T, Vasilieva A, Mescheryakova I, Bryanskaya A, Shedko E, Popik V, Goryachkovskaya T, Peltek S. Specific Features of the Proteomic Response of Thermophilic Bacterium Geobacillus icigianus to Terahertz Irradiation. Int J Mol Sci 2022; 23:ijms232315216. [PMID: 36499542 PMCID: PMC9735757 DOI: 10.3390/ijms232315216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Studying the effects of terahertz (THz) radiation on the proteome of temperature-sensitive organisms is limited by a number of significant technical difficulties, one of which is maintaining an optimal temperature range to avoid thermal shock as much as possible. In the case of extremophilic species with an increased temperature tolerance, it is easier to isolate the effects of THz radiation directly. We studied the proteomic response to terahertz radiation of the thermophilic Geobacillus icigianus, persisting under wide temperature fluctuations with a 60 °C optimum. The experiments were performed with a terahertz free-electron laser (FEL) from the Siberian Center for Synchrotron and Terahertz Radiation, designed and employed by the Institute of Nuclear Physics of the SB of the RAS. A G. icigianus culture in LB medium was THz-irradiated for 15 min with 0.23 W/cm2 and 130 μm, using a specially designed cuvette. The life cycle of this bacterium proceeds under conditions of wide temperature and osmotic fluctuations, which makes its enzyme systems stress-resistant. The expression of several proteins was shown to change immediately after fifteen minutes of irradiation and after ten minutes of incubation at the end of exposure. The metabolic systems of electron transport, regulation of transcription and translation, cell growth and chemotaxis, synthesis of peptidoglycan, riboflavin, NADH, FAD and pyridoxal phosphate cofactors, Krebs cycle, ATP synthesis, chaperone and protease activity, and DNA repair, including methylated DNA, take part in the fast response to THz radiation. When the response developed after incubation, the systems of the cell's anti-stress defense, chemotaxis, and, partially, cell growth were restored, but the respiration and energy metabolism, biosynthesis of riboflavin, cofactors, peptidoglycan, and translation system components remained affected and the amino acid metabolism system was involved.
Collapse
Affiliation(s)
- Svetlana Bannikova
- Federal Research Center Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Lavrentiev Ave., 630090 Novosibirsk, Russia
- Kurchatov Genomic Center of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Lavrentiev Ave., 630090 Novosibirsk, Russia
- Correspondence:
| | - Tamara Khlebodarova
- Federal Research Center Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Lavrentiev Ave., 630090 Novosibirsk, Russia
- Kurchatov Genomic Center of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Asya Vasilieva
- Federal Research Center Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Lavrentiev Ave., 630090 Novosibirsk, Russia
- Kurchatov Genomic Center of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Irina Mescheryakova
- Federal Research Center Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Lavrentiev Ave., 630090 Novosibirsk, Russia
- Kurchatov Genomic Center of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Alla Bryanskaya
- Federal Research Center Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Lavrentiev Ave., 630090 Novosibirsk, Russia
- Kurchatov Genomic Center of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Elizaveta Shedko
- Federal Research Center Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Lavrentiev Ave., 630090 Novosibirsk, Russia
- Kurchatov Genomic Center of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Vasily Popik
- Budker Institute of Nuclear Physics, Siberian Branch Russian Academy of Sciences (SB RAS), 11 Acad. Lavrentieva Pr., 630090 Novosibirsk, Russia
| | - Tatiana Goryachkovskaya
- Federal Research Center Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Lavrentiev Ave., 630090 Novosibirsk, Russia
- Kurchatov Genomic Center of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Sergey Peltek
- Federal Research Center Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Lavrentiev Ave., 630090 Novosibirsk, Russia
- Kurchatov Genomic Center of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Lavrentiev Ave., 630090 Novosibirsk, Russia
| |
Collapse
|
8
|
Structural insights into the mechanism of archaellar rotational switching. Nat Commun 2022; 13:2857. [PMID: 35606361 PMCID: PMC9126983 DOI: 10.1038/s41467-022-30358-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 04/15/2022] [Indexed: 11/24/2022] Open
Abstract
Signal transduction via phosphorylated CheY towards the flagellum and the archaellum involves a conserved mechanism of CheY phosphorylation and subsequent conformational changes within CheY. This mechanism is conserved among bacteria and archaea, despite substantial differences in the composition and architecture of archaellum and flagellum, respectively. Phosphorylated CheY has higher affinity towards the bacterial C-ring and its binding leads to conformational changes in the flagellar motor and subsequent rotational switching of the flagellum. In archaea, the adaptor protein CheF resides at the cytoplasmic face of the archaeal C-ring formed by the proteins ArlCDE and interacts with phosphorylated CheY. While the mechanism of CheY binding to the C-ring is well-studied in bacteria, the role of CheF in archaea remains enigmatic and mechanistic insights are absent. Here, we have determined the atomic structures of CheF alone and in complex with activated CheY by X-ray crystallography. CheF forms an elongated dimer with a twisted architecture. We show that CheY binds to the C-terminal tail domain of CheF leading to slight conformational changes within CheF. Our structural, biochemical and genetic analyses reveal the mechanistic basis for CheY binding to CheF and allow us to propose a model for rotational switching of the archaellum. Signal transduction via phosphorylated CheY is conserved in bacteria and archaea. In this study, the authors employ structural biochemistry combined with cell biology to delineate the mechanism of CheY recognition by the adaptor protein CheF.
Collapse
|
9
|
Montemari AL, Marzano V, Essa N, Levi Mortera S, Rossitto M, Gardini S, Selan L, Vrenna G, Onetti Muda A, Putignani L, Fiscarelli EV. A Shaving Proteomic Approach to Unveil Surface Proteins Modulation of Multi-Drug Resistant Pseudomonas aeruginosa Strains Isolated From Cystic Fibrosis Patients. Front Med (Lausanne) 2022; 9:818669. [PMID: 35355602 PMCID: PMC8959810 DOI: 10.3389/fmed.2022.818669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Cystic fibrosis (CF) is the most common rare disease caused by a mutation of the CF transmembrane conductance regulator gene encoding a channel protein of the apical membrane of epithelial cells leading to alteration of Na+ and K+ transport, hence inducing accumulation of dense and sticky mucus and promoting recurrent airway infections. The most detected bacterium in CF patients is Pseudomonas aeruginosa (PA) which causes chronic colonization, requiring stringent antibiotic therapies that, in turn induces multi-drug resistance. Despite eradication attempts at the first infection, the bacterium is able to utilize several adaptation mechanisms to survive in hostile environments such as the CF lung. Its adaptive machinery includes modulation of surface molecules such as efflux pumps, flagellum, pili and other virulence factors. In the present study we compared surface protein expression of PA multi- and pan-drug resistant strains to wild-type antibiotic-sensitive strains, isolated from the airways of CF patients with chronic colonization and recent infection, respectively. After shaving with trypsin, microbial peptides were analyzed by tandem-mass spectrometry on a high-resolution platform that allowed the identification of 174 differentially modulated proteins localized in the region from extracellular space to cytoplasmic membrane. Biofilm assay was performed to characterize all 26 PA strains in term of biofilm production. Among the differentially expressed proteins, 17 were associated to the virulome (e.g., Tse2, Tse5, Tsi1, PilF, FliY, B-type flagellin, FliM, PyoS5), six to the resistome (e.g., OprJ, LptD) and five to the biofilm reservoir (e.g., AlgF, PlsD). The biofilm assay characterized chronic antibiotic-resistant isolates as weaker biofilm producers than wild-type strains. Our results suggest the loss of PA early virulence factors (e.g., pili and flagella) and later expression of virulence traits (e.g., secretion systems proteins) as an indicator of PA adaptation and persistence in the CF lung environment. To our knowledge, this is the first study that, applying a shaving proteomic approach, describes adaptation processes of a large collection of PA clinical strains isolated from CF patients in early and chronic infection phases.
Collapse
Affiliation(s)
- Anna Lisa Montemari
- Department of Diagnostics and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Cystic Fibrosis Diagnostics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Valeria Marzano
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Nour Essa
- Department of Diagnostics and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Cystic Fibrosis Diagnostics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Stefano Levi Mortera
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Martina Rossitto
- Department of Diagnostics and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Cystic Fibrosis Diagnostics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | | | - Laura Selan
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Gianluca Vrenna
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Andrea Onetti Muda
- Department of Diagnostics and Laboratory Medicine, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Lorenza Putignani
- Department of Diagnostics and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics, and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Ersilia Vita Fiscarelli
- Department of Diagnostics and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Cystic Fibrosis Diagnostics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| |
Collapse
|
10
|
Hu H, Santiveri M, Wadhwa N, Berg HC, Erhardt M, Taylor NMI. Structural basis of torque generation in the bi-directional bacterial flagellar motor. Trends Biochem Sci 2021; 47:160-172. [PMID: 34294545 DOI: 10.1016/j.tibs.2021.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022]
Abstract
The flagellar stator unit is an oligomeric complex of two membrane proteins (MotA5B2) that powers bi-directional rotation of the bacterial flagellum. Harnessing the ion motive force across the cytoplasmic membrane, the stator unit operates as a miniature rotary motor itself to provide torque for rotation of the flagellum. Recent cryo-electron microscopic (cryo-EM) structures of the stator unit provided novel insights into its assembly, function, and subunit stoichiometry, revealing the ion flux pathway and the torque generation mechanism. Furthermore, in situ cryo-electron tomography (cryo-ET) studies revealed unprecedented details of the interactions between stator unit and rotor. In this review, we summarize recent advances in our understanding of the structure and function of the flagellar stator unit, torque generation, and directional switching of the motor.
Collapse
Affiliation(s)
- Haidai Hu
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Mònica Santiveri
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Navish Wadhwa
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA; Rowland Institute at Harvard, Harvard University, 100 Edwin H. Land Blvd, Cambridge, MA 02142, USA
| | - Howard C Berg
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA; Rowland Institute at Harvard, Harvard University, 100 Edwin H. Land Blvd, Cambridge, MA 02142, USA
| | - Marc Erhardt
- Institut für Biologie/Bakterienphysiologie, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Nicholas M I Taylor
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
11
|
Milne-Davies B, Wimmi S, Diepold A. Adaptivity and dynamics in type III secretion systems. Mol Microbiol 2020; 115:395-411. [PMID: 33251695 DOI: 10.1111/mmi.14658] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 01/07/2023]
Abstract
The type III secretion system is the common core of two bacterial molecular machines: the flagellum and the injectisome. The flagellum is the most widely distributed prokaryotic locomotion device, whereas the injectisome is a syringe-like apparatus for inter-kingdom protein translocation, which is essential for virulence in important human pathogens. The successful concept of the type III secretion system has been modified for different bacterial needs. It can be adapted to changing conditions, and was found to be a dynamic complex constantly exchanging components. In this review, we highlight the flexibility, adaptivity, and dynamic nature of the type III secretion system.
Collapse
Affiliation(s)
- Bailey Milne-Davies
- Department of Ecophysiology, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | - Stephan Wimmi
- Department of Ecophysiology, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | - Andreas Diepold
- Department of Ecophysiology, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
12
|
Structural Conservation and Adaptation of the Bacterial Flagella Motor. Biomolecules 2020; 10:biom10111492. [PMID: 33138111 PMCID: PMC7693769 DOI: 10.3390/biom10111492] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Many bacteria require flagella for the ability to move, survive, and cause infection. The flagellum is a complex nanomachine that has evolved to increase the fitness of each bacterium to diverse environments. Over several decades, molecular, biochemical, and structural insights into the flagella have led to a comprehensive understanding of the structure and function of this fascinating nanomachine. Notably, X-ray crystallography, cryo-electron microscopy (cryo-EM), and cryo-electron tomography (cryo-ET) have elucidated the flagella and their components to unprecedented resolution, gleaning insights into their structural conservation and adaptation. In this review, we focus on recent structural studies that have led to a mechanistic understanding of flagellar assembly, function, and evolution.
Collapse
|
13
|
Khan S. The Architectural Dynamics of the Bacterial Flagellar Motor Switch. Biomolecules 2020; 10:E833. [PMID: 32486003 PMCID: PMC7355467 DOI: 10.3390/biom10060833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023] Open
Abstract
The rotary bacterial flagellar motor is remarkable in biochemistry for its highly synchronized operation and amplification during switching of rotation sense. The motor is part of the flagellar basal body, a complex multi-protein assembly. Sensory and energy transduction depends on a core of six proteins that are adapted in different species to adjust torque and produce diverse switches. Motor response to chemotactic and environmental stimuli is driven by interactions of the core with small signal proteins. The initial protein interactions are propagated across a multi-subunit cytoplasmic ring to switch torque. Torque reversal triggers structural transitions in the flagellar filament to change motile behavior. Subtle variations in the core components invert or block switch operation. The mechanics of the flagellar switch have been studied with multiple approaches, from protein dynamics to single molecule and cell biophysics. The architecture, driven by recent advances in electron cryo-microscopy, is available for several species. Computational methods have correlated structure with genetic and biochemical databases. The design principles underlying the basis of switch ultra-sensitivity and its dependence on motor torque remain elusive, but tantalizing clues have emerged. This review aims to consolidate recent knowledge into a unified platform that can inspire new research strategies.
Collapse
Affiliation(s)
- Shahid Khan
- Molecular Biology Consortium, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
14
|
Henderson LD, Matthews-Palmer TRS, Gulbronson CJ, Ribardo DA, Beeby M, Hendrixson DR. Diversification of Campylobacter jejuni Flagellar C-Ring Composition Impacts Its Structure and Function in Motility, Flagellar Assembly, and Cellular Processes. mBio 2020; 11:e02286-19. [PMID: 31911488 PMCID: PMC6946799 DOI: 10.1128/mbio.02286-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/19/2019] [Indexed: 12/22/2022] Open
Abstract
Bacterial flagella are reversible rotary motors that rotate external filaments for bacterial propulsion. Some flagellar motors have diversified by recruiting additional components that influence torque and rotation, but little is known about the possible diversification and evolution of core motor components. The mechanistic core of flagella is the cytoplasmic C ring, which functions as a rotor, directional switch, and assembly platform for the flagellar type III secretion system (fT3SS) ATPase. The C ring is composed of a ring of FliG proteins and a helical ring of surface presentation of antigen (SPOA) domains from the switch proteins FliM and one of two usually mutually exclusive paralogs, FliN or FliY. We investigated the composition, architecture, and function of the C ring of Campylobacter jejuni, which encodes FliG, FliM, and both FliY and FliN by a variety of interrogative approaches. We discovered a diversified C. jejuni C ring containing FliG, FliM, and both FliY, which functions as a classical FliN-like protein for flagellar assembly, and FliN, which has neofunctionalized into a structural role. Specific protein interactions drive the formation of a more complex heterooligomeric C. jejuni C-ring structure. We discovered that this complex C ring has additional cellular functions in polarly localizing FlhG for numerical regulation of flagellar biogenesis and spatial regulation of division. Furthermore, mutation of the C. jejuni C ring revealed a T3SS that was less dependent on its ATPase complex for assembly than were other systems. Our results highlight considerable evolved flagellar diversity that impacts motor output, biogenesis, and cellular processes in different species.IMPORTANCE The conserved core of bacterial flagellar motors reflects a shared evolutionary history that preserves the mechanisms essential for flagellar assembly, rotation, and directional switching. In this work, we describe an expanded and diversified set of core components in the Campylobacter jejuni flagellar C ring, the mechanistic core of the motor. Our work provides insight into how usually conserved core components may have diversified by gene duplication, enabling a division of labor of the ancestral protein between the two new proteins, acquisition of new roles in flagellar assembly and motility, and expansion of the function of the flagellum beyond motility, including spatial regulation of cell division and numerical control of flagellar biogenesis in C. jejuni Our results highlight that relatively small changes, such as gene duplications, can have substantial ramifications on the cellular roles of a molecular machine.
Collapse
Affiliation(s)
- Louie D Henderson
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - Connor J Gulbronson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Deborah A Ribardo
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Morgan Beeby
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - David R Hendrixson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
15
|
Abstract
Cells from all three domains of life on Earth utilize motile macromolecular devices that protrude from the cell surface to generate forces that allow them to swim through fluid media. Research carried out on archaea during the past decade or so has led to the recognition that, despite their common function, the motility devices of the three domains display fundamental differences in their properties and ancestry, reflecting a striking example of convergent evolution. Thus, the flagella of bacteria and the archaella of archaea employ rotary filaments that assemble from distinct subunits that do not share a common ancestor and generate torque using energy derived from distinct fuel sources, namely chemiosmotic ion gradients and FlaI motor-catalyzed ATP hydrolysis, respectively. The cilia of eukaryotes, however, assemble via kinesin-2-driven intraflagellar transport and utilize microtubules and ATP-hydrolyzing dynein motors to beat in a variety of waveforms via a sliding filament mechanism. Here, with reference to current structural and mechanistic information about these organelles, we briefly compare the evolutionary origins, assembly and tactic motility of archaella, flagella and cilia.
Collapse
Affiliation(s)
- Shahid Khan
- Molecular Biology Consortium, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Jonathan M Scholey
- Department of Molecular and Cell Biology, University of California @ Davis, CA 95616, USA.
| |
Collapse
|
16
|
Paithankar KS, Enderle M, Wirthensohn DC, Miller A, Schlesner M, Pfeiffer F, Rittner A, Grininger M, Oesterhelt D. Structure of the archaeal chemotaxis protein CheY in a domain-swapped dimeric conformation. Acta Crystallogr F Struct Biol Commun 2019; 75:576-585. [PMID: 31475924 PMCID: PMC6718144 DOI: 10.1107/s2053230x19010896] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/04/2019] [Indexed: 12/15/2022] Open
Abstract
Archaea are motile by the rotation of the archaellum. The archaellum switches between clockwise and counterclockwise rotation, and movement along a chemical gradient is possible by modulation of the switching frequency. This modulation involves the response regulator CheY and the archaellum adaptor protein CheF. In this study, two new crystal forms and protein structures of CheY are reported. In both crystal forms, CheY is arranged in a domain-swapped conformation. CheF, the protein bridging the chemotaxis signal transduction system and the motility apparatus, was recombinantly expressed, purified and subjected to X-ray data collection.
Collapse
Affiliation(s)
- Karthik Shivaji Paithankar
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany
| | - Mathias Enderle
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany
| | - David C. Wirthensohn
- Department of Membrane Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Arthur Miller
- Department of Membrane Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Matthias Schlesner
- Department of Membrane Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Friedhelm Pfeiffer
- Computational Biology Group, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Alexander Rittner
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany
| | - Dieter Oesterhelt
- Department of Membrane Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| |
Collapse
|
17
|
Hummels KR, Kearns DB. Suppressor mutations in ribosomal proteins and FliY restore Bacillus subtilis swarming motility in the absence of EF-P. PLoS Genet 2019; 15:e1008179. [PMID: 31237868 PMCID: PMC6613710 DOI: 10.1371/journal.pgen.1008179] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/08/2019] [Accepted: 05/07/2019] [Indexed: 11/19/2022] Open
Abstract
Translation elongation factor P (EF-P) alleviates ribosome pausing at a subset of motifs encoding consecutive proline residues, and is required for growth in many organisms. Here we show that Bacillus subtilis EF-P also alleviates ribosome pausing at sequences encoding tandem prolines and ribosomes paused within several essential genes without a corresponding growth defect in an efp mutant. The B. subtilis efp mutant is instead impaired for flagellar biosynthesis which results in the abrogation of a form of motility called swarming. We isolate swarming suppressors of efp and identify mutations in 8 genes that suppressed the efp mutant swarming defect, many of which encode conserved ribosomal proteins or ribosome-associated factors. One mutation abolished a translational pause site within the flagellar C-ring component FliY to increase flagellar number and restore swarming motility in the absence of EF-P. Our data support a model wherein EF-P-alleviation of ribosome pausing may be particularly important for macromolecular assemblies like the flagellum that require precise protein stoichiometries.
Collapse
Affiliation(s)
- Katherine R. Hummels
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Daniel B. Kearns
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
- * E-mail:
| |
Collapse
|
18
|
Abstract
The cytoplasmic C ring of the bacterial flagellum is known as the switch complex. It binds the response regulator phospho-CheY to control the direction of flagellar rotation. The C ring of enteric bacteria is well characterized. However, no Gram-positive switch complex had been modeled. Ward et al. (E. Ward, E. A. Kim, J. Panushka, T. Botelho, et al., J Bacteriol 201:e00626-18, 2019, https://doi.org/10.1128/JB.00626-18) propose a structure for the Bacillus subtilis switch complex based on extensive biochemical studies. The work demonstrates that a similar architecture can accommodate different proteins and a reversed signaling logic.
Collapse
|
19
|
Organization of the Flagellar Switch Complex of Bacillus subtilis. J Bacteriol 2019; 201:JB.00626-18. [PMID: 30455280 DOI: 10.1128/jb.00626-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/14/2018] [Indexed: 01/12/2023] Open
Abstract
While the protein complex responsible for controlling the direction (clockwise [CW] or counterclockwise [CCW]) of flagellar rotation has been fairly well studied in Escherichia coli and Salmonella, less is known about the switch complex in Bacillus subtilis or other Gram-positive species. Two component proteins (FliG and FliM) are shared between E. coli and B. subtilis, but in place of the protein FliN found in E. coli, the B. subtilis complex contains the larger protein FliY. Notably, in B. subtilis the signaling protein CheY-phosphate induces a switch from CW to CCW rotation, opposite to its action in E. coli Here, we have examined the architecture and function of the switch complex in B. subtilis using targeted cross-linking, bacterial two-hybrid protein interaction experiments, and characterization of mutant phenotypes. In major respects, the B. subtilis switch complex appears to be organized similarly to that in E. coli The complex is organized around a ring built from the large middle domain of FliM; this ring supports an array of FliG subunits organized in a similar way to that of E. coli, with the FliG C-terminal domain functioning in the generation of torque via conserved charged residues. Key differences from E. coli involve the middle domain of FliY, which forms an additional, more outboard array, and the C-terminal domains of FliM and FliY, which are organized into both FliY homodimers and FliM heterodimers. Together, the results suggest that the CW and CCW conformational states are similar in the Gram-negative and Gram-positive switches but that CheY-phosphate drives oppositely directed movements in the two cases.IMPORTANCE Flagellar motility plays key roles in the survival of many bacteria and in the harmful action of many pathogens. Bacterial flagella rotate; the direction of flagellar rotation is controlled by a multisubunit protein complex termed the switch complex. This complex has been extensively studied in Gram-negative model species, but little is known about the complex in Bacillus subtilis or other Gram-positive species. Notably, the switch complex in Gram-positive species responds to its effector CheY-phosphate (CheY-P) by switching to CCW rotation, whereas in E. coli or Salmonella CheY-P acts in the opposite way, promoting CW rotation. In the work here, the architecture of the B. subtilis switch complex has been probed using cross-linking, protein interaction measurements, and mutational approaches. The results cast light on the organization of the complex and provide a framework for understanding the mechanism of flagellar direction control in B. subtilis and other Gram-positive species.
Collapse
|
20
|
Grishin DV, Gladilina JA, Zhdanov DD, Pokrovskaya MV, Toropygin IY, Aleksandrova SS, Pokrovskiy VS, Sokolov NN. [Preparation and characterization of a new mutant homolog of chemotaxis protein CheY from anaerobic hyperthermophilic microorganism Thermotoga naphthophila]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 65:41-50. [PMID: 30816096 DOI: 10.18097/pbmc20196501041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Using genetic engineering methods the expression vectors structures have been designed to produce recombinant proteins TnaCheY and Tna CheY-mut, the homologues of the chemotaxis protein CheY from the hyperthermophilic organism Thermotoga naphthophila in Escherichia coli BL21(DE3) cells. The cultivation conditions of transformed strains were optimized. The influence of episomal expression of the heterologous chemotaxis protein CheY on growth kinetics parameters of the culture of mesophilic bacteria E. coli was studied. The optimal purification flowchart of the obtained proteins using thermolysis is proposed. Using the E. coli BL21(DE3) laboratory strain as an example, the possibility of employment the episomal expression of such proteins to control the cultivation and production time of pharmaceutically and industrially valuable metabolites due to the impact on some stages of the bacterial chemotaxis is experimentally proved.
Collapse
Affiliation(s)
- D V Grishin
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - D D Zhdanov
- Institute of Biomedical Chemistry, Moscow, Russia; Peoples` Friendship University of Russia, Moscow, Russia
| | | | | | | | - V S Pokrovskiy
- Institute of Biomedical Chemistry, Moscow, Russia; Peoples` Friendship University of Russia, Moscow, Russia
| | - N N Sokolov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
21
|
Lam KH, Xue C, Sun K, Zhang H, Lam WWL, Zhu Z, Ng JTY, Sause WE, Lertsethtakarn P, Lau KF, Ottemann KM, Au SWN. Three SpoA-domain proteins interact in the creation of the flagellar type III secretion system in Helicobacter pylori. J Biol Chem 2018; 293:13961-13973. [PMID: 29991595 PMCID: PMC6130963 DOI: 10.1074/jbc.ra118.002263] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/07/2018] [Indexed: 01/07/2023] Open
Abstract
Bacterial flagella are rotary nanomachines that contribute to bacterial fitness in many settings, including host colonization. The flagellar motor relies on the multiprotein flagellar motor-switch complex to govern flagellum formation and rotational direction. Different bacteria exhibit great diversity in their flagellar motors. One such variation is exemplified by the motor-switch apparatus of the gastric pathogen Helicobacter pylori, which carries an extra switch protein, FliY, along with the more typical FliG, FliM, and FliN proteins. All switch proteins are needed for normal flagellation and motility in H. pylori, but the molecular mechanism of their assembly is unknown. To fill this gap, we examined the interactions among these proteins. We found that the C-terminal SpoA domain of FliY (FliYC) is critical to flagellation and forms heterodimeric complexes with the FliN and FliM SpoA domains, which are β-sheet domains of type III secretion system proteins. Surprisingly, unlike in other flagellar switch systems, neither FliY nor FliN self-associated. The crystal structure of the FliYC-FliNC complex revealed a saddle-shaped structure homologous to the FliN-FliN dimer of Thermotoga maritima, consistent with a FliY-FliN heterodimer forming the functional unit. Analysis of the FliYC-FliNC interface indicated that oppositely charged residues specific to each protein drive heterodimer formation. Moreover, both FliYC-FliMC and FliYC-FliNC associated with the flagellar regulatory protein FliH, explaining their important roles in flagellation. We conclude that H. pylori uses a FliY-FliN heterodimer instead of a homodimer and creates a switch complex with SpoA domains derived from three distinct proteins.
Collapse
Affiliation(s)
- Kwok Ho Lam
- From the Center for Protein Science and Crystallography, School of Life Sciences, Faculty of Science, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chaolun Xue
- From the Center for Protein Science and Crystallography, School of Life Sciences, Faculty of Science, Chinese University of Hong Kong, Shatin, Hong Kong, ,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China, and
| | - Kailei Sun
- From the Center for Protein Science and Crystallography, School of Life Sciences, Faculty of Science, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Huawei Zhang
- From the Center for Protein Science and Crystallography, School of Life Sciences, Faculty of Science, Chinese University of Hong Kong, Shatin, Hong Kong, ,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China, and
| | - Wendy Wai Ling Lam
- From the Center for Protein Science and Crystallography, School of Life Sciences, Faculty of Science, Chinese University of Hong Kong, Shatin, Hong Kong, ,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China, and
| | - Zeyu Zhu
- From the Center for Protein Science and Crystallography, School of Life Sciences, Faculty of Science, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Juliana Tsz Yan Ng
- From the Center for Protein Science and Crystallography, School of Life Sciences, Faculty of Science, Chinese University of Hong Kong, Shatin, Hong Kong
| | - William E. Sause
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California 95064
| | - Paphavee Lertsethtakarn
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California 95064
| | - Kwok Fai Lau
- From the Center for Protein Science and Crystallography, School of Life Sciences, Faculty of Science, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Karen M. Ottemann
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California 95064
| | - Shannon Wing Ngor Au
- From the Center for Protein Science and Crystallography, School of Life Sciences, Faculty of Science, Chinese University of Hong Kong, Shatin, Hong Kong, ,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China, and ,To whom correspondence should be addressed. Tel.:
852-3943-4170; E-mail:
| |
Collapse
|
22
|
Bourret RB, Silversmith RE. Measuring the Activities of Two-Component Regulatory System Phosphatases. Methods Enzymol 2018; 607:321-351. [PMID: 30149864 DOI: 10.1016/bs.mie.2018.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Two-component regulatory systems (TCSs) are used for signal transduction by organisms from all three phylogenetic domains of the living world. TCSs use transient protein phosphorylation and dephosphorylation reactions to convert stimuli into appropriate responses to changing environmental conditions. Phosphoryl groups flow from ATP to sensor kinases (which detect stimuli) to response regulators (which implement responses) to inorganic phosphate (Pi). The phosphorylation state of response regulators controls their output activity. The rate at which phosphoryl groups are removed from response regulators correlates with the timescale of the corresponding biological function. Dephosphorylation reactions are fastest in chemotaxis TCS and slower in other TCS. Response regulators catalyze their own dephosphorylation, but at least five types of phosphatases are known to enhance dephosphorylation of response regulators. In each case, the phosphatases are believed to stimulate the intrinsic autodephosphorylation reaction. We discuss in depth the properties of TCS (particularly the differences between chemotaxis and nonchemotaxis TCS) relevant to designing in vitro assays for TCS phosphatases. We describe detailed assay methods for chemotaxis TCS phosphatases using loss of 32P, change in intrinsic fluorescence as a result of dephosphorylation, or release of Pi. The phosphatase activities of nonchemotaxis TCS phosphatases are less well characterized. We consider how the properties of nonchemotaxis TCS affect assay design and suggest suitable modifications for phosphatases from nonchemotaxis TCS, with an emphasis on the Pi release method.
Collapse
Affiliation(s)
- Robert B Bourret
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, NC, United States.
| | - Ruth E Silversmith
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
23
|
dos Santos RN, Khan S, Morcos F. Characterization of C-ring component assembly in flagellar motors from amino acid coevolution. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171854. [PMID: 29892378 PMCID: PMC5990795 DOI: 10.1098/rsos.171854] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
Bacterial flagellar motility, an important virulence factor, is energized by a rotary motor localized within the flagellar basal body. The rotor module consists of a large framework (the C-ring), composed of the FliG, FliM and FliN proteins. FliN and FliM contacts the FliG torque ring to control the direction of flagellar rotation. We report that structure-based models constrained only by residue coevolution can recover the binding interface of atomic X-ray dimer complexes with remarkable accuracy (approx. 1 Å RMSD). We propose a model for FliM-FliN heterodimerization, which agrees accurately with homologous interfaces as well as in situ cross-linking experiments, and hence supports a proposed architecture for the lower portion of the C-ring. Furthermore, this approach allowed the identification of two discrete and interchangeable homodimerization interfaces between FliM middle domains that agree with experimental measurements and might be associated with C-ring directional switching dynamics triggered upon binding of CheY signal protein. Our findings provide structural details of complex formation at the C-ring that have been difficult to obtain with previous methodologies and clarify the architectural principle that underpins the ultra-sensitive allostery exhibited by this ring assembly that controls the clockwise or counterclockwise rotation of flagella.
Collapse
Affiliation(s)
- Ricardo Nascimento dos Santos
- Institute of Chemistry and Center for Computational Engineering and Science, University of Campinas, Campinas, SP, Brazil
| | - Shahid Khan
- Molecular Biology Consortium, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Faruck Morcos
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
- Center for Systems Biology, University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
24
|
Cheng C, Wang H, Ma T, Han X, Yang Y, Sun J, Chen Z, Yu H, Hang Y, Liu F, Fang W, Jiang L, Cai C, Song H. Flagellar Basal Body Structural Proteins FlhB, FliM, and FliY Are Required for Flagellar-Associated Protein Expression in Listeria monocytogenes. Front Microbiol 2018; 9:208. [PMID: 29487588 PMCID: PMC5816908 DOI: 10.3389/fmicb.2018.00208] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/30/2018] [Indexed: 01/08/2023] Open
Abstract
Listeria monocytogenes is a food-associated bacterium that is responsible for food-related illnesses worldwide. In the L. monocytogenes EGD-e genome, FlhB, FliM, and FliY (encoded by lmo0679, lmo0699, and lmo0700, respectively) are annotated as putative flagella biosynthesis factors, but their functions remain unknown. To explore whether FlhB, FliM, and FliY are involved in Listeria flagella synthesis, we constructed flhB, fliM, fliY, and other flagellar-related gene deletion mutants using a homologous recombination strategy. Then, we analyzed the motility, flagella synthesis, and protein expression of these mutant strains. Motility and flagella synthesis were completely abolished in the absence of flhB, fliM, or fliY. These impaired phenotypes were fully restored in the complemented strains CΔflhB, CΔfliM, and CΔfliY. The transcriptional levels of flagellar-related genes, including flaA, fliM, fliY, lmo0695, lmo0698, fliI, and fliS, were downregulated markedly in the absence of flhB, fliM, or fliY. Deletion of flhB resulted in the complete abolishment of FlaA expression, while it decreased FliM and FliY expression. The expression of FlaA was abolished completely in the absence of fliM or fliY. No significant changes were found in the expression of FlhF and two flagella synthesis regulatory factors, MogR and GmaR. We demonstrate for the first time that FlhB, FliM, and FliY not only mediate Listeria motility, but also are involved in regulating flagella synthesis. This study provides novel insights that increase our understanding of the roles played by FlhB, FliM, and FliY in the flagellar type III secretion system in L. monocytogenes.
Collapse
Affiliation(s)
- Changyong Cheng
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Lin'an, China.,Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Hang Wang
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Lin'an, China
| | - Tiantian Ma
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Lin'an, China
| | - Xiao Han
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Lin'an, China
| | - Yongchun Yang
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Lin'an, China
| | - Jing Sun
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Lin'an, China
| | - Zhongwei Chen
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Lin'an, China
| | - Huifei Yu
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Lin'an, China
| | - Yi Hang
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Lin'an, China
| | - Fengdan Liu
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Lin'an, China
| | - Weihuan Fang
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Lin'an, China.,Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Lingli Jiang
- Department of Health Services and Management, Ningbo College of Health Sciences, Ningbo, China
| | - Chang Cai
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Lin'an, China.,School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | - Houhui Song
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Lin'an, China
| |
Collapse
|
25
|
Zhang H, Lam KH, Lam WWL, Wong SYY, Chan VSF, Au SWN. A putative spermidine synthase interacts with flagellar switch protein FliM and regulates motility inHelicobacter pylori. Mol Microbiol 2017; 106:690-703. [DOI: 10.1111/mmi.13829] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Huawei Zhang
- Centre for Protein Science and Crystallography, School of Life Sciences; The Chinese University of Hong Kong; Hong Kong
| | - Kwok Ho Lam
- Centre for Protein Science and Crystallography, School of Life Sciences; The Chinese University of Hong Kong; Hong Kong
| | - Wendy Wai Ling Lam
- Centre for Protein Science and Crystallography, School of Life Sciences; The Chinese University of Hong Kong; Hong Kong
| | - Sandra Yuen Yuen Wong
- Division of Rheumatology & Clinical Immunology, Department of Medicine, Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong
| | - Vera Sau Fong Chan
- Division of Rheumatology & Clinical Immunology, Department of Medicine, Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong
| | - Shannon Wing Ngor Au
- Centre for Protein Science and Crystallography, School of Life Sciences; The Chinese University of Hong Kong; Hong Kong
| |
Collapse
|
26
|
McDowell MA, Marcoux J, McVicker G, Johnson S, Fong YH, Stevens R, Bowman LAH, Degiacomi MT, Yan J, Wise A, Friede ME, Benesch JLP, Deane JE, Tang CM, Robinson CV, Lea SM. Characterisation of Shigella Spa33 and Thermotoga FliM/N reveals a new model for C-ring assembly in T3SS. Mol Microbiol 2015; 99:749-66. [PMID: 26538516 PMCID: PMC4832279 DOI: 10.1111/mmi.13267] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2015] [Indexed: 11/06/2022]
Abstract
Flagellar type III secretion systems (T3SS) contain an essential cytoplasmic‐ring (C‐ring) largely composed of two proteins FliM and FliN, whereas an analogous substructure for the closely related non‐flagellar (NF) T3SS has not been observed in situ. We show that the spa33 gene encoding the putative NF‐T3SS C‐ring component in Shigella flexneri is alternatively translated to produce both full‐length (Spa33‐FL) and a short variant (Spa33‐C), with both required for secretion. They associate in a 1:2 complex (Spa33‐FL/C2) that further oligomerises into elongated arrays in vitro. The structure of Spa33‐C2 and identification of an unexpected intramolecular pseudodimer in Spa33‐FL reveal a molecular model for their higher order assembly within NF‐T3SS. Spa33‐FL and Spa33‐C are identified as functional counterparts of a FliM–FliN fusion and free FliN respectively. Furthermore, we show that Thermotoga maritima
FliM and FliN form a 1:3 complex structurally equivalent to Spa33‐FL/C2, allowing us to propose a unified model for C‐ring assembly by NF‐T3SS and flagellar‐T3SS.
Collapse
Affiliation(s)
| | - Julien Marcoux
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Gareth McVicker
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Steven Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Yu Hang Fong
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Rebecca Stevens
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Lesley A H Bowman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Jun Yan
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Adam Wise
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Miriam E Friede
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Janet E Deane
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Christoph M Tang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Susan M Lea
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
27
|
El Andari J, Altegoer F, Bange G, Graumann PL. Bacillus subtilis Bactofilins Are Essential for Flagellar Hook- and Filament Assembly and Dynamically Localize into Structures of Less than 100 nm Diameter underneath the Cell Membrane. PLoS One 2015; 10:e0141546. [PMID: 26517549 PMCID: PMC4627819 DOI: 10.1371/journal.pone.0141546] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/10/2015] [Indexed: 11/19/2022] Open
Abstract
Bactofilins are a widely conserved protein family implicated in cell shape maintenance and in bacterial motility. We show that the bactofilins BacE and BacF from Bacillus subtilis are essential for motility. The proteins are required for the establishment of flagellar hook- and filament structures, but apparently not for the formation of basal bodies. Functional YFP fusions to BacE and to BacF localize as discrete assemblies at the B. subtilis cell membrane, and have a diameter of 60 to 70 nm. BacF assemblies are relatively static, and partially colocalize with flagellar basal bodies, while BacE assemblies are fewer per cell than those of BacF and are highly mobile. Tracking of BacE foci showed that the assemblies arrest at a single point for a few hundred milliseconds, showing that a putative interaction with flagellar structures would be transient and fast. When overexpressed or expressed in a heterologous cell system, bactofilins can form filamentous structures, and also form multimers as purified proteins. Our data reveal a propensity for bactofilins to form filaments, however, in B. subtilis cells, bactofilins assemble into defined size assemblies that show a dynamic localization pattern and play a role in flagellar assembly.
Collapse
Affiliation(s)
- Jihad El Andari
- SYNMIKRO, LOEWE Center for Synthetic Microbiology, and Department of Chemistry, Philipps Universität Marburg, Marburg, Germany
- University of Freiburg, Faculty of Biology, Schaenzlestrasse 1, D–79104, Freiburg, Germany
| | - Florian Altegoer
- SYNMIKRO, LOEWE Center for Synthetic Microbiology, and Department of Chemistry, Philipps Universität Marburg, Marburg, Germany
| | - Gert Bange
- SYNMIKRO, LOEWE Center for Synthetic Microbiology, and Department of Chemistry, Philipps Universität Marburg, Marburg, Germany
- * E-mail: (PLG); (GB)
| | - Peter L. Graumann
- SYNMIKRO, LOEWE Center for Synthetic Microbiology, and Department of Chemistry, Philipps Universität Marburg, Marburg, Germany
- * E-mail: (PLG); (GB)
| |
Collapse
|
28
|
Altegoer F, Bange G. Undiscovered regions on the molecular landscape of flagellar assembly. Curr Opin Microbiol 2015; 28:98-105. [PMID: 26490009 DOI: 10.1016/j.mib.2015.08.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 01/10/2023]
Abstract
The bacterial flagellum is a motility structure and one of the most complicated motors in the biosphere. A flagellum consists of several dozens of building blocks in different stoichiometries and extends from the cytoplasm to the extracellular space. Flagellar biogenesis follows a strict spatio-temporal regime that is guided by a plethora of flagellar assembly factors and chaperones. The goal of this review is to summarize our current structural and mechanistic knowledge of this intricate process and to identify the undiscovered regions on the molecular landscape of flagellar assembly.
Collapse
Affiliation(s)
- Florian Altegoer
- LOEWE Center for Synthetic Microbiology & Department of Chemistry, Philipps University Marburg, Hans-Meerwein-Strasse, C7, 35043 Marburg, Germany
| | - Gert Bange
- LOEWE Center for Synthetic Microbiology & Department of Chemistry, Philipps University Marburg, Hans-Meerwein-Strasse, C7, 35043 Marburg, Germany.
| |
Collapse
|
29
|
Schuhmacher JS, Thormann KM, Bange G. How bacteria maintain location and number of flagella? FEMS Microbiol Rev 2015. [PMID: 26195616 DOI: 10.1093/femsre/fuv034] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bacteria differ in number and location of their flagella that appear in regular patterns at the cell surface (flagellation pattern). Despite the plethora of bacterial species, only a handful of these patterns exist. The correct flagellation pattern is a prerequisite for motility, but also relates to biofilm formation and the pathogenicity of disease-causing flagellated bacteria. However, the mechanisms that maintain location and number of flagella are far from being understood. Here, we review our knowledge on mechanisms that enable bacteria to maintain their appropriate flagellation pattern. While some peritrichous flagellation patterns might occur by rather simple stochastic processes, other bacterial species appear to rely on landmark systems to define the designated flagellar position. Such landmarks are the Tip system of Caulobacter crescentus or the signal recognition particle (SRP)-GTPase FlhF and the MinD/ParA-type ATPase FlhG (synonyms: FleN, YlxH and MinD2). The latter two proteins constitute a regulatory circuit essential for diverse flagellation patterns in many Gram-positive and negative species. The interactome of FlhF/G (e.g. C-ring proteins FliM, FliN, FliY or the transcriptional regulator FleQ/FlrA) seems evolutionary adapted to meet the specific needs for a respective pattern. This variability highlights the importance of the correct flagellation pattern for motile species.
Collapse
Affiliation(s)
- Jan S Schuhmacher
- LOEWE Center for Synthetic Microbiology & Dep. of Chemistry, Philipps University Marburg, Hans-Meerwein-Strasse, D-35043 Marburg, Germany
| | - Kai M Thormann
- Justus-Liebig University, Department of Microbiology and Molecular Biology, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Gert Bange
- LOEWE Center for Synthetic Microbiology & Dep. of Chemistry, Philipps University Marburg, Hans-Meerwein-Strasse, D-35043 Marburg, Germany
| |
Collapse
|
30
|
Sircar R, Borbat PP, Lynch MJ, Bhatnagar J, Beyersdorf MS, Halkides CJ, Freed JH, Crane BR. Assembly states of FliM and FliG within the flagellar switch complex. J Mol Biol 2014; 427:867-886. [PMID: 25536293 DOI: 10.1016/j.jmb.2014.12.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 12/12/2014] [Accepted: 12/12/2014] [Indexed: 01/11/2023]
Abstract
At the base of the bacterial flagella, a cytoplasmic rotor (the C-ring) generates torque and reverses rotation sense in response to stimuli. The bulk of the C-ring forms from many copies of the proteins FliG, FliM, and FliN, which together constitute the switch complex. To help resolve outstanding issues regarding C-ring architecture, we have investigated interactions between FliM and FliG from Thermotoga maritima with X-ray crystallography and pulsed dipolar ESR spectroscopy (PDS). A new crystal structure of an 11-unit FliG:FliM complex produces a large arc with a curvature consistent with the dimensions of the C-ring. Previously determined structures along with this new structure provided a basis to test switch complex assembly models. PDS combined with mutational studies and targeted cross-linking reveal that FliM and FliG interact through their middle domains to form both parallel and antiparallel arrangements in solution. Residue substitutions at predicted interfaces disrupt higher-order complexes that are primarily mediated by contacts between the C-terminal domain of FliG and the middle domain of a neighboring FliG molecule. Spin separations among multi-labeled components fit a self-consistent model that agree well with electron microscopy images of the C-ring. An activated form of the response regulator CheY destabilizes the parallel arrangement of FliM molecules to perturb FliG alignment in a process that may reflect the onset of rotation switching. These data suggest a model of C-ring assembly in which intermolecular contacts among FliG domains provide a template for FliM assembly and cooperative transitions.
Collapse
Affiliation(s)
- Ria Sircar
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Peter P Borbat
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA; National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, NY 14853, USA
| | - Michael J Lynch
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jaya Bhatnagar
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Matthew S Beyersdorf
- Department of Chemistry and Biochemistry, Unversity of North Carolina Wilmington, Wilmington, NC 28403, USA
| | - Christopher J Halkides
- Department of Chemistry and Biochemistry, Unversity of North Carolina Wilmington, Wilmington, NC 28403, USA
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA; National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, NY 14853, USA
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
31
|
Abstract
Bacterial flagellar motility is among the most extensively studied physiological systems in biology, but most research has been restricted to using the highly similar Gram-negative species Escherichia coli and Salmonella enterica. Here, we review the recent advances in the study of flagellar structure and regulation of the distantly related and genetically tractable Gram-positive bacterium Bacillus subtilis. B. subtilis has a thicker layer of peptidoglycan and lacks the outer membrane of the Gram-negative bacteria; thus, not only phylogenetic separation but also differences in fundamental cell architecture contribute to deviations in flagellar structure and regulation. We speculate that a large number of flagella and the absence of a periplasm make B. subtilis a premier organism for the study of the earliest events in flagellar morphogenesis and the type III secretion system. Furthermore, B. subtilis has been instrumental in the study of heterogeneous gene transcription in subpopulations and of flagellar regulation at the translational and functional level.
Collapse
|
32
|
Abstract
![]()
The flagellum is one of the most
sophisticated self-assembling
molecular machines in bacteria. Powered by the proton-motive force,
the flagellum rapidly rotates in either a clockwise or counterclockwise
direction, which ultimately controls bacterial motility and behavior. Escherichia coli and Salmonella enterica have served as important model systems for extensive genetic, biochemical,
and structural analysis of the flagellum, providing unparalleled insights
into its structure, function, and gene regulation. Despite these advances,
our understanding of flagellar assembly and rotational mechanisms
remains incomplete, in part because of the limited structural information
available regarding the intact rotor–stator complex and secretion
apparatus. Cryo-electron tomography (cryo-ET) has become a valuable
imaging technique capable of visualizing the intact flagellar motor
in cells at molecular resolution. Because the resolution that can
be achieved by cryo-ET with large bacteria (such as E. coli and S. enterica) is limited, analysis of small-diameter
bacteria (including Borrelia burgdorferi and Campylobacter jejuni) can provide additional insights into
the in situ structure of the flagellar motor and
other cellular components. This review is focused on the application
of cryo-ET, in combination with genetic and biophysical approaches,
to the study of flagellar structures and its potential for improving
the understanding of rotor–stator interactions, the rotational
switching mechanism, and the secretion and assembly of flagellar components.
Collapse
Affiliation(s)
- Xiaowei Zhao
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston , Houston, Texas 77030, United States
| | | | | |
Collapse
|
33
|
Castaing JP, Lee S, Anantharaman V, Ravilious GE, Aravind L, Ramamurthi KS. An autoinhibitory conformation of the Bacillus subtilis spore coat protein SpoIVA prevents its premature ATP-independent aggregation. FEMS Microbiol Lett 2014; 358:145-53. [PMID: 24810258 DOI: 10.1111/1574-6968.12452] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 04/28/2014] [Indexed: 12/17/2022] Open
Abstract
Spores of Bacillus subtilis are dormant cell types that are formed when the bacterium encounters starvation conditions. Spores are encased in a shell, termed the coat, which is composed of approximately seventy different proteins and protects the spore's genetic material from environmental insults. The structural component of the basement layer of the coat is an exceptional cytoskeletal protein, termed SpoIVA, which binds and hydrolyzes ATP. ATP hydrolysis is utilized to drive a conformational change in SpoIVA that leads to its irreversible self-assembly into a static polymer in vitro. Here, we characterize the middle domain of SpoIVA, the predicted secondary structure of which resembles the chemotaxis protein CheX but, unlike CheX, does not harbor residues required for phosphatase activity. Disruptions in this domain did not abolish ATP hydrolysis, but resulted in mislocalization of the protein and reduction in sporulation efficiency in vivo. In vitro, disruptions in this domain prevented the ATP hydrolysis-driven conformational change in SpoIVA required for polymerization and led to the aggregation of SpoIVA into particles that did not form filaments. We propose a model in which SpoIVA initially assumes a conformation in which it inhibits its own aggregation into particles, and that ATP hydrolysis remodels the protein so that it assumes a polymerization-competent conformation.
Collapse
Affiliation(s)
- Jean-Philippe Castaing
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
34
|
Morimoto YV, Minamino T. Structure and function of the bi-directional bacterial flagellar motor. Biomolecules 2014; 4:217-34. [PMID: 24970213 PMCID: PMC4030992 DOI: 10.3390/biom4010217] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 01/24/2014] [Accepted: 02/04/2014] [Indexed: 01/02/2023] Open
Abstract
The bacterial flagellum is a locomotive organelle that propels the bacterial cell body in liquid environments. The flagellum is a supramolecular complex composed of about 30 different proteins and consists of at least three parts: a rotary motor, a universal joint, and a helical filament. The flagellar motor of Escherichia coli and Salmonella enterica is powered by an inward-directed electrochemical potential difference of protons across the cytoplasmic membrane. The flagellar motor consists of a rotor made of FliF, FliG, FliM and FliN and a dozen stators consisting of MotA and MotB. FliG, FliM and FliN also act as a molecular switch, enabling the motor to spin in both counterclockwise and clockwise directions. Each stator is anchored to the peptidoglycan layer through the C-terminal periplasmic domain of MotB and acts as a proton channel to couple the proton flow through the channel with torque generation. Highly conserved charged residues at the rotor–stator interface are required not only for torque generation but also for stator assembly around the rotor. In this review, we will summarize our current understanding of the structure and function of the proton-driven bacterial flagellar motor.
Collapse
Affiliation(s)
- Yusuke V Morimoto
- Quantitative Biology Center, RIKEN, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan.
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
35
|
Josenhans C, Jung K, Rao CV, Wolfe AJ. A tale of two machines: a review of the BLAST meeting, Tucson, AZ, 20-24 January 2013. Mol Microbiol 2013; 91:6-25. [PMID: 24125587 DOI: 10.1111/mmi.12427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2013] [Indexed: 01/06/2023]
Abstract
Since its inception, Bacterial Locomotion and Signal Transduction (BLAST) meetings have been the place to exchange and share the latest developments in the field of bacterial signal transduction and motility. At the 12th BLAST meeting, held last January in Tucson, AZ, researchers from all over the world met to report and discuss progress in diverse aspects of the field. The majority of these advances, however, came at the level of atomic level structures and their associated mechanisms. This was especially true of the biological machines that sense and respond to environmental changes.
Collapse
Affiliation(s)
- Christine Josenhans
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg Strasse 1, 30625, Hannover, Germany
| | | | | | | |
Collapse
|