1
|
Simpson GA, Rezende IF, da Silva Peixoto A, de Oliveira Soares IB, Barbosa JARG, de Freitas SM, Valadares NF. Crystal structure and interconversion of monomers and domain-swapped dimers of the walnut tree phytocystatin. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140975. [PMID: 38056804 DOI: 10.1016/j.bbapap.2023.140975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Biotechnological applications of phytocystatins have garnered significant interest due to their potential applications in crop protection and improve crop resistance to abiotic stress factors. Cof1 and Wal1 are phytocystatins derived from Coffea arabica and Juglans regia, respectively. These plants hold significant economic value due to coffee's global demand and the walnut tree's production of valuable timber and widely consumed walnuts with culinary and nutritional benefits. The study involved the heterologous expression in E. coli Lemo 21(DE3), purification by immobilized metal ion affinity and size exclusion chromatography, and biophysical characterization of both phytocystatins, focusing on isolating and interconverting their monomers and dimers. The crystal structure of the domain-swapped dimer of Wal1 was determined revealing two domain-swapped dimers in the asymmetric unit, an arrangement reminiscent of the human cystatin C structure. Alphafold models of monomers and Alphafold-Multimer models of domain-swapped dimers of Cof1 and Wal1 were analyzed in the context of the crystal structure. The methodology and data presented here contribute to a deeper understanding of the oligomerization mechanisms of phytocystatins and their potential biotechnological applications in agriculture.
Collapse
Affiliation(s)
- Gisele Alvarenga Simpson
- Laboratory of Molecular Biophysics, Department of Cellular Biology, University of Brasília, Brasília, Brazil
| | - Isabela Fernandes Rezende
- Laboratory of Molecular Biophysics, Department of Cellular Biology, University of Brasília, Brasília, Brazil
| | - Alencar da Silva Peixoto
- Laboratory of Molecular Biophysics, Department of Cellular Biology, University of Brasília, Brasília, Brazil
| | | | | | - Sônia Maria de Freitas
- Laboratory of Molecular Biophysics, Department of Cellular Biology, University of Brasília, Brasília, Brazil
| | - Napoleão Fonseca Valadares
- Laboratory of Molecular Biophysics, Department of Cellular Biology, University of Brasília, Brasília, Brazil..
| |
Collapse
|
2
|
Żyła A, Martel A, Jurczak P, Moliński A, Szymańska A, Kozak M. Human cystatin C induces the disaggregation process of selected amyloid beta peptides: a structural and kinetic view. Sci Rep 2023; 13:20833. [PMID: 38012338 PMCID: PMC10682421 DOI: 10.1038/s41598-023-47514-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD) and various types of amyloidosis, are incurable; therefore, understanding the mechanisms of amyloid decomposition is crucial to develop an effective drug against them for future therapies. It has been reported that one out of three people over the age of 85 are suffering from dementia as a comorbidity to AD. Amyloid beta (Aβ), the hallmark of AD, transforms structurally from monomers into β-stranded aggregates (fibrils) via multiple oligomeric states. Astrocytes in the central nervous system secrete the human cystatin C protein (HCC) in response to various proteases and cytokines. The codeposition of Aβ and HCC in the brains of patients with AD led to the hypothesis that cystatin C is implicated in the disease process. In this study, we investigate the intermolecular interactions between different atomic structures of fibrils formed by Aβ peptides and HCC to understand the pathological aggregation of these polypeptides into neurotoxic oligomers and then amyloid plaques. To characterize the interactions between Aβ and HCC, we used a complementary approach based on the combination of small-angle neutron scattering analysis, atomic force microscopy and computational modelling, allowing the exploration of the structures of multicomponent protein complexes. We report here an optimized protocol to study that interaction. The results show a dependency of the sequence length of the Aβ peptide on the ability of the associated HCC to disaggregate it.
Collapse
Affiliation(s)
- Adriana Żyła
- Department of Biomedical Physics, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
- NanoBioMedical Centre, Adam Mickiewicz University, Poznań, Poland
| | - Anne Martel
- Large Scale Structures, ILL Neutrons for Society, Institute Laue-Langevin, Grenoble, France
| | - Przemysław Jurczak
- Laboratory of Medical Chemistry, Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Augustyn Moliński
- Department of Biomedical Physics, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
- NanoBioMedical Centre, Adam Mickiewicz University, Poznań, Poland
| | - Aneta Szymańska
- Laboratory of Medical Chemistry, Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Maciej Kozak
- Department of Biomedical Physics, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland.
- SOLARIS National Synchrotron Radiation Centre, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
3
|
Wojciechowska D, Taube M, Rucińska K, Maksim J, Kozak M. Oligomerization of Human Cystatin C—An Amyloidogenic Protein: An Analysis of Small Oligomeric Subspecies. Int J Mol Sci 2022; 23:ijms232113441. [PMID: 36362228 PMCID: PMC9656228 DOI: 10.3390/ijms232113441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Human cystatin C (HCC), an amyloidogenic protein, forms dimers and higher oligomers (trimers, tetramers and donut like large oligomers) via a domain-swapping mechanism. The aim of this study was the characterization of the HCC oligomeric states observed within the pH range from 2.2 to 10.0 and also in conditions promoting oligomerization. The HCC oligomeric forms obtained in different conditions were characterized using size exclusion chromatography, dynamic light scattering and small-angle X-ray scattering. The marked ability of HCC to form tetramers at low pH (2.3 or 3.0) and dimers at pH 4.0–5.0 was observed. HCC remains monomeric at pH levels above 6.0. Based on the SAXS data, the structure of the HCC tetramer was proposed. Changes in the environment (from acid to neutral) induced a breakdown of the HCC tetramers to dimers. The tetrameric forms of human cystatin C are formed by the association of the dimers without a domain-swapping mechanism. These observations were confirmed by their dissociation to dimers at pH 7.4.
Collapse
Affiliation(s)
- Daria Wojciechowska
- Department of Biomedical Physics, Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Michał Taube
- Department of Biomedical Physics, Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Karolina Rucińska
- Department of Biomedical Physics, Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Joanna Maksim
- Department of Biomedical Physics, Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Maciej Kozak
- Department of Biomedical Physics, Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, 30-392 Kraków, Poland
- Correspondence:
| |
Collapse
|
4
|
Yuan Z, Qu Z, Duan B, Wang T, Xu J, Xia B. Is amyloid fibrillation related to 3D domain swapping for the C-terminal domain of SARS-CoV main protease? Int J Biol Macromol 2021; 197:68-76. [PMID: 34953805 PMCID: PMC8694786 DOI: 10.1016/j.ijbiomac.2021.12.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/02/2021] [Accepted: 12/12/2021] [Indexed: 12/02/2022]
Abstract
The C-terminal domain of SARS-CoV main protease (Mpro-C) can form 3D domain-swapped dimer by exchanging the α1-helices fully buried inside the protein hydrophobic core, under non-denaturing conditions. Here, we report that Mpro-C can also form amyloid fibrils under the 3D domain-swappable conditions in vitro, and the fibrils are not formed through runaway/propagated domain swapping. It is found that there are positive correlations between the rates of domain swapping dimerization and amyloid fibrillation at different temperatures, and for different mutants. However, some Mpro-C mutants incapable of 3D domain swapping can still form amyloid fibrils, indicating that 3D domain swapping is not essential for amyloid fibrillation. Furthermore, NMR H/D exchange data and molecular dynamics simulation results suggest that the protofibril core region tends to unpack at the early stage of 3D domain swapping, so that the amyloid fibrillation can proceed during the 3D domain swapping process. We propose that 3D domain swapping makes it possible for the unpacking of the amyloidogenic fragment of the protein and thus accelerates the amyloid fibrillation process kinetically, which explains the well-documented correlations between amyloid fibrillation and 3D domain swapping observed in many proteins.
Collapse
Affiliation(s)
- Zhiliang Yuan
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China; School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhi Qu
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China; College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Bo Duan
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China; College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tianyi Wang
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China; College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiajun Xu
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China; School of Life Sciences, Peking University, Beijing 100871, China
| | - Bin Xia
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China; School of Life Sciences, Peking University, Beijing 100871, China; College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
5
|
NAC blocks Cystatin C amyloid complex aggregation in a cell system and in skin of HCCAA patients. Nat Commun 2021; 12:1827. [PMID: 33758187 PMCID: PMC7988011 DOI: 10.1038/s41467-021-22120-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Abstract
Hereditary cystatin C amyloid angiopathy is a dominantly inherited disease caused by a leucine to glutamine variant of human cystatin C (hCC). L68Q-hCC forms amyloid deposits in brain arteries associated with micro-infarcts, leading ultimately to paralysis, dementia and death in young adults. To evaluate the ability of molecules to interfere with aggregation of hCC while informing about cellular toxicity, we generated cells that produce and secrete WT and L68Q-hCC and have detected high-molecular weight complexes formed from the mutant protein. Incubations of either lysate or supernatant containing L68Q-hCC with reducing agents glutathione or N-acetyl-cysteine (NAC) breaks oligomers into monomers. Six L68Q-hCC carriers taking NAC had skin biopsies obtained to determine if hCC deposits were reduced following NAC treatment. Remarkably, ~50–90% reduction of L68Q-hCC staining was observed in five of the treated carriers suggesting that L68Q-hCC is a clinical target for reducing agents. HCCAA is a dominantly inherited disease which causes brain hemorrhages as a result of mutant cystatin C aggregation in carriers. Here, the authors show that n- acetyl cysteine can prevent aggregation of mutant protein in a cell model system and reverse protein deposition in the skin of mutation-carrying subjects.
Collapse
|
6
|
Chrabąszczewska M, Sieradzan AK, Rodziewicz-Motowidło S, Grubb A, Dobson CM, Kumita JR, Kozak M. Structural Characterization of Covalently Stabilized Human Cystatin C Oligomers. Int J Mol Sci 2020; 21:ijms21165860. [PMID: 32824145 PMCID: PMC7461555 DOI: 10.3390/ijms21165860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 11/16/2022] Open
Abstract
Human cystatin C (HCC), a cysteine-protease inhibitor, exists as a folded monomer under physiological conditions but has the ability to self-assemble via domain swapping into multimeric states, including oligomers with a doughnut-like structure. The structure of the monomeric HCC has been solved by X-ray crystallography, and a covalently linked version of HCC (stab-1 HCC) is able to form stable oligomeric species containing 10-12 monomeric subunits. We have performed molecular modeling, and in conjunction with experimental parameters obtained from atomic force microscopy (AFM), transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) measurements, we observe that the structures are essentially flat, with a height of about 2 nm, and the distance between the outer edge of the ring and the edge of the central cavity is ~5.1 nm. These dimensions correspond to the height and diameter of one stab-1 HCC subunit and we present a dodecamer model for stabilized cystatin C oligomers using molecular dynamics simulations and experimentally measured parameters. Given that oligomeric species in protein aggregation reactions are often transient and very highly heterogeneous, the structural information presented here on these isolated stab-1 HCC oligomers may be useful to further explore the physiological relevance of different structural species of cystatin C in relation to protein misfolding disease.
Collapse
Affiliation(s)
- Magdalena Chrabąszczewska
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland;
- Department of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Adam K. Sieradzan
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (A.K.S.); (S.R.-M.)
| | | | - Anders Grubb
- Department of Clinical Chemistry, Lund University Hospital, S-22185 Lund, Sweden;
| | - Christopher M. Dobson
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK;
| | - Janet R. Kumita
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK;
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
- Correspondence: (J.R.K.); (M.K.)
| | - Maciej Kozak
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland;
- Correspondence: (J.R.K.); (M.K.)
| |
Collapse
|
7
|
Zhang Y, Zhao J, He S, Cao X. Soluble Expression of Recombinant Human Cystatin C and Comparison of the Ni Column and Magnetic Bead Purification. Protein J 2019; 39:85-95. [PMID: 31625059 DOI: 10.1007/s10930-019-09873-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cystatin C, also known as γ-trace or post-γ-globulin, is a cysteine protease inhibitor from the cystatin superfamily. It is usually used as a marker of the glomerular filtration rate owing to its low molecular weight and constant secretion. The recently available methods for cystatin C preparation have low outputs. Hence, a productive preparation system is urgently required. In this study, a 6 × His-tag coupled with a thrombin cleavage site was fused to the C-terminus of cystatin C, and the protein was well expressed in Escherichia coli after optimization. Then, two different systems were used to obtain no-tag cystatin C: a traditional nickel (Ni)-column system and a subtly Ni magnetic bead system. The column system was more commonly used, and the magnetic bead system was more convenient. Cystatin C (purity > 97%) was successfully obtained, and the yields in both the systems were higher than those in previous studies. Further, the proper folding status and bioactivity of recombinant cystatin C were confirmed using the papain inhibition assay, dynamic light scattering, and circular dichroism spectroscopy.
Collapse
Affiliation(s)
- Yibin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jian Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Shiyu He
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xuni Cao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
8
|
Maszota-Zieleniak M, Jurczak P, Orlikowska M, Zhukov I, Borek D, Otwinowski Z, Skowron P, Pietralik Z, Kozak M, Szymańska A, Rodziewicz-Motowidło S. NMR and crystallographic structural studies of the extremely stable monomeric variant of human cystatin C with single amino acid substitution. FEBS J 2019; 287:361-376. [PMID: 31330077 DOI: 10.1111/febs.15010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/14/2019] [Accepted: 07/19/2019] [Indexed: 02/02/2023]
Abstract
Human cystatin C (hCC), a member of the superfamily of papain-like cysteine protease inhibitors, is the most widespread cystatin in human body fluids. This small protein, in addition to its physiological function, is involved in various diseases, including cerebral amyloid angiopathy, cerebral hemorrhage, stroke, and dementia. Physiologically active hCC is a monomer. However, all structural studies based on crystallization led to the dimeric structure formed as a result of a three-dimensional exchange of the protein domains (3D domain swapping). The monomeric structure was obtained only for hCC variant V57N and for the protein stabilized by an additional disulfide bridge. With this study, we extend the number of models of monomeric hCC by an additional hCC variant with a single amino acid substitution in the flexible loop L1. The V57G variant was chosen for the X-ray and NMR structural analysis due to its exceptional conformational stability in solution. In this work, we show for the first time the structural and dynamics studies of human cystatin C variant in solution. We were also able to compare these data with the crystal structure of the hCC V57G and with other cystatins. The overall cystatin fold is retained in the solute form. Additionally, structural information concerning the N terminus was obtained during our studies and presented for the first time. DATABASE: Crystallographic structure: structural data are available in PDB databases under the accession number 6ROA. NMR structure: structural data are available in PDB and BMRB databases under the accession numbers 6RPV and 34399, respectively.
Collapse
Affiliation(s)
| | | | | | - Igor Zhukov
- NanoBioMedical Centre, Adam Mickiewicz University, Poznan, Poland.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Dominika Borek
- Department of Biophysics and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zbyszek Otwinowski
- Department of Biophysics and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Piotr Skowron
- Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Zuzanna Pietralik
- Department of Macromolecular Physics, Adam Mickiewicz University, Poznan, Poland
| | - Maciej Kozak
- Department of Macromolecular Physics, Adam Mickiewicz University, Poznan, Poland
| | | | | |
Collapse
|
9
|
Gielnik M, Pietralik Z, Zhukov I, Szymańska A, Kwiatek WM, Kozak M. PrP (58-93) peptide from unstructured N-terminal domain of human prion protein forms amyloid-like fibrillar structures in the presence of Zn 2+ ions. RSC Adv 2019; 9:22211-22219. [PMID: 35519468 PMCID: PMC9066832 DOI: 10.1039/c9ra01510h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/07/2019] [Indexed: 12/12/2022] Open
Abstract
Many transition metal ions modulate the aggregation of different amyloid peptides. Substoichiometric zinc concentrations can inhibit aggregation, while an excess of zinc can accelerate the formation of cytotoxic fibrils. In this study, we report the fibrillization of the octarepeat domain to amyloid-like structures. Interestingly, this self-assembling process occurred only in the presence of Zn(ii) ions. The formed peptide aggregates are able to bind amyloid specific dyes thioflavin T and Congo red. Atomic force microscopy and transmission electron microscopy revealed the formation of long, fibrillar structures. X-ray diffraction and Fourier transform infrared spectroscopy studies of the formed assemblies confirmed the presence of cross-β structure. Two-component analysis of synchrotron radiation SAXS data provided the evidence for a direct decrease in monomeric peptide species content and an increase in the fraction of aggregates as a function of Zn(ii) concentration. These results could shed light on Zn(ii) as a toxic agent and on the metal ion induced protein misfolding in prion diseases.
Collapse
Affiliation(s)
- Maciej Gielnik
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University Uniwersytetu Poznańskiego 2 PL 61-614 Poznań Poland
| | - Zuzanna Pietralik
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University Uniwersytetu Poznańskiego 2 PL 61-614 Poznań Poland
| | - Igor Zhukov
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences PL 02-106 Warszawa Poland
- NanoBioMedical Centre, Adam Mickiewicz University PL 61-614 Poznań Poland
| | - Aneta Szymańska
- Department of Biomedical Chemistry, Faculty of Chemistry, Gdańsk University PL 80-308 Gdańsk Poland
| | - Wojciech M Kwiatek
- Institute of Nuclear Physics Polish Academy of Sciences PL 31-342 Krakow Poland
| | - Maciej Kozak
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University Uniwersytetu Poznańskiego 2 PL 61-614 Poznań Poland
- Joint Laboratory for SAXS Studies, Faculty of Physics, Adam Mickiewicz University PL 61-614 Poznań Poland
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University PL 30-392 Kraków Poland
| |
Collapse
|
10
|
Taube M, Pietralik Z, Szymanska A, Szutkowski K, Clemens D, Grubb A, Kozak M. The domain swapping of human cystatin C induced by synchrotron radiation. Sci Rep 2019; 9:8548. [PMID: 31189973 PMCID: PMC6561922 DOI: 10.1038/s41598-019-44811-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/13/2019] [Indexed: 02/04/2023] Open
Abstract
Domain swapping is observed for many proteins with flexible conformations. This phenomenon is often associated with the development of conformational diseases. Importantly, domain swapping has been observed for human cystatin C (HCC), a protein capable of forming amyloid deposits in brain arteries. In this study, the ability of short exposure to high-intensity X-ray radiation to induce domain swapping in solutions of several HCC variants (wild-type HCC and V57G, V57D, V57N, V57P, and L68V mutants) was determined. The study was conducted using time-resolved small-angle X-ray scattering (TR-SAXS) synchrotron radiation. The protein samples were also analysed using small-angle neutron scattering and NMR diffusometry. Exposing HCC to synchrotron radiation (over 50 ms) led to a gradual increase in the dimeric fraction, and for exposures longer than 150 ms, the oligomer fraction was dominant. In contrast, the non-irradiated protein solutions, apart from the V57P variant, were predominantly monomeric (e.g., V57G) or in monomer/dimer equilibrium. This work might represent the first observation of domain swapping induced by high-intensity X-rays.
Collapse
Affiliation(s)
- Michal Taube
- Department of Macromolecular Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland
- Joint Laboratory for SAXS Studies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland
| | - Zuzanna Pietralik
- Department of Macromolecular Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland
| | - Aneta Szymanska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Kosma Szutkowski
- Department of Macromolecular Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland
- NanoBioMedical Centre at Adam Mickiewicz University in Poznań, Wszechnicy Piastowskiej 3, 61-614, Poznań, Poland
| | - Daniel Clemens
- Helmholtz-Zentrum Berlin für Materialien und Energie Lise-Meitner-Campus Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Anders Grubb
- Department of Clinical Chemistry, Lund University Hospital, S-22185, Lund, Sweden
| | - Maciej Kozak
- Department of Macromolecular Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland.
- Joint Laboratory for SAXS Studies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland.
| |
Collapse
|
11
|
Tovar-Anaya DO, Vera-Robles LI, Vieyra-Eusebio MT, García-Gutiérrez P, Reyes-Espinosa F, Hernández-Arana A, Arroyo-Reyna JA, Zubillaga RA. Stabilized Human Cystatin C Variant L47C/G69C Is a Better Reporter Than the Wild-Type Inhibitor for Characterizing the Thermodynamics of Binding to Cysteine Proteases. Protein J 2019; 38:598-607. [PMID: 31119598 DOI: 10.1007/s10930-019-09839-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Human cystatin C (HCC) binds and inhibits all types of cysteine proteases from the papain family, including cathepsins (a group of enzymes that participate in a variety of physiological processes), which are some of its natural targets. The affinities of diverse proteases for HCC, expressed as equilibrium binding constants (Kb), range from 106 to 1014 M-1. Isothermal titration calorimetry (ITC) is one of the most useful techniques to characterize the thermodynamics of molecular associations, making it possible to dissect the binding free energy into its enthalpic and entropic components. This information, together with the structural changes that occur during the different associations, could enable better understanding of the molecular basis of affinity. Notwithstanding the high sensitivity of modern calorimeters, ITC requires protein concentrations in at least the 10-100 μM range to obtain reliable data, and it is known that HCC forms oligomers in this concentration range. We present herein a comparative study of the structural, thermal stability, and oligomerization properties of HCC and its stabilized variant (sHCC) L47C/G69C (which possesses an additional disulfide bridge) as well as their binding thermodynamics to the protease chymopapain, analyzed by ITC. The results show that, because sHCC remains monomeric, it is a better reporter than wild-type HCC to characterize the thermodynamics of binding to cysteine proteases.
Collapse
Affiliation(s)
- David O Tovar-Anaya
- Departamento de Química, Universidad Autónoma Metropolitana- Iztapalapa, Ciudad De México, 09340, Mexico
| | - L Irais Vera-Robles
- Departamento de Química, Universidad Autónoma Metropolitana- Iztapalapa, Ciudad De México, 09340, Mexico
| | - M Teresa Vieyra-Eusebio
- Departamento de Química, Universidad Autónoma Metropolitana- Iztapalapa, Ciudad De México, 09340, Mexico
| | - Ponciano García-Gutiérrez
- Departamento de Química, Universidad Autónoma Metropolitana- Iztapalapa, Ciudad De México, 09340, Mexico
| | - Francisco Reyes-Espinosa
- Departamento de Química, Universidad Autónoma Metropolitana- Iztapalapa, Ciudad De México, 09340, Mexico
| | - Andrés Hernández-Arana
- Departamento de Química, Universidad Autónoma Metropolitana- Iztapalapa, Ciudad De México, 09340, Mexico
| | - J Alfonso Arroyo-Reyna
- Departamento de Química, Universidad Autónoma Metropolitana- Iztapalapa, Ciudad De México, 09340, Mexico
| | - Rafael A Zubillaga
- Departamento de Química, Universidad Autónoma Metropolitana- Iztapalapa, Ciudad De México, 09340, Mexico.
| |
Collapse
|
12
|
Behrendt I, Prądzińska M, Spodzieja M, Czaplewska P, Kołodziejczyk AS, Szymańska A, Kasprzykowski F, Lundström SL, Zubarev RA, Rodziewicz-Motowidło S. Identification and characterization of antibodies elicited by human cystatin C fragment. J Mol Recognit 2017; 31. [PMID: 29205549 DOI: 10.1002/jmr.2689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/23/2017] [Accepted: 10/28/2017] [Indexed: 11/11/2022]
Abstract
Amyloid formation is associated with a number of neurodegenerative diseases that affect the independence and quality of life of aging populations. One of rather atypical, occurring at a young age amyloidosis is hereditary cystatin C amyloid angiopathy (HCCAA) related to aggregation of L68Q variant of human cystatin C (hCC). Human cystatin C plays a very important role in many aspects of human health; however, its amyloidogenic properties manifested in HCCAA present a real, lethal threat to some populations and any work on factors that can affect possible influencing hCC aggregation is not to overestimate. It was proved that interaction of hCC with monoclonal antibodies suppresses significantly hCC dimerization process. Therefore, immunotherapy seems to be the right approach toward possible HCCAA treatment. In this work, the hCC fragment encompassing residue 60-70 (in 2 variants: linear peptide and multiple antigenic peptide) was used as an immunogen in rabbit immunization. As a result, specific anti-hCC antibodies were found in both rabbit sera. Surprisingly, rabbit antibodies were obtained after immunization with only a short peptide. The obtained antibodies were characterized, and their influence on the aggregation propensity of the hCC molecules was evaluated. The antibodies turned out not to have any significant influence on the cystatin C dimerization process. Nevertheless, we hope that antibodies elicited in rabbits by other hCC fragments could lead to elaboration of effective treatment against HCCAA.
Collapse
Affiliation(s)
| | | | | | - Paulina Czaplewska
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | | | | | | | - Susanna L Lundström
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry, Karolinska Institutet, Stockholm, Sweden
| | - Roman A Zubarev
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
13
|
Perlenfein TJ, Mehlhoff JD, Murphy RM. Insights into the mechanism of cystatin C oligomer and amyloid formation and its interaction with β-amyloid. J Biol Chem 2017; 292:11485-11498. [PMID: 28487367 DOI: 10.1074/jbc.m117.786558] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/21/2017] [Indexed: 01/12/2023] Open
Abstract
Cystatin C (CysC) is a versatile and ubiquitously-expressed member of the cysteine protease inhibitor family that is present at notably high concentrations in cerebrospinal fluid. Under mildly denaturing conditions, CysC forms inactive domain-swapped dimers. A destabilizing mutation, L68Q, increases the rate of domain-swapping and causes a fatal amyloid disease, hereditary cystatin C amyloid angiopathy. Wild-type (wt) CysC will also aggregate into amyloid fibrils under some conditions. Propagated domain-swapping has been proposed as the mechanism by which CysC fibrils grow. We present evidence that a CysC mutant, V57N, stabilized against domain-swapping, readily forms fibrils, contradicting the propagated domain-swapping hypothesis. Furthermore, in physiological buffer, wt CysC can form oligomers without undergoing domain-swapping. These non-swapped oligomers are identical in secondary structure to CysC monomers and completely retain protease inhibitory activity. However, unlike monomers or dimers, the oligomers bind fluorescent dyes that indicate they have characteristics of pre-amyloid aggregates. Although these oligomers appear to be a pre-amyloid assembly, they are slower than CysC monomers to form fibrils. Fibrillation of CysC therefore likely initiates from the monomer and does not require domain-swapping. The non-swapped oligomers likely represent a dead-end offshoot of the amyloid pathway and must dissociate to monomers prior to rearranging to amyloid fibrils. These prefibrillar CysC oligomers were potent inhibitors of aggregation of the Alzheimer's-related peptide, β-amyloid. This result illustrates an example where heterotypic interactions between pre-amyloid oligomers prevent the homotypic interactions that would lead to mature amyloid fibrils.
Collapse
Affiliation(s)
- Tyler J Perlenfein
- From the Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706
| | - Jacob D Mehlhoff
- From the Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706
| | - Regina M Murphy
- From the Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
14
|
Jurczak P, Groves P, Szymanska A, Rodziewicz-Motowidlo S. Human cystatin C monomer, dimer, oligomer, and amyloid structures are related to health and disease. FEBS Lett 2016; 590:4192-4201. [DOI: 10.1002/1873-3468.12463] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/10/2016] [Accepted: 10/14/2016] [Indexed: 12/17/2022]
Affiliation(s)
| | - Patrick Groves
- Department of Biomedical Chemistry; University of Gdansk; Poland
| | - Aneta Szymanska
- Department of Biomedical Chemistry; University of Gdansk; Poland
| | | |
Collapse
|
15
|
Jastrzebska K, Felcyn E, Kozak M, Szybowicz M, Buchwald T, Pietralik Z, Jesionowski T, Mackiewicz A, Dams-Kozlowska H. The method of purifying bioengineered spider silk determines the silk sphere properties. Sci Rep 2016; 6:28106. [PMID: 27312998 PMCID: PMC4911573 DOI: 10.1038/srep28106] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/31/2016] [Indexed: 12/31/2022] Open
Abstract
Bioengineered spider silks are a biomaterial with great potential for applications in biomedicine. They are biocompatible,biodegradable and can self-assemble into films, hydrogels, scaffolds, fibers, capsules and spheres. A novel, tag-free, bioengineered spider silk named MS2(9x) was constructed. It is a 9-mer of the consensus motif derived from MaSp2–the spidroin of Nephila clavipes dragline silk. Thermal and acidic extraction methods were used to purify MS2(9x). Both purification protocols gave a similar quantity and quality of soluble silk; however, they differed in the secondary structure and zeta potential value. Spheres made of these purified variants differed with regard to critical features such as particle size, morphology, zeta potential and drug loading. Independent of the purification method, neither variant of the MS2(9x) spheres was cytotoxic, which confirmed that both methods can be used for biomedical applications. However, this study highlights the impact that the applied purification method has on the further biomaterial properties.
Collapse
Affiliation(s)
- Katarzyna Jastrzebska
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, 61-688 Poznan, Poland.,NanoBioMedical Centre, Adam Mickiewicz University, 61-614 Poznan, Poland
| | | | - Maciej Kozak
- Department of Macromolecular Physics, Adam Mickiewicz University, 61-614 Poznan, Poland.,Joint Laboratory for SAXS Studies, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Miroslaw Szybowicz
- Faculty of Technical Physics, Poznan University of Technology, 60-965 Poznan, Poland
| | - Tomasz Buchwald
- Faculty of Technical Physics, Poznan University of Technology, 60-965 Poznan, Poland
| | - Zuzanna Pietralik
- Department of Macromolecular Physics, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Teofil Jesionowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, 60-965 Poznan, Poland
| | - Andrzej Mackiewicz
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, 61-688 Poznan, Poland.,BioContract Sp. z o.o., 61-051 Poznan, Poland.,Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-688 Poznan, Poland
| | - Hanna Dams-Kozlowska
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, 61-688 Poznan, Poland.,Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-688 Poznan, Poland
| |
Collapse
|
16
|
Cystatin C is a disease-associated protein subject to multiple regulation. Immunol Cell Biol 2015; 93:442-51. [PMID: 25643616 PMCID: PMC7165929 DOI: 10.1038/icb.2014.121] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/07/2014] [Accepted: 12/08/2014] [Indexed: 02/06/2023]
Abstract
A protease inhibitor, cystatin C (Cst C), is a secreted cysteine protease inhibitor abundantly expressed in body fluids. Clinically, it is mostly used to measure glomerular filtration rate as a marker for kidney function due to its relatively small molecular weight and easy detection. However, recent findings suggest that Cst C is regulated at both transcriptional and post‐translational levels, and Cst C production from haematopoietic cell lineages contributes significantly to the systematic pools of Cst C. Furthermore, Cst C is directly linked to many pathologic processes through various mechanisms. Thus fluctuation of Cst C levels might have serious clinical implications rather than a mere reflection of kidney functions. Here, we summarize the pathophysiological roles of Cst C dependent and independent on its inhibition of proteases, outline its change of expression by various stimuli, and elucidate the regulatory mechanisms to control this disease‐related protease inhibitor. Finally, we discuss the clinical implications of these findings for translational gains.
Collapse
|