1
|
Evangelista W, Knapp J, Zandarashvili L, Esadze A, White MA, Gribenko AV, Lee JC. Signal Transmission in Escherichia coli Cyclic AMP Receptor Protein for Survival in Extreme Acidic Conditions. Biochemistry 2021; 60:2987-3006. [PMID: 34605636 DOI: 10.1021/acs.biochem.1c00388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
During the life cycle of enteric bacterium Escherichia coli, it encounters a wide spectrum of pH changes. The asymmetric dimer of the cAMP receptor protein, CRP, plays a key role in regulating the expressions of genes and the survival of E. coli. To elucidate the pH effects on the mechanism of signal transmission, we present a combination of results derived from ITC, crystallography, and computation. CRP responds to a pH change by inducing a differential effect on the affinity for the binding events to the two cAMP molecules, ensuing in a reversible conversion between positive and negative cooperativity at high and low pH, respectively. The structures of four crystals at pH ranging from 7.8 to 6.5 show that CRP responds by inducing a differential effect on the structures of the two subunits, particularly in the DNA binding domain. Employing the COREX/BEST algorithm, computational analysis shows the change in the stability of residues at each pH. The change in residue stability alters the connectivity between residues including those in cAMP and DNA binding sites. Consequently, the differential impact on the topology of the connectivity surface among residues in adjacent subunits is the main reason for differential change in affinity; that is, the pH-induced differential change in residue stability is the biothermodynamic basis for the change in allosteric behavior. Furthermore, the structural asymmetry of this homodimer amplifies the differential impact of any perturbations. Hence, these results demonstrate that the combination of these approaches can provide insights into the underlying mechanism of an apparent complex allostery signal and transmission in CRP.
Collapse
Affiliation(s)
- Wilfredo Evangelista
- Centre for Research and Innovation-Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru
| | - James Knapp
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-1055, United States.,Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-1055, United States
| | - Levani Zandarashvili
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-1055, United States.,Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-1055, United States
| | | | - Mark A White
- Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-1055, United States
| | - Alexey V Gribenko
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-1055, United States.,Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-1055, United States
| | - J Ching Lee
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-1055, United States
| |
Collapse
|
2
|
Sim DW, Choi JW, Kim JH, Ryu KS, Kim M, Yu HW, Jo KS, Kim EH, Seo MD, Jeon YH, Lee BJ, Kim YP, Won HS. C-terminal dimerization of apo-cyclic AMP receptor protein validated in solution. FEBS Lett 2017; 591:1064-1070. [PMID: 28245055 DOI: 10.1002/1873-3468.12613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 01/28/2017] [Accepted: 02/23/2017] [Indexed: 11/07/2022]
Abstract
Although cyclic AMP receptor protein (CRP) has long served as a typical example of effector-mediated protein allostery, mechanistic details into its regulation have been controversial due to discrepancy between the known crystal structure and NMR structure of apo-CRP. Here, we report that the recombinant protein corresponding to its C-terminal DNA-binding domain (CDD) forms a dimer. This result, together with structural information obtained in the present NMR study, is consistent with the previous crystal structure and validates its relevance also in solution. Therefore, our findings suggest that dissociation of the CDD may be critically involved in cAMP-induced allosteric activation of CRP.
Collapse
Affiliation(s)
- Dae-Won Sim
- Department of Biotechnology, Research Institute (RIBHS) and College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk, Korea
| | - Jae Wan Choi
- Department of Biotechnology, Research Institute (RIBHS) and College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk, Korea
| | - Ji-Hun Kim
- Department of Biotechnology, Research Institute (RIBHS) and College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk, Korea
| | - Kyoung-Seok Ryu
- Protein Structure Group, Korea Basic Science Institute, Ochang, Chungbuk, Korea
| | - Myeongkyu Kim
- Department of Biotechnology, Research Institute (RIBHS) and College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk, Korea
| | - Hee-Wan Yu
- Department of Biotechnology, Research Institute (RIBHS) and College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk, Korea
| | - Ku-Sung Jo
- Department of Biotechnology, Research Institute (RIBHS) and College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk, Korea
| | - Eun-Hee Kim
- Protein Structure Group, Korea Basic Science Institute, Ochang, Chungbuk, Korea
| | - Min-Duk Seo
- Department of Molecular Science and Technology, Ajou University, Suwon, Gyeonggi, Korea
- Research Institute of Pharmaceutical Science and Technology, College of Pharmacy, Ajou University, Suwon, Gyeonggi, Korea
| | - Young Ho Jeon
- College of Pharmacy, Korea University, Sejong, Korea
| | - Bong-Jin Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Young Pil Kim
- Department of Bio-Engineering, Life Science RD Center, Sinil Pharmaceutical Co., Seongnam, Gyeonggi, Korea
| | - Hyung-Sik Won
- Department of Biotechnology, Research Institute (RIBHS) and College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk, Korea
| |
Collapse
|
3
|
Krol E, Klaner C, Gnau P, Kaever V, Essen LO, Becker A. Cyclic mononucleotide- and Clr-dependent gene regulation in Sinorhizobium meliloti. MICROBIOLOGY-SGM 2016; 162:1840-1856. [PMID: 27535558 DOI: 10.1099/mic.0.000356] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To identify physiological processes affected by cAMP in the plant-symbiotic nitrogen-fixing α-proteobacterium Sinorhizobium meliloti Rm2011, cAMP levels were artificially increased by overexpression of its cognate adenylate/guanylate cyclase gene cyaJ. This resulted in high accumulation of cAMP in the culture supernatant, decreased swimming motility and increased production of succinoglycan, an exopolysaccharide involved in host invasion. Weaker, similar phenotypic changes were induced by overexpression of cyaB and cyaG1. Effects on swimming motility and succinoglycan production were partially dependent on clr encoding a cyclic AMP receptor-like protein. Transcriptome profiling of an cyaJ-overexpressing strain identified 72 upregulated and 82 downregulated genes. A considerable number of upregulated genes are related to polysaccharide biosynthesis and osmotic stress response. These included succinoglycan biosynthesis genes, genes of the putative polysaccharide synthesis nodP2-exoF3 cluster and feuN, the first gene of the operon encoding the FeuNPQ regulatory system. Downregulated genes were mostly related to respiration, central metabolism and swimming motility. Promoter-probe studies in the presence of externally added cAMP revealed 18 novel Clr-cAMP-regulated genes. Moreover, the addition of cGMP into the growth medium also promoted clr-dependent gene regulation. In vitro binding of Clr-cAMP and Clr-cGMP to the promoter regions of SMc02178, SMb20906,SMc04190, SMc00925, SMc01136 and cyaF2 required the DNA motif (A/C/T)GT(T/C)(T/C/A)C (N4) G(G/A)(T/A)ACA. Furthermore, SMc02178, SMb20906,SMc04190and SMc00653 promoters were activated by Clr-cAMP/cGMP in Escherichia coli as heterologous host. These findings suggest direct activation of these 7 genes by Clr-cAMP/cGMP.
Collapse
Affiliation(s)
- Elizaveta Krol
- Faculty of Biology and LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany
| | - Christina Klaner
- Faculty of Biology and LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany
| | - Petra Gnau
- Faculty of Chemistry and LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany
| | - Volkhard Kaever
- Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Lars-Oliver Essen
- Faculty of Chemistry and LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany
| | - Anke Becker
- Faculty of Biology and LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
4
|
Seok SH, Im H, Won HS, Seo MD, Lee YS, Yoon HJ, Cha MJ, Park JY, Lee BJ. Structures of inactive CRP species reveal the atomic details of the allosteric transition that discriminates cyclic nucleotide second messengers. ACTA ACUST UNITED AC 2014; 70:1726-42. [PMID: 24914983 DOI: 10.1107/s139900471400724x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 04/01/2014] [Indexed: 11/10/2022]
Abstract
The prokaryotic global transcription factor CRP has been considered to be an ideal model for in-depth study of both the allostery of the protein and the differential utilization of the homologous cyclic nucleotide second messengers cAMP and cGMP. Here, atomic details from the crystal structures of two inactive CRP species, an apo form and a cGMP-bound form, in comparison with a known active conformation, the cAMP-CRP complex, provide macroscopic and microscopic insights into CRP allostery, which is coupled to specific discrimination between the two effectors. The cAMP-induced conformational transition, including dynamic fluctuations, can be driven by the fundamental folding forces that cause water-soluble globular proteins to construct an optimized hydrophobic core, including secondary-structure formation. The observed conformational asymmetries underlie a negative cooperativity in the sequential binding of cyclic nucleotides and a stepwise manner of binding with discrimination between the effector molecules. Additionally, the finding that cGMP, which is specifically recognized in a syn conformation, induces an inhibitory conformational change, rather than a null effect, on CRP supports the intriguing possibility that cGMP signalling could be widely utilized in prokaryotes, including in aggressive inhibition of CRP-like proteins.
Collapse
Affiliation(s)
- Seung-Hyeon Seok
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hookang Im
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hyung-Sik Won
- Department of Biotechnology, RIBHS and RIID, College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk 380-701, Republic of Korea
| | - Min-Duk Seo
- College of Pharmacy, Ajou University, Suwon, Kyeonggi 443-749, Republic of Korea
| | - Yoo-Sup Lee
- Department of Biotechnology, RIBHS and RIID, College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk 380-701, Republic of Korea
| | - Hye-Jin Yoon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Min-Jeong Cha
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jin-Young Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Bong-Jin Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|
5
|
Yang CD, Chen YH, Huang HY, Huang HD, Tseng CP. CRP represses the CRISPR/Cas system in Escherichia coli: evidence that endogenous CRISPR spacers impede phage P1 replication. Mol Microbiol 2014; 92:1072-91. [PMID: 24720807 DOI: 10.1111/mmi.12614] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2014] [Indexed: 12/26/2022]
Abstract
The CRISPR/Cas system is an important aspect in bacterial immunology. The anti-phage activity of the CRISPR system has been established using synthetic CRISPR spacers, but in vivo studies of endogenous CRISPR spacers are relatively scarce. Here, we showed that bacteriophage P1 titre in Escherichia coli decreased in the glucose-containing medium compared with that in the absence of glucose. This glucose effect of E. coli against phage P1 infection disappeared in cse3 deletion mutants. The effect on the susceptibility to phage P1 was associated with cAMP receptor protein (CRP)-mediated repression of cas genes transcription and crRNA maturation. Analysis of the regulatory element in the cse1 promoter region revealed a novel CRP binding site, which overlapped with a LeuO binding site. Furthermore, the limited sequence identity between endogenous spacers and the phage P1 genome was necessary and sufficient for CRISPR-mediated repression of phage P1 replication. Trans-expression of the third and seventh spacers in the CRISPR I region or third and sixth spacers in the CRISPR II region effectively reduced phage P1 titres in the CRISPR deletion mutants. These results demonstrate a novel regulatory mechanism for cas repression by CRP and provide evidence that endogenous spacers can repress phage P1 replication in E. coli.
Collapse
Affiliation(s)
- Chi-Dung Yang
- Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, 300, Taiwan
| | | | | | | | | |
Collapse
|
6
|
Kim JM, Won HS, Kang SO. Mainchain NMR Assignments and secondary structure prediction of the C-terminal domain of BldD, a developmental transcriptional regulator from Streptomyces coelicolor A3(2). JOURNAL OF THE KOREAN MAGNETIC RESONANCE SOCIETY 2013. [DOI: 10.6564/jkmrs.2013.17.1.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Cis-2-dodecenoic acid receptor RpfR links quorum-sensing signal perception with regulation of virulence through cyclic dimeric guanosine monophosphate turnover. Proc Natl Acad Sci U S A 2012; 109:15479-84. [PMID: 22949660 DOI: 10.1073/pnas.1205037109] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many bacterial pathogens produce diffusible signal factor (DSF)-type quorum sensing (QS) signals in modulation of virulence and biofilm formation. Previous work on Xanthomonas campestris showed that the RpfC/RpfG two-component system is involved in sensing and responding to DSF signals, but little is known in other microorganisms. Here we show that in Burkholderia cenocepacia the DSF-family signal cis-2-dodecenoic acid (BDSF) negatively controls the intracellular cyclic dimeric guanosine monophosphate (c-di-GMP) level through a receptor protein RpfR, which contains Per/Arnt/Sim (PAS)-GGDEF-EAL domains. RpfR regulates the same phenotypes as BDSF including swarming motility, biofilm formation, and virulence. In addition, the BDSF(-) mutant phenotypes could be rescued by in trans expression of RpfR, or its EAL domain that functions as a c-di-GMP phosphodiesterase. BDSF is shown to bind to the PAS domain of RpfR with high affinity and stimulates its phosphodiesterase activity through induction of allosteric conformational changes. Our work presents a unique and widely conserved DSF-family signal receptor that directly links the signal perception to c-di-GMP turnover in regulation of bacterial physiology.
Collapse
|
8
|
Tao W, Gao Z, Gao Z, Zhou J, Huang Z, Dong Y, Yu S. The 1.6Å resolution structure of activated D138L mutant of catabolite gene activator protein with two cAMP bound in each monomer. Int J Biol Macromol 2011; 48:459-65. [PMID: 21255606 DOI: 10.1016/j.ijbiomac.2011.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 12/27/2010] [Accepted: 01/10/2011] [Indexed: 11/17/2022]
Abstract
The X-ray crystal structure of the cAMP-liganded D138L mutant of Escherichia coli catabolite gene activator protein (CAP) was determined at a resolution of 1.66Å. This high resolution crystal structure reveals four cAMP binding sites in the homodimer. Two anti conformations of cAMPs (anti-cAMP) locate between the β-barrel and the C-helix of each subunit; two syn conformations of cAMPs (syn-cAMP) bind on the surface of the C-terminal domain. With two syn-cAMP molecules bound, the D138L CAP is highly symmetrical with both subunits assuming a "closed" conformation. These differences make the hinge region of the mutant more flexible. Protease susceptibility measurements indicate that D138L is more susceptible to proteases than that of wild type (WT) CAP. The results of protein dynamic experiments (H/D exchange measurements) indicate that the structure of D138L mutant is more dynamic than that of WT CAP, which may impact the recognition of specific DNA sequences.
Collapse
Affiliation(s)
- Wenbing Tao
- Department of Chemistry and Institutes of Biomedical Science, Fudan University, Shanghai 200433, China
| | | | | | | | | | | | | |
Collapse
|
9
|
The cyclic nucleotide monophosphate domain of Xanthomonas campestris global regulator Clp defines a new class of cyclic di-GMP effectors. J Bacteriol 2009; 192:1020-9. [PMID: 20008070 DOI: 10.1128/jb.01253-09] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The widely conserved second messenger cyclic diguanosine monophosphate (c-di-GMP) plays a key role in quorum-sensing (QS)-dependent production of virulence factors in Xanthomonas campestris pv. campestris. The detection of QS diffusible signal factor (DSF) by the sensor RpfC leads to the activation of response regulator RpfG, which activates virulence gene expression by degrading c-di-GMP. Here, we show that a global regulator in the X. campestris pv. campestris QS regulatory pathway, Clp, is a c-di-GMP effector. c-di-GMP specifically binds to Clp with high affinity and induces allosteric conformational changes that abolish the interaction between Clp and its target gene promoter. Clp is similar to the cyclic AMP (cAMP) binding proteins Crp and Vfr and contains a conserved cyclic nucleotide monophosphate (cNMP) binding domain. Using site-directed mutagenesis, we found that the cNMP binding domain of Clp contains a glutamic acid residue (E99) that is essential for c-di-GMP binding. Substituting the residue with serine (E99S) resulted in decreased sensitivity to changes in the intracellular c-di-GMP level and attenuated bacterial virulence. These data establish the direct role of Clp in the response to fluctuating c-di-GMP levels and depict a novel mechanism by which QS links the second messenger with the X. campestris pv. campestris virulence regulon.
Collapse
|
10
|
Reddy MCM, Palaninathan SK, Bruning JB, Thurman C, Smith D, Sacchettini JC. Structural insights into the mechanism of the allosteric transitions of Mycobacterium tuberculosis cAMP receptor protein. J Biol Chem 2009; 284:36581-36591. [PMID: 19740754 DOI: 10.1074/jbc.m109.041343] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cAMP receptor protein (CRP) from Mycobacterium tuberculosis is a cAMP-responsive global transcriptional regulator, responsible for the regulation of a multitude of diverse proteins. We have determined the crystal structures of the CRP.cAMP and CRP.N(6)-cAMP derivative-bound forms of the enzyme to 2.2- and 2.3 A-resolution, respectively, to investigate cAMP-mediated conformational and structural changes. The allosteric switch from the open, inactive conformation to the closed, active conformation begins with a number of changes in the ligand-binding cavity upon cAMP binding. These subtle structural changes and numerous non-bonding interactions between cAMP, the N-domain residues, and the C-domain helices demonstrate that the N-domain hairpin loop acts as a structural mediator of the allosteric switch. Based on the CRP.N(6)-cAMP crystal structure, binding of N(6)-cAMP with a bulkier methylphenylethyl extension from the N6 atom stabilizes the cAMP-binding domain, N-domain hairpin, and C-terminal domain in a similar manner as that of the CRP.cAMP structure, maintaining structural integrity within the subunits. However, the bulkier N6 extension of N(6)-cAMP (in R conformation) is accommodated only in subunit A with minor changes, whereas in subunit B, the N6 extension is in the S conformation hindering the hinge region of the central helix. As a result, the entire N-domain and the C-domain of subunit B integrated by the cAMP portion of this ligand, together tilt away ( approximately 7 degrees tilt) from central helix C, positioning the helix-turn-helix motif in an unfavorable position for the DNA substrate, asymmetrically. Together, these crystal structures demonstrate the mechanism of action of the cAMP molecule and its role in integrating the active CRP structure.
Collapse
Affiliation(s)
- Manchi C M Reddy
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Satheesh K Palaninathan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - John B Bruning
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Cory Thurman
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Danielle Smith
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - James C Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843.
| |
Collapse
|
11
|
Structural overview on the allosteric activation of cyclic AMP receptor protein. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1299-308. [PMID: 19439203 DOI: 10.1016/j.bbapap.2009.04.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2009] [Revised: 04/29/2009] [Accepted: 04/30/2009] [Indexed: 11/23/2022]
Abstract
Cyclic AMP receptor protein (CRP) is a prokaryotic global transcription regulator that controls the expression of nearly 200 genes. The protein, allosterically activated by cAMP binding, binds to DNA and interacts with RNA polymerase. Current understanding on the allosteric process of the Escherichia coli CRP activation can be summarized into a rigid-body movement that involves subunit realignment and domain rearrangement. The main consequence of that overall transition is protrusion and adjustment of F-helices that recognize specific DNA sites. Although physicochemical and structural studies during the past decades have contributed to a comprehensive understanding of the CRP allostery, a paucity of structural information about the cAMP-free form (apo-CRP) has precluded a definite elucidation of the allosterism. In this respect, recent achievements of structures on other CRP-family proteins provide useful information to fill in the details of the allosteric transition of CRP. Thus, in this paper, accomplishments of CRP-family structures are summarized and inspected comparatively with new findings. This review not only provides a structural overview on the allosteric conformational change of CRP but also suggests a thoughtful discussion about unsolved issues or conflicting arguments. Solving those issues and the apo-CRP structure would enable us to finally define the CRP allostery.
Collapse
|
12
|
Structural basis for cAMP-mediated allosteric control of the catabolite activator protein. Proc Natl Acad Sci U S A 2009; 106:6927-32. [PMID: 19359484 DOI: 10.1073/pnas.0900595106] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cAMP-mediated allosteric transition in the catabolite activator protein (CAP; also known as the cAMP receptor protein, CRP) is a textbook example of modulation of DNA-binding activity by small-molecule binding. Here we report the structure of CAP in the absence of cAMP, which, together with structures of CAP in the presence of cAMP, defines atomic details of the cAMP-mediated allosteric transition. The structural changes, and their relationship to cAMP binding and DNA binding, are remarkably clear and simple. Binding of cAMP results in a coil-to-helix transition that extends the coiled-coil dimerization interface of CAP by 3 turns of helix and concomitantly causes rotation, by approximately 60 degrees , and translation, by approximately 7 A, of the DNA-binding domains (DBDs) of CAP, positioning the recognition helices in the DBDs in the correct orientation to interact with DNA. The allosteric transition is stabilized further by expulsion of an aromatic residue from the cAMP-binding pocket upon cAMP binding. The results define the structural mechanisms that underlie allosteric control of this prototypic transcriptional regulatory factor and provide an illustrative example of how effector-mediated structural changes can control the activity of regulatory proteins.
Collapse
|
13
|
Tutar Y. Syn, anti, and finally both conformations of cyclic AMP are involved in the CRP-dependent transcription initiation mechanism in E. coli lac operon. Cell Biochem Funct 2008; 26:399-405. [PMID: 18338329 DOI: 10.1002/cbf.1462] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The cyclic AMP receptor protein (CRP) of Escherichia coli regulates the activity of more than 150 genes. Allosteric changes in CRP structure accompanied by cAMP binding, initiate transcription through protein binding to specific DNA sequences. Initially, researchers proposed a two-site cAMP-binding model for CRP-dependent transcription activation since biophysical methods showed two transitions during titration experiments. Three conformational states were considered; apo-CRP, CRP:(cAMP)(1) and CRP:(cAMP)(2), and CRP:(cAMP)(1) was proposed as the active form in this initial model. X-ray data indicated an anti conformation and in contrast NMR experiments suggested a syn conformation for bound cAMPs. For years this paradigm about ligand conformation has been ambiguous. When CRP was crystallized with four bound cAMP in the last decade, two cAMPs were assigned to syn and the other two to anti conformations. Again three conformational states were suggested; apo-CRP, CRP:(cAMP)(2), and CRP:(cAMP)(4). This new structure changed the view of CRP allosteric activation from a two-site model to a four-site model in the literature and the new model has been supported by biochemical and genetic data so far. According to the accepted model, binding of the first two cAMP molecules displays positive cooperativity, however, binding of the last two cAMP molecules shows negative cooperativity. This resolved the conflict between dynamic and static experimental observations. However, this new model cannot explain the initiation mechanism as previously proposed because functionally active CRP has only one cAMP equivalent. Gene regulation and transcription factors are involved in regulating both prokaryotic and eukaryotic metabolism. Although gene regulation and expression are much more complex in eukaryotes, CRP-mediated transcription initiation is a model of general interest to life sciences and medicine. Therefore, the aim of this review is to summarize recent works and developments on the cAMP-dependent CRP activation mechanism in E. coli.
Collapse
Affiliation(s)
- Yusuf Tutar
- Department of Chemistry, Cumhuriyet University, Sivas, Turkey.
| |
Collapse
|
14
|
Abstract
Cyclic AMP Receptor protein (CRP) regulates transcription initiation in E. coli. The ligand and DNA binding data yields the following results: (1) There are two different types of cAMP binding sites; weak and strong. (2) CRP-DNA-cAMP is the active form of all CRP conformers and this complex prefers to form from CRP-DNA rather than CRP-cAMP form. (3) Binding of additional cAMP(s) to CRP-DNA-cAMP complex greatly reduces DNA binding affinity. (4) Variants showed that ribose moiety of cAMP is important to transmit the signal to the DNA binding domain to activate specific DNA binding. (5) Deconvolution of DNA binding data leads us to propose a model for cAMP's role in transcription initiation process.
Collapse
Affiliation(s)
- Yusuf Tutar
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
15
|
Lee CJ, Won HS, Kim JM, Lee BJ, Kang SO. Molecular domain organization of BldD, an essential transcriptional regulator for developmental process of Streptomyces coelicolor A3(2). Proteins 2007; 68:344-52. [PMID: 17427251 DOI: 10.1002/prot.21338] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A homodimeric protein, BldD is a key regulator for developmental process of Streptomyces coelicolor and the bldD mutant exhibits severely pleiotropic defects in the antibiotic production and morphological differentiation of the bacterium. In the present work, we approached domain organization of BldD, to structurally and functionally characterize the protein as a DNA-binding protein. We first observed a proteolytic cleavage of BldD by the cytoplasmic extracts of S. coelicolor, which was highly dependent on the developmental stage of the bacterium. The resulting fragment of BldD was identified by mass spectrometry as the N-terminal domain resistant to the proteolysis. Recombinant proteins corresponding to the intact BldD, the N-terminal domain (residues 1-79) and the rest part (C-terminal domain; residues 80-167) were used for comparative analyses by several spectroscopic, thermodynamic, and biochemical experiments, respectively. The results of circular dichroism and nuclear magnetic resonance spectroscopies certified each of the two determined domains could be regarded as an individual folding unit possessing an independent thermodynamic cooperativity. Structural interaction between the two domains was little observed in the DNA-free and DNA-bound states. Strikingly, it was revealed by gel permeation chromatography, chemical crosslink, gel mobility shift, and NMR-monitored DNA-binding experiments, that only the N-terminal domain is responsible for the dimerization as well as DNA-binding of BldD. Detailed inspection of the present results suggests that BldD function in a unique and complicated mode to totally regulate the diverse developmental stages of S. coelicolor.
Collapse
Affiliation(s)
- Chang-Jin Lee
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | |
Collapse
|
16
|
Won HS, Seo MD, Ko HS, Choi WS, Lee BJ. Interdomain interaction of cyclic AMP receptor protein in the absence of cyclic AMP. J Biochem 2007; 143:163-7. [PMID: 18084042 DOI: 10.1093/jb/mvm238] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Interdomain interaction of apo-cyclic AMP receptor protein (apo-CRP) was qualified using its isolated domains. The cAMP-binding domain was prepared by a limited proteolysis, while the DNA-binding domain was constructed as a recombinant protein. Three different regions making interdomain contacts in apo-CRP were identified by a sequence-specific comparison of the HSQC spectra. The results indicated that apo-CRP possesses characteristic modules of interdomain interaction that are properly organized to suppress activity and to sense and transfer the cAMP binding signals. Particularly, the inertness of the DNA-binding motif in apo-CRP was attributable to the participation of F-helices in the interdomain contacts.
Collapse
Affiliation(s)
- Hyung-Sik Won
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk, Korea.
| | | | | | | | | |
Collapse
|
17
|
Shinkai A, Kira S, Nakagawa N, Kashihara A, Kuramitsu S, Yokoyama S. Transcription activation mediated by a cyclic AMP receptor protein from Thermus thermophilus HB8. J Bacteriol 2007; 189:3891-901. [PMID: 17369302 PMCID: PMC1913326 DOI: 10.1128/jb.01739-06] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The extremely thermophilic bacterium Thermus thermophilus HB8, which belongs to the phylum Deinococcus-Thermus, has an open reading frame encoding a protein belonging to the cyclic AMP (cAMP) receptor protein (CRP) family present in many bacteria. The protein named T. thermophilus CRP is highly homologous to the CRP family proteins from the phyla Firmicutes, Actinobacteria, and Cyanobacteria, and it forms a homodimer and interacts with cAMP. CRP mRNA and intracellular cAMP were detected in this strain, which did not drastically fluctuate during cultivation in a rich medium. The expression of several genes was altered upon disruption of the T. thermophilus CRP gene. We found six CRP-cAMP-dependent promoters in in vitro transcription assays involving DNA fragments containing the upstream regions of the genes exhibiting decreased expression in the CRP disruptant, indicating that the CRP is a transcriptional activator. The consensus T. thermophilus CRP-binding site predicted upon nucleotide sequence alignment is 5'-(C/T)NNG(G/T)(G/T)C(A/C)N(A/T)NNTCACAN(G/C)(G/C)-3'. This sequence is unique compared with the known consensus binding sequences of CRP family proteins. A putative -10 hexamer sequence resides at 18 to 19 bp downstream of the predicted T. thermophilus CRP-binding site. The CRP-regulated genes found in this study comprise clustered regularly interspaced short palindromic repeat (CRISPR)-associated (cas) ones, and the genes of a putative transcriptional regulator, a protein containing the exonuclease III-like domain of DNA polymerase, a GCN5-related acetyltransferase homolog, and T. thermophilus-specific proteins of unknown function. These results suggest a role for cAMP signal transduction in T. thermophilus and imply the T. thermophilus CRP is a cAMP-responsive regulator.
Collapse
Affiliation(s)
- Akeo Shinkai
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan.
| | | | | | | | | | | |
Collapse
|
18
|
Tutar Y, Harman JG. Effect of salt bridge on transcription activation of CRP-dependent lactose operon in Escherichia coli. Arch Biochem Biophys 2006; 453:217-23. [PMID: 16934214 DOI: 10.1016/j.abb.2006.06.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2006] [Revised: 06/08/2006] [Accepted: 06/20/2006] [Indexed: 10/24/2022]
Abstract
Expression of catabolite-sensitive operons in Escherichia coli is cAMP-dependent and mediated through the CRP:cAMP complex binding to specific sequences in DNA. Five specific ionic or polar interactions occur in cAMP binding pocket of CRP. E72 interacts with the cAMP 2' OH, R82 and S83 interact with the negatively charged phosphate moiety, and T127 and S128 interact with the adenine ring. There is evidence to suggest that E72 and R82 may mediate an essential CRP molecular switch mechanism. Therefore, stimulation of CRP transcription activation was examined by perturbing these residues. Further, CRP:cAMP complex was treated with a specific DNA sequence containing the lac CRP binding site along with RNA polymerase to mimic in vivo conditions. Biochemical and biophysical results revealed that regulation of transcription activation depends on alignment of CRP tertiary structure through inter-domain communication and it was concluded that positions 72 and 82 are essential in the activation of CRP by cAMP.
Collapse
Affiliation(s)
- Yusuf Tutar
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
| | | |
Collapse
|
19
|
Das R, Abu-Abed M, Melacini G. Mapping Allostery through Equilibrium Perturbation NMR Spectroscopy. J Am Chem Soc 2006; 128:8406-7. [PMID: 16802799 DOI: 10.1021/ja060046d] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The understanding of allostery relies on the comparative analysis of macromolecules in their free and bound states. However, the direct free versus bound comparison is often challenging due to the instability of one of the two forms. This problem is effectively circumvented by using minor free/bound equilibrium perturbations which are tolerated without compromising sample stability. The subtle equilibrium perturbations are still able to reveal significant apo/holo differences if monitored by NMR experiments that are sensitive to minor populations within dynamic equilibria, such as NMR relaxation dispersion (NMRD) and hydrogen exchange (H/D and H/H) rates. These measurements are complementary to each other as they unmask how a ligand affects both the stable and the excited states of the free energy landscape for its protein receptor. The proposed equilibrium perturbation approach therefore significantly expands the scope of applicability of NMRD and hydrogen exchange experiments to the investigation of ligand-protein interactions, in general, unveiling allosteric "hot spot" maps for systems that have been traditionally elusive to direct free/bound comparisons.
Collapse
Affiliation(s)
- Rahul Das
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | | | | |
Collapse
|
20
|
Jin L, Xue WF, Fukayama JW, Yetter J, Pickering M, Carey J. Asymmetric allosteric activation of the symmetric ArgR hexamer. J Mol Biol 2004; 346:43-56. [PMID: 15663926 DOI: 10.1016/j.jmb.2004.11.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Revised: 11/10/2004] [Accepted: 11/11/2004] [Indexed: 11/25/2022]
Abstract
Hexameric arginine repressor, ArgR, bound to L-arginine serves both as the master transcriptional repressor/activator at diverse regulons in a wide range of bacteria and as a required cofactor for resolution of ColE1 plasmid multimers. Multifunctional ArgR is thus unusual in possessing features of specific gene regulators, global regulators, and non-specific gene organizers; its closest functional analog is probably CAP, the cyclic AMP receptor/activator protein. Isothermal titration calorimetry, surface plasmon resonance, and proteolysis indicate that binding of a single L-argine [corrected] per ArgR hexamer triggers a global conformation [corrected] change and resets the affinities of the remaining five sites, making them 100-fold weaker. The analysis suggests a novel thermodynamic signature for this mechanism of activation.
Collapse
Affiliation(s)
- Lihua Jin
- Chemistry Department, DePaul University, Chicago, IL 60614, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Won HS, Lee YH, Kim JH, Shin IS, Lee MH, Lee BJ. Structural Characterization of the Nickel-binding Properties of Bacillus pasteurii Urease Accessory Protein (Ure)E in Solution. J Biol Chem 2004; 279:17466-72. [PMID: 14769802 DOI: 10.1074/jbc.m308390200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Urease activation is critical to the virulence of many human and animal pathogens. Urease possesses multiple, nickel-containing active sites, and UreE, the only nickel-binding protein among the urease accessory proteins, activates urease by transporting nickel ions. We performed NMR experiments to investigate the solution structure and the nickel-binding properties of Bacillus pasteurii (Bp) UreE. The secondary structures and global folds of BpUreE were determined for its metal-free and nickel-bound forms. The results indicated that no major structural change of BpUreE arises from the nickel binding. In addition to the previously identified nickel-binding site (Gly(97)-Cys(103)), the C-terminal tail region (Lys(141)-His(147)) was confirmed for the first time to be involved in the nickel binding. The C-terminally conserved sequence ((144)GHQH(147)) was confirmed to have an inherent nickel-binding ability. Nickel addition to 1.6 mm subunit, a concentration where BpUreE predominantly forms a tetramer upon the nickel binding, induced a biphasic spectral change consistent with binding of up to at least three nickel ions per tetrameric unit. In contrast, nickel addition to 0.1 mm subunit, a concentration at which the protein is primarily a dimer, caused a monophasic spectral change consistent with more than 1 equivalent per dimeric unit. Combined with the equilibrium dialysis results, which indicated 2.5 nickel equivalents binding per dimer at a micromolar protein concentration, the nickel-binding stoichiometry of BpUreE at a physiological concentration could be three nickel ions per dimer. Altogether, the present results provide the first detailed structural data concerning the nickel-binding properties of intact, wild-type BpUreE in solution.
Collapse
Affiliation(s)
- Hyung-Sik Won
- National Research Laboratory for Membrane Protein Structure, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | |
Collapse
|
22
|
Chen R, Lee JC. Functional roles of loops 3 and 4 in the cyclic nucleotide binding domain of cyclic AMP receptor protein from Escherichia coli. J Biol Chem 2003; 278:13235-43. [PMID: 12551924 DOI: 10.1074/jbc.m211551200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclic AMP is a ubiquitous secondary message that regulates a large variety of functions. The protein structural motif that binds cAMP is highly conserved with the exception of loops 3 and 4, whose structure and length are variable. The cAMP receptor protein of Escherichia coli, CRP, was employed as a model system to elucidate the functional roles of these loops. Based on the sequence differences between CRP and cyclic nucleotide gated channel, three mutants of CRP were constructed: deletion (residues 54-56 in loop 3 were deleted), insertion (loop 4 was lengthened by 5 residues between Glu-78 and Gly-79) and double mutants. The effects of these mutations on the structure and function of CRP were monitored. Results show that the deletion and insertion mutations do not significantly change the secondary structure of CRP, although the tertiary and quaternary structures are perturbed. The functional data indicate that loop 3 modulates the binding affinities of cAMP and DNA. Although the lengthened loop 4 may have some fine-tuning functions, the specific function of the original loop 4 of CRP remains uncertain. The function consequences of mutation in loop 3 of CRP are similar to that of site A and site B in the regulatory subunits of cyclic AMP-dependent protein kinases. Thus, the roles played by loop 3 in CRP may represent a more common mechanism employed by cyclic nucleotide binding domain in modulating ligand binding affinity and intramolecular communication.
Collapse
Affiliation(s)
- Ran Chen
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, Texas 77555-1055, USA
| | | |
Collapse
|
23
|
Polit A, Błaszczyk U, Wasylewski Z. Steady-state and time-resolved fluorescence studies of conformational changes induced by cyclic AMP and DNA binding to cyclic AMP receptor protein from Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:1413-23. [PMID: 12653996 DOI: 10.1046/j.1432-1033.2003.03497.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
cAMP receptor protein (CRP), allosterically activated by cAMP, regulates the expression of several genes in Escherichia coli. As binding of cAMP leads to undefined conformational changes in CRP, we performed a steady-state and time-resolved fluorescence study to show how the binding of the ligand influences the structure and dynamics of the protein. We used CRP mutants containing a single tryptophan residue at position 85 or 13, and fluorescently labeled with 1,5-I-AEDANS attached to Cys178. Binding of cAMP in the CRP-(cAMP)2 complex leads to changes in the Trp13 microenvironment, whereas its binding in the CRP-(cAMP)4 complex alters the surroundings of Trp85. Time-resolved anisotropy measurements indicated that cAMP binding in the CRP-(cAMP)2 complex led to a substantial increase in the rotational mobility of the Trp13 residue. Measurement of fluorescence energy transfer (FRET) between labeled Cys178 and Trp85 showed that the binding of cAMP in the CRP-(cAMP)2 complex caused a substantial increase in FRET efficiency. This indicates a decrease in the distance between the two domains of the protein from 26.6 A in apo-CRP to 18.7 A in the CRP-(cAMP)2 complex. The binding of cAMP in the CRP-(cAMP)4 complex resulted in only a very small increase in FRET efficiency. The average distance between the two domains in CRP-DNA complexes, possessing lac, gal or ICAP sequences, shows an increase, as evidenced by the increase in the average distance between Cys178 and Trp85 to approximately 20 A. The spectral changes observed provide new structural information about the cAMP-induced allosteric activation of the protein.
Collapse
Affiliation(s)
- Agnieszka Polit
- Department of Physical Biochemistry, Faculty of Biotechnology, Jagiellonian University, Kraków, Poland
| | | | | |
Collapse
|
24
|
Błaszczyk U, Wasylewski Z. Interaction of cAMP receptor protein from Escherichia coli with cAMP and DNA studied by differential scanning calorimetry. JOURNAL OF PROTEIN CHEMISTRY 2003; 22:285-93. [PMID: 12962328 DOI: 10.1023/a:1025024604677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The cyclic AMP receptor protein (CRP) regulates the expression of many genes in Escherichia coli. The protein is a homodimer, and each monomer is folded into two distinct structural domains. In this study, we have used differential scanning calorimetry (DSC) and circular dichroism (CD) to measure the enthalpy change and melting temperature of the apo-CRP and CRP complexes with cAMP or DNA sequences lac, gal, and palindromic ICAP. DSC and CD measurements showed irreversible thermal denaturation process of CRP. Enthalpy of dissociation of the protein-DNA complex, as measured by DSC, depends on the DNA sequence. The thermal transition of the protein in CRP-DNA complexes, measured by CD, indicates that the protein stability in the complex is also DNA sequence-dependent.
Collapse
Affiliation(s)
- Urszula Błaszczyk
- Department of Physical Biochemistry, Faculty of Biotechnology, Jagiellonian University, Kraków, Poland
| | | |
Collapse
|