1
|
Cherniavskyi YK, Oliva R, Stellato M, Del Vecchio P, Galdiero S, Falanga A, Dames SA, Tieleman DP. Structural characterization of the antimicrobial peptides myxinidin and WMR in bacterial membrane mimetic micelles and bicelles. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184272. [PMID: 38211645 DOI: 10.1016/j.bbamem.2024.184272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Antimicrobial peptides are a promising class of potential antibiotics that interact selectively with negatively charged lipid bilayers. This paper presents the structural characterization of the antimicrobial peptides myxinidin and WMR associated with bacterial membrane mimetic micelles and bicelles by NMR, CD spectroscopy, and molecular dynamics simulations. Both peptides adopt a different conformation in the lipidic environment than in aqueous solution. The location of the peptides in micelles and bicelles has been studied by paramagnetic relaxation enhancement experiments with paramagnetic tagged 5- and 16-doxyl stearic acid (5-/16-SASL). Molecular dynamics simulations of multiple copies of the peptides were used to obtain an atomic level of detail on membrane-peptide and peptide-peptide interactions. Our results highlight an essential role of the negatively charged membrane mimetic in the structural stability of both myxinidin and WMR. The peptides localize predominantly in the membrane's headgroup region and have a noticeable membrane thinning effect on the overall bilayer structure. Myxinidin and WMR show a different tendency to self-aggregate, which is also influenced by the membrane composition (DOPE/DOPG versus DOPE/DOPG/CL) and can be related to the previously observed difference in the ability of the peptides to disrupt different types of model membranes.
Collapse
Affiliation(s)
- Yevhen K Cherniavskyi
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Rosario Oliva
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, 80126 Naples, Italy
| | - Marco Stellato
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, 80126 Naples, Italy
| | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, 80126 Naples, Italy
| | - Stefania Galdiero
- Department of Pharmacy, University of Naples 'Federico II', Via Domenico Montesano 49, 80131 Naples, Italy
| | - Annarita Falanga
- Department of Agricultural Science, University of Naples 'Federico II', Via dell' Università 100, 80055 Portici, Naples, Italy
| | - Sonja A Dames
- Chair of Biomolecular NMR Spectroscopy, Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany; Hausdorff Center for Mathematics, University of Bonn, Endenicher Allee 62, 53115 Bonn, Germany; Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | - D Peter Tieleman
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
2
|
Herianto S, Subramani B, Chen BR, Chen CS. Recent advances in liposome development for studying protein-lipid interactions. Crit Rev Biotechnol 2024; 44:1-14. [PMID: 36170980 DOI: 10.1080/07388551.2022.2111294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 05/12/2022] [Accepted: 05/29/2022] [Indexed: 11/03/2022]
Abstract
Protein-lipid interactions are crucial for various cellular biological processes like intracellular signaling, membrane transport, and cytoskeletal dynamics. Therefore, studying these interactions is essential to understand and unravel their specific functions. Nevertheless, the interacting proteins of many lipids are poorly understood and still require systematic study. Liposomes are the most well-known and familiar biomimetic systems used to study protein-lipid interactions. Although liposomes have been widely used for studying protein-lipid interactions in classical methods such as the co-flotation assay (CFA), co-sedimentation assay (CSA), and flow cytometric assay (FCA), an overview of their current applications and developments in high-throughput methods is not yet available. Here, we summarize the liposome development in low and high-throughput methods to study protein-lipid interactions. Besides, a constructive comment for each platform is presented to stimulate the advancement of these technologies in the future.
Collapse
Affiliation(s)
- Samuel Herianto
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei, Taiwan
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Department of Chemistry (Chemical Biology Division), College of Science, National Taiwan University, Taipei, Taiwan
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Boopathi Subramani
- Institute of Food Science and Technology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bo-Ruei Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Sheng Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
3
|
Reichlmeir M, Canet-Pons J, Koepf G, Nurieva W, Duecker RP, Doering C, Abell K, Key J, Stokes MP, Zielen S, Schubert R, Ivics Z, Auburger G. In Cerebellar Atrophy of 12-Month-Old ATM-Null Mice, Transcriptome Upregulations Concern Most Neurotransmission and Neuropeptide Pathways, While Downregulations Affect Prominently Itpr1, Usp2 and Non-Coding RNA. Cells 2023; 12:2399. [PMID: 37830614 PMCID: PMC10572167 DOI: 10.3390/cells12192399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/14/2023] Open
Abstract
The autosomal recessive disorder Ataxia-Telangiectasia is caused by a dysfunction of the stress response protein, ATM. In the nucleus of proliferating cells, ATM senses DNA double-strand breaks and coordinates their repair. This role explains T-cell dysfunction and tumour risk. However, it remains unclear whether this function is relevant for postmitotic neurons and underlies cerebellar atrophy, since ATM is cytoplasmic in postmitotic neurons. Here, we used ATM-null mice that survived early immune deficits via bone-marrow transplantation, and that reached initial neurodegeneration stages at 12 months of age. Global cerebellar transcriptomics demonstrated that ATM depletion triggered upregulations in most neurotransmission and neuropeptide systems. Downregulated transcripts were found for the ATM interactome component Usp2, many non-coding RNAs, ataxia genes Itpr1, Grid2, immediate early genes and immunity factors. Allelic splice changes affected prominently the neuropeptide machinery, e.g., Oprm1. Validation experiments with stressors were performed in human neuroblastoma cells, where ATM was localised only to cytoplasm, similar to the brain. Effect confirmation in SH-SY5Y cells occurred after ATM depletion and osmotic stress better than nutrient/oxidative stress, but not after ATM kinase inhibition or DNA stressor bleomycin. Overall, we provide pioneer observations from a faithful A-T mouse model, which suggest general changes in synaptic and dense-core vesicle stress adaptation.
Collapse
Affiliation(s)
- Marina Reichlmeir
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (M.R.); (J.C.-P.); (J.K.)
| | - Júlia Canet-Pons
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (M.R.); (J.C.-P.); (J.K.)
| | - Gabriele Koepf
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (M.R.); (J.C.-P.); (J.K.)
| | - Wasifa Nurieva
- Transposition and Genome Engineering, Research Centre of the Division of Hematology, Gene and Cell Therapy, Paul Ehrlich Institute, 63225 Langen, Germany; (W.N.); (Z.I.)
| | - Ruth Pia Duecker
- Division of Pediatrics, Pulmonology, Allergology, Infectious Diseases and Gastroenterology, Children’s Hospital, University Hospital, Goethe-University, 60590 Frankfurt am Main, Germany; (R.P.D.); (S.Z.); (R.S.)
| | - Claudia Doering
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany;
| | - Kathryn Abell
- Cell Signaling Technology, Inc., Danvers, MA 01923, USA; (K.A.); (M.P.S.)
| | - Jana Key
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (M.R.); (J.C.-P.); (J.K.)
| | - Matthew P. Stokes
- Cell Signaling Technology, Inc., Danvers, MA 01923, USA; (K.A.); (M.P.S.)
| | - Stefan Zielen
- Division of Pediatrics, Pulmonology, Allergology, Infectious Diseases and Gastroenterology, Children’s Hospital, University Hospital, Goethe-University, 60590 Frankfurt am Main, Germany; (R.P.D.); (S.Z.); (R.S.)
- Respiratory Research Institute, Medaimun GmbH, 60596 Frankfurt am Main, Germany
| | - Ralf Schubert
- Division of Pediatrics, Pulmonology, Allergology, Infectious Diseases and Gastroenterology, Children’s Hospital, University Hospital, Goethe-University, 60590 Frankfurt am Main, Germany; (R.P.D.); (S.Z.); (R.S.)
| | - Zoltán Ivics
- Transposition and Genome Engineering, Research Centre of the Division of Hematology, Gene and Cell Therapy, Paul Ehrlich Institute, 63225 Langen, Germany; (W.N.); (Z.I.)
| | - Georg Auburger
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (M.R.); (J.C.-P.); (J.K.)
| |
Collapse
|
4
|
Gaussmann S, Gopalswamy M, Eberhardt M, Reuter M, Zou P, Schliebs W, Erdmann R, Sattler M. Membrane Interactions of the Peroxisomal Proteins PEX5 and PEX14. Front Cell Dev Biol 2021; 9:651449. [PMID: 33937250 PMCID: PMC8086558 DOI: 10.3389/fcell.2021.651449] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/11/2021] [Indexed: 11/17/2022] Open
Abstract
Human PEX5 and PEX14 are essential components of the peroxisomal translocon, which mediates import of cargo enzymes into peroxisomes. PEX5 is a soluble receptor for cargo enzymes comprised of an N-terminal intrinsically disordered domain (NTD) and a C-terminal tetratricopeptide (TPR) domain, which recognizes peroxisomal targeting signal 1 (PTS1) peptide motif in cargo proteins. The PEX5 NTD harbors multiple WF peptide motifs (WxxxF/Y or related motifs) that are recognized by a small globular domain in the NTD of the membrane-associated protein PEX14. How the PEX5 or PEX14 NTDs bind to the peroxisomal membrane and how the interaction between the two proteins is modulated at the membrane is unknown. Here, we characterize the membrane interactions of the PEX5 NTD and PEX14 NTD in vitro by membrane mimicking bicelles and nanodiscs using NMR spectroscopy and isothermal titration calorimetry. The PEX14 NTD weakly interacts with membrane mimicking bicelles with a surface that partially overlaps with the WxxxF/Y binding site. The PEX5 NTD harbors multiple interaction sites with the membrane that involve a number of amphipathic α-helical regions, which include some of the WxxxF/Y-motifs. The partially formed α-helical conformation of these regions is stabilized in the presence of bicelles. Notably, ITC data show that the interaction between the PEX5 and PEX14 NTDs is largely unaffected by the presence of the membrane. The PEX5/PEX14 interaction exhibits similar free binding enthalpies, where reduced binding enthalpy in the presence of bicelles is compensated by a reduced entropy loss. This demonstrates that docking of PEX5 to PEX14 at the membrane does not reduce the overall binding affinity between the two proteins, providing insights into the initial phase of PEX5-PEX14 docking in the assembly of the peroxisome translocon.
Collapse
Affiliation(s)
- Stefan Gaussmann
- Bavarian NMR Center, Department Chemie, Technische Universität München, Munich, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Mohanraj Gopalswamy
- Bavarian NMR Center, Department Chemie, Technische Universität München, Munich, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Maike Eberhardt
- Bavarian NMR Center, Department Chemie, Technische Universität München, Munich, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Maren Reuter
- Institute of Biochemistry and Pathobiochemistry, Department of Systems Biology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Peijian Zou
- Bavarian NMR Center, Department Chemie, Technische Universität München, Munich, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Wolfgang Schliebs
- Institute of Biochemistry and Pathobiochemistry, Department of Systems Biology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Ralf Erdmann
- Institute of Biochemistry and Pathobiochemistry, Department of Systems Biology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Michael Sattler
- Bavarian NMR Center, Department Chemie, Technische Universität München, Munich, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
5
|
Abd Rahim MS, Cherniavskyi YK, Tieleman DP, Dames SA. NMR- and MD simulation-based structural characterization of the membrane-associating FATC domain of ataxia telangiectasia mutated. J Biol Chem 2019; 294:7098-7112. [PMID: 30867195 PMCID: PMC6497961 DOI: 10.1074/jbc.ra119.007653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/08/2019] [Indexed: 12/26/2022] Open
Abstract
The Ser/Thr protein kinase ataxia telangiectasia mutated (ATM) plays an important role in the DNA damage response, signaling in response to redox signals, the control of metabolic processes, and mitochondrial homeostasis. ATM localizes to the nucleus and at the plasma membrane, mitochondria, peroxisomes, and other cytoplasmic vesicular structures. It has been shown that the C-terminal FATC domain of human ATM (hATMfatc) can interact with a range of membrane mimetics and may thereby act as a membrane-anchoring unit. Here, NMR structural and 15N relaxation data, NMR data using spin-labeled micelles, and MD simulations of micelle-associated hATMfatc revealed that it binds the micelle by a dynamic assembly of three helices with many residues of hATMfatc located in the headgroup region. We observed that none of the three helices penetrates the micelle deeply or makes significant tertiary contacts to the other helices. NMR-monitored interaction experiments with hATMfatc variants in which two conserved aromatic residues (Phe3049 and Trp3052) were either individually or both replaced by alanine disclosed that the double substitution does not abrogate the interaction with micelles and bicelles at the high concentrations at which these aggregates are typically used, but impairs interactions with small unilamellar vesicles, usually used at much lower lipid concentrations and considered a better mimetic for natural membranes. We conclude that the observed dynamic structure of micelle-associated hATMfatc may enable it to interact with differently composed membranes or membrane-associated interaction partners and thereby regulate ATM's kinase activity. Moreover, the FATC domain of ATM may function as a membrane-anchoring unit for other biomolecules.
Collapse
Affiliation(s)
- Munirah S Abd Rahim
- From the Chair of Biomolecular NMR Spectroscopy, Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Yevhen K Cherniavskyi
- the Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Calgary, Alberta T2N 1N4, Canada, and
| | - D Peter Tieleman
- the Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Calgary, Alberta T2N 1N4, Canada, and
| | - Sonja A Dames
- From the Chair of Biomolecular NMR Spectroscopy, Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany,
- the Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| |
Collapse
|
6
|
Rahim MSA, Sommer LAM, Wacker A, Schaad M, Dames SA. 1H, 15N, and 13C chemical shift assignments of the micelle immersed FAT C-terminal (FATC) domains of the human protein kinases ataxia-telangiectasia mutated (ATM) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) fused to the B1 domain of streptococcal protein G (GB1). BIOMOLECULAR NMR ASSIGNMENTS 2018; 12:149-154. [PMID: 29349619 DOI: 10.1007/s12104-018-9798-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/01/2018] [Indexed: 06/07/2023]
Abstract
FAT C-terminal (FATC) is a circa 33 residue-long domain. It controls the kinase functionality in phosphatidylinositol-3 kinase-related kinases (PIKKs). Recent NMR- and CD-monitored interaction studies indicated that the FATC domains of all PIKKs can interact with membrane mimetics albeit with different preferences for membrane properties such as surface charge and curvature. Thus they may generally act as membrane anchoring unit. Here, we present the 1H, 15N, and 13C chemical shift assignments of the DPC micelle immersed FATC domains of the human PIKKs ataxia-telangiectasia mutated (ATM, residues 3024-3056) and DNA protein kinase catalytic subunit (DNA-PKcs, residues 4096-4128), both fused to the 56 residue long B1 domain of Streptococcal protein G (GB1). Each fusion protein is 100 amino acids long and contains in the linking region between the GB1 tag and the FATC region a thrombin (LVPRGS) and an enterokinase (DDDDK) protease site. The assignments pave the route for the detailed structural characterization of the membrane mimetic bound states, which will help to better understand the role of the proper cellular localization at membranes for the function and regulation of PIKKs. The chemical shift assignment of the GB1 tag is useful for NMR spectroscopists developing new experiments or using GB1 otherwise for case studies in the field of in-cell NMR spectroscopy or protein folding. Moreover it is often used as purification tag. Earlier we showed already that GB1 does not interact with membrane mimetics and thus does not disturb the NMR monitoring of membrane mimetic interactions of attached proteins.
Collapse
Affiliation(s)
- Munirah S Abd Rahim
- Department of Chemistry, Biomolecular NMR Spectroscopy, Technische Universität München, Lichtenbergstr. 4, 85747, Garching, Germany
| | - Lisa A M Sommer
- Department of Chemistry, Biomolecular NMR Spectroscopy, Technische Universität München, Lichtenbergstr. 4, 85747, Garching, Germany
- Roche Diagnostics GmbH, Centralised and Point of Care Solutions, Nonnenwald 2, 82377, Penzberg, Germany
| | - Anja Wacker
- Department of Chemistry, Biomolecular NMR Spectroscopy, Technische Universität München, Lichtenbergstr. 4, 85747, Garching, Germany
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Martin Schaad
- Quintiles AG, Hochstrasse 50, 4053, Basel, Switzerland
| | - Sonja A Dames
- Department of Chemistry, Biomolecular NMR Spectroscopy, Technische Universität München, Lichtenbergstr. 4, 85747, Garching, Germany.
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.
| |
Collapse
|
7
|
De Cicco M, Milroy LG, Dames SA. Target of rapamycin FATC domain as a general membrane anchor: The FKBP-12 like domain of FKBP38 as a case study. Protein Sci 2017; 27:546-560. [PMID: 29024217 DOI: 10.1002/pro.3321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 01/11/2023]
Abstract
Increased efforts have been undertaken to better understand the formation of signaling complexes at cellular membranes. Since the preparation of proteins containing a transmembrane domain or a prenylation motif is generally challenging an alternative membrane anchoring unit that is easy to attach, water-soluble and binds to different membrane mimetics would find broad application. The 33-residue long FATC domain of yeast TOR1 (y1fatc) fulfills these criteria and binds to neutral and negatively charged micelles, bicelles, and liposomes. As a case study, we fused it to the FKBP506-binding region of the protein FKBP38 (FKBP38-BD) and used 1 H-15 N NMR spectroscopy to characterize localization of the chimeric protein to micelles, bicelles, and liposomes. Based on these and published data for y1fatc, its use as a C-terminally attachable membrane anchor for other proteins is compatible with a wide range of buffer conditions (pH circa 6-8.5, NaCl 0 to >150 mM, presence of reducing agents, different salts such as MgCl2 and CaCl2 ). The high water-solubility of y1fatc enables its use for titration experiments against a membrane-localized interaction partner of the fused target protein. Results from studies with peptides corresponding to the C-terminal 17-11 residues of the 33-residue long domain by 1D 1 H NMR and CD spectroscopy indicate that they still can interact with membrane mimetics. Thus, they may be used as membrane anchors if the full y1fatc sequence is disturbing or if a chemically synthesized y1fatc peptide shall be attached by native chemical ligation, for example, unlabeled peptide to 15 N-labeled target protein for NMR studies.
Collapse
Affiliation(s)
- Maristella De Cicco
- Department of Chemistry, Technische Universität München, Biomolecular NMR Spectroscopy, Garching, Germany
| | - Lech-G Milroy
- Department of Biomedical Technology, Laboratory of Chemical Biology, Technische Universiteit Eindhoven, Eindhoven, The Netherlands
| | - Sonja A Dames
- Department of Chemistry, Technische Universität München, Biomolecular NMR Spectroscopy, Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
8
|
Hancock SE, Poad BL, Batarseh A, Abbott SK, Mitchell TW. Advances and unresolved challenges in the structural characterization of isomeric lipids. Anal Biochem 2017; 524:45-55. [DOI: 10.1016/j.ab.2016.09.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/11/2016] [Accepted: 09/16/2016] [Indexed: 12/25/2022]
|
9
|
Peng B, Ding XY, Sun C, Yang YN, Gao YJ, Zhao X. The chain order of binary unsaturated lipid bilayers modulated by aromatic-residue-containing peptides: an ATR-FTIR spectroscopy study. RSC Adv 2017. [DOI: 10.1039/c7ra01145h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
It highlights the importance of aromatic residues in influencing peptide binding to the membrane, demonstrates that the stability of the membranes depends on the lipid composition and the sequence, structural context, and orientation of the peptides.
Collapse
Affiliation(s)
- Bo Peng
- Shanghai Key Laboratory of Magnetic Resonance
- Department of Physics
- School of Physics and Materials Science
- East China Normal University
- Shanghai 200062
| | - Xiao-Yan Ding
- Shanghai Key Laboratory of Magnetic Resonance
- Department of Physics
- School of Physics and Materials Science
- East China Normal University
- Shanghai 200062
| | - Chao Sun
- Shanghai Key Laboratory of Magnetic Resonance
- Department of Physics
- School of Physics and Materials Science
- East China Normal University
- Shanghai 200062
| | - Ya-Nan Yang
- Shanghai Key Laboratory of Magnetic Resonance
- Department of Physics
- School of Physics and Materials Science
- East China Normal University
- Shanghai 200062
| | - Yu-Jiao Gao
- Shanghai Key Laboratory of Magnetic Resonance
- Department of Physics
- School of Physics and Materials Science
- East China Normal University
- Shanghai 200062
| | - Xin Zhao
- Shanghai Key Laboratory of Magnetic Resonance
- Department of Physics
- School of Physics and Materials Science
- East China Normal University
- Shanghai 200062
| |
Collapse
|
10
|
Abstract
ATR (Ataxia Telangiectasia and Rad3-related) is a member of the Phosphatidylinositol 3-kinase-related kinases (PIKKs) family, amongst six other vertebrate proteins known so far. ATR is indispensable for cell survival and its essential role is in sensing DNA damage and initiating appropriate repair responses. In this review we highlight emerging and recent observations connecting ATR to alternative roles in controlling the nuclear envelope, nucleolus, centrosome and other organelles in response to both internal and external stress conditions. We propose that ATR functions control cell plasticity by sensing structural deformations of different cellular components, including DNA and initiating appropriate repair responses, most of which are yet to be understood completely.
Collapse
Affiliation(s)
- Gururaj Rao Kidiyoor
- Istituto FIRC di Oncologia Molecolare, Milan, Italy; University of Milan, Milan, Italy
| | - Amit Kumar
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, M.G. Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), India
| | - Marco Foiani
- Istituto FIRC di Oncologia Molecolare, Milan, Italy; University of Milan, Milan, Italy.
| |
Collapse
|
11
|
De Cicco M, Rahim MSA, Dames SA. Regulation of the Target of Rapamycin and Other Phosphatidylinositol 3-Kinase-Related Kinases by Membrane Targeting. MEMBRANES 2015; 5:553-75. [PMID: 26426064 PMCID: PMC4703999 DOI: 10.3390/membranes5040553] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 09/24/2015] [Indexed: 01/05/2023]
Abstract
Phosphatidylinositol 3-kinase-related kinases (PIKKs) play vital roles in the regulation of cell growth, proliferation, survival, and consequently metabolism, as well as in the cellular response to stresses such as ionizing radiation or redox changes. In humans six family members are known to date, namely mammalian/mechanistic target of rapamycin (mTOR), ataxia-telangiectasia mutated (ATM), ataxia- and Rad3-related (ATR), DNA-dependent protein kinase catalytic subunit (DNA-PKcs), suppressor of morphogenesis in genitalia-1 (SMG-1), and transformation/transcription domain-associated protein (TRRAP). All fulfill rather diverse functions and most of them have been detected in different cellular compartments including various cellular membranes. It has been suggested that the regulation of the localization of signaling proteins allows for generating a locally specific output. Moreover, spatial partitioning is expected to improve the reliability of biochemical signaling. Since these assumptions may also be true for the regulation of PIKK function, the current knowledge about the regulation of the localization of PIKKs at different cellular (membrane) compartments by a network of interactions is reviewed. Membrane targeting can involve direct lipid-/membrane interactions as well as interactions with membrane-anchored regulatory proteins, such as, for example, small GTPases, or a combination of both.
Collapse
Affiliation(s)
- Maristella De Cicco
- Department of Chemistry, Biomolecular NMR Spectroscopy, Technische Universität München, Lichtenbergstr. 4, Garching 85747, Germany.
| | - Munirah S Abd Rahim
- Department of Chemistry, Biomolecular NMR Spectroscopy, Technische Universität München, Lichtenbergstr. 4, Garching 85747, Germany.
| | - Sonja A Dames
- Department of Chemistry, Biomolecular NMR Spectroscopy, Technische Universität München, Lichtenbergstr. 4, Garching 85747, Germany.
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg 85764, Germany.
| |
Collapse
|
12
|
Membrane curvature modulation of protein activity determined by NMR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:220-8. [DOI: 10.1016/j.bbamem.2014.05.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/28/2014] [Accepted: 05/04/2014] [Indexed: 02/04/2023]
|
13
|
Rivera-Calzada A, López-Perrote A, Melero R, Boskovic J, Muñoz-Hernández H, Martino F, Llorca O. Structure and Assembly of the PI3K-like Protein Kinases (PIKKs) Revealed by Electron Microscopy. AIMS BIOPHYSICS 2015. [DOI: 10.3934/biophy.2015.2.36] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
14
|
Baretić D, Williams RL. PIKKs--the solenoid nest where partners and kinases meet. Curr Opin Struct Biol 2014; 29:134-42. [PMID: 25460276 DOI: 10.1016/j.sbi.2014.11.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 11/15/2014] [Accepted: 11/18/2014] [Indexed: 11/29/2022]
Abstract
The recent structure of a truncated mTOR in a complex with mLST8 has provided a basic framework for understanding all of the phosphoinositide 3-kinase (PI3K)-related kinases (PIKKs): mTOR, ATM, ATR, SMG-1, TRRAP and DNA-PK. The PIKK kinase domain is encircled by the FAT domain, a helical solenoid that is present in all PIKKs. PIKKs also have an extensive helical solenoid N-terminal to the FAT domain for which there is limited structural information. This N-terminal helical solenoid is essential for binding proteins that associate with the PIKKs to regulate their activity and cellular localization.
Collapse
Affiliation(s)
- Domagoj Baretić
- Laboratory of Molecular Biology, Medical Research Council, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Roger L Williams
- Laboratory of Molecular Biology, Medical Research Council, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
15
|
Sommer LAM, Janke JJ, Bennett WFD, Bürck J, Ulrich AS, Tieleman DP, Dames SA. Characterization of the Immersion Properties of the Peripheral Membrane Anchor of the FATC Domain of the Kinase “Target of Rapamycin” by NMR, Oriented CD Spectroscopy, and MD Simulations. J Phys Chem B 2014; 118:4817-31. [DOI: 10.1021/jp501533d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lisa A. M. Sommer
- Chair
of Biomolecular NMR Spectroscopy, Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - J. Joel Janke
- Department
of Biological Sciences and Institute for Biocomplexity and Informatics, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - W. F. Drew Bennett
- Department
of Biological Sciences and Institute for Biocomplexity and Informatics, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Jochen Bürck
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), P.O.B.
3640, 76021 Karlsruhe, Germany
| | - Anne S. Ulrich
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), P.O.B.
3640, 76021 Karlsruhe, Germany
| | - D. Peter Tieleman
- Department
of Biological Sciences and Institute for Biocomplexity and Informatics, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Sonja A. Dames
- Chair
of Biomolecular NMR Spectroscopy, Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
- Institute
of Structural Biology, Helmholtz Zentrum München, Ingolstädter
Landstrasse 1, 85764 Neuherberg, Germany
| |
Collapse
|
16
|
Sommer LAM, Dames SA. Characterization of residue-dependent differences in the peripheral membrane association of the FATC domain of the kinase 'target of rapamycin' by NMR and CD spectroscopy. FEBS Lett 2014; 588:1755-66. [PMID: 24704685 DOI: 10.1016/j.febslet.2014.03.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/14/2014] [Accepted: 03/17/2014] [Indexed: 10/25/2022]
Abstract
The conserved C-terminal FATC domain of the kinase 'target of rapamycin' is important for its regulation and was suggested to contain a peripheral membrane anchor. Here, we present the characterization of the interactions of the yeast TOR1 FATC domain (2438-2470=y1fatc) and 15 mutants with membrane mimetic micelles, bicelles, and small unilamellar vesicles (SUVs) by NMR and CD spectroscopy. Replacement of up to 6-7 residues did not result in a significant abrogation of the association with micelles or bicelles. However, replacement of only one residue could result in an impairment of the interaction with SUVs that are usually used at low concentrations. Some mutants not binding liposomes may be introduced in full-length TOR for future functional and localization studies in vivo.
Collapse
Affiliation(s)
- Lisa A M Sommer
- Chair of Biomolecular NMR Spectroscopy, Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Sonja A Dames
- Chair of Biomolecular NMR Spectroscopy, Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| |
Collapse
|