1
|
Phelan JD, Scheich S, Choi J, Wright GW, Häupl B, Young RM, Rieke SA, Pape M, Ji Y, Urlaub H, Bolomsky A, Doebele C, Zindel A, Wotapek T, Kasbekar M, Collinge B, Huang DW, Coulibaly ZA, Morris VM, Zhuang X, Enssle JC, Yu X, Xu W, Yang Y, Zhao H, Wang Z, Tran AD, Shoemaker CJ, Shevchenko G, Hodson DJ, Shaffer AL, Staudt LM, Oellerich T. Response to Bruton's tyrosine kinase inhibitors in aggressive lymphomas linked to chronic selective autophagy. Cancer Cell 2024; 42:238-252.e9. [PMID: 38215749 PMCID: PMC11256978 DOI: 10.1016/j.ccell.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 11/10/2023] [Accepted: 12/20/2023] [Indexed: 01/14/2024]
Abstract
Diffuse large B cell lymphoma (DLBCL) is an aggressive, profoundly heterogeneous cancer, presenting a challenge for precision medicine. Bruton's tyrosine kinase (BTK) inhibitors block B cell receptor (BCR) signaling and are particularly effective in certain molecular subtypes of DLBCL that rely on chronic active BCR signaling to promote oncogenic NF-κB. The MCD genetic subtype, which often acquires mutations in the BCR subunit, CD79B, and in the innate immune adapter, MYD88L265P, typically resists chemotherapy but responds exceptionally to BTK inhibitors. However, the underlying mechanisms of response to BTK inhibitors are poorly understood. Herein, we find a non-canonical form of chronic selective autophagy in MCD DLBCL that targets ubiquitinated MYD88L265P for degradation in a TBK1-dependent manner. MCD tumors acquire genetic and epigenetic alterations that attenuate this autophagic tumor suppressive pathway. In contrast, BTK inhibitors promote autophagic degradation of MYD88L265P, thus explaining their exceptional clinical benefit in MCD DLBCL.
Collapse
Affiliation(s)
- James D Phelan
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sebastian Scheich
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Jaewoo Choi
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - George W Wright
- Biometric Research Branch, Division of Cancer Diagnosis and Treatment, National Cancer Institute, Bethesda, MD 20850, USA
| | - Björn Häupl
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Ryan M Young
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sara A Rieke
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Martine Pape
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Yanlong Ji
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany; Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany; Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany; Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Arnold Bolomsky
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carmen Doebele
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Alena Zindel
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Tanja Wotapek
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Monica Kasbekar
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brett Collinge
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC V5Z 4E6, Canada
| | - Da Wei Huang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zana A Coulibaly
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vivian M Morris
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Johns Hopkins University Department of Biology, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Xiaoxuan Zhuang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julius C Enssle
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Xin Yu
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Weihong Xu
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yandan Yang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hong Zhao
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhuo Wang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andy D Tran
- CCR Microscopy Core, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher J Shoemaker
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Galina Shevchenko
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Daniel J Hodson
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Arthur L Shaffer
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Louis M Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Thomas Oellerich
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany.
| |
Collapse
|
2
|
Two NEMO-like Ubiquitin-Binding Domains in CEP55 Differently Regulate Cytokinesis. iScience 2019; 20:292-309. [PMID: 31605944 PMCID: PMC6817665 DOI: 10.1016/j.isci.2019.08.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/15/2019] [Accepted: 08/21/2019] [Indexed: 02/02/2023] Open
Abstract
CEP55 regulates the final critical step of cell division termed cytokinetic abscission. We report herein that CEP55 contains two NEMO-like ubiquitin-binding domains (UBDs), NOA and ZF, which regulate its function in a different manner. In vitro studies of isolated domains showed that NOA adopts a dimeric coiled-coil structure, whereas ZF is based on a UBZ scaffold. Strikingly, CEP55 knocked-down HeLa cells reconstituted with the full-length CEP55 ubiquitin-binding defective mutants, containing structure-guided mutations either in NOACEP55 or ZFCEP55 domains, display severe abscission defects. In addition, the ZFCEP55 can be functionally replaced by some ZF-based UBDs belonging to the UBZ family, indicating that the essential function of ZFCEP55 is to act as ubiquitin receptor. Our work reveals an unexpected role of CEP55 in non-degradative ubiquitin signaling during cytokinetic abscission and provides a molecular basis as to how CEP55 mutations can lead to neurological disorders such as the MARCH syndrome.
Collapse
|
3
|
Godwin RC, Gmeiner WH, Salsbury FR. All-atom molecular dynamics comparison of disease-associated zinc fingers. J Biomol Struct Dyn 2018; 36:2581-2594. [PMID: 28814200 PMCID: PMC5882596 DOI: 10.1080/07391102.2017.1363662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 07/24/2017] [Indexed: 10/19/2022]
Abstract
An important regulatory domain of NF-[Formula: see text]B Essential Modulator (NEMO) is a ubiquitin-binding zinc finger, with a tetrahedral CYS3HIS1 zinc-coordinating binding site. Two variations of NEMO's zinc finger are implicated in various disease states including ectodermal dysplasia and adult-onset glaucoma. To discern structural and dynamical differences between these disease states, we present results of 48-[Formula: see text]s of molecular dynamics simulations for three zinc finger systems each in two states, with and without zinc-bound and correspondingly appropriate cysteine thiol/thiolate configurations. The wild-type protein, often studied for its role in cancer, maintains the most rigid and conformationally stable zinc-bound configuration compared with the diseased counterparts. The glaucoma-related protein has persistent loss of secondary structure except within the dominant conformation. Conformational overlap between wild-type and glaucoma isoforms indicate a competitive binding mechanism may be substantial in the malfunctioning configuration, while the alpha-helical disruption of the ectodermal dysplasia suggests a loss of binding selectivity is responsible for aberrant function.
Collapse
Affiliation(s)
- Ryan C. Godwin
- Department of Physics, Wake Forest University, Winston-Salem, NC, USA
| | - William H. Gmeiner
- Department of Cancer Biology, WFU School of Medicine, Winston-Salem, NC, USA
| | | |
Collapse
|
4
|
Courtois G, Fauvarque MO. The Many Roles of Ubiquitin in NF-κB Signaling. Biomedicines 2018; 6:E43. [PMID: 29642643 PMCID: PMC6027159 DOI: 10.3390/biomedicines6020043] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/31/2018] [Accepted: 04/02/2018] [Indexed: 12/24/2022] Open
Abstract
The nuclear factor κB (NF-κB) signaling pathway ubiquitously controls cell growth and survival in basic conditions as well as rapid resetting of cellular functions following environment changes or pathogenic insults. Moreover, its deregulation is frequently observed during cell transformation, chronic inflammation or autoimmunity. Understanding how it is properly regulated therefore is a prerequisite to managing these adverse situations. Over the last years evidence has accumulated showing that ubiquitination is a key process in NF-κB activation and its resolution. Here, we examine the various functions of ubiquitin in NF-κB signaling and more specifically, how it controls signal transduction at the molecular level and impacts in vivo on NF-κB regulated cellular processes.
Collapse
|
5
|
Filipčík P, Curry JR, Mace PD. When Worlds Collide-Mechanisms at the Interface between Phosphorylation and Ubiquitination. J Mol Biol 2017; 429:1097-1113. [PMID: 28235544 DOI: 10.1016/j.jmb.2017.02.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 02/08/2023]
Abstract
Phosphorylation and ubiquitination are pervasive post-translational modifications that impact all processes inside eukaryotic cells. The role of each modification has been studied for decades, and functional interplay between the two has long been demonstrated and even more widely postulated. However, our understanding of the molecular features that allow phosphorylation to control protein ubiquitination and ubiquitin to control phosphorylation has only recently begun to build. Here, we review examples of regulation between ubiquitination and phosphorylation, aiming to describe mechanisms at the molecular level. In general, these examples illustrate phosphorylation as a versatile switch throughout ubiquitination pathways, and ubiquitination primarily impacting kinase signalling in a more emphatic manner through scaffolding or degradation. Examples of regulation between these two processes are likely to grow even further as advances in molecular biology, proteomics, and computation allow a system-level understanding of signalling. Many new cases could involve similar principles to those described here, but the extensive co-regulation of these two systems leaves no doubt that they still have many surprises in store.
Collapse
Affiliation(s)
- Pavel Filipčík
- Biochemistry Department, School of Biomedical Sciences, University of Otago, P.O. Box 56, 710 Cumberland Street, Dunedin 9054, New Zealand
| | - Jack R Curry
- Biochemistry Department, School of Biomedical Sciences, University of Otago, P.O. Box 56, 710 Cumberland Street, Dunedin 9054, New Zealand
| | - Peter D Mace
- Biochemistry Department, School of Biomedical Sciences, University of Otago, P.O. Box 56, 710 Cumberland Street, Dunedin 9054, New Zealand.
| |
Collapse
|
6
|
Super-resolution microscopy reveals a preformed NEMO lattice structure that is collapsed in incontinentia pigmenti. Nat Commun 2016; 7:12629. [PMID: 27586688 PMCID: PMC5025789 DOI: 10.1038/ncomms12629] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 07/18/2016] [Indexed: 12/26/2022] Open
Abstract
The NF-κB pathway has critical roles in cancer, immunity and inflammatory responses. Understanding the mechanism(s) by which mutations in genes involved in the pathway cause disease has provided valuable insight into its regulation, yet many aspects remain unexplained. Several lines of evidence have led to the hypothesis that the regulatory/sensor protein NEMO acts as a biological binary switch. This hypothesis depends on the formation of a higher-order structure, which has yet to be identified using traditional molecular techniques. Here we use super-resolution microscopy to reveal the existence of higher-order NEMO lattice structures dependent on the presence of polyubiquitin chains before NF-κB activation. Such structures may permit proximity-based trans-autophosphorylation, leading to cooperative activation of the signalling cascade. We further show that NF-κB activation results in modification of these structures. Finally, we demonstrate that these structures are abrogated in cells derived from incontinentia pigmenti patients. NEMO is a member of the IKK complex that binds ubiquitin, involved in NF-κB signalling and proposed to form higher order structures. Here the authors use super-resolution microscopy to detect the presence of NEMO lattices in cells, that are modified by NF-κB treatment and abrogated by mutations affecting NEMO ubiquitin binding.
Collapse
|
7
|
Yang Y, Kelly P, Shaffer AL, Schmitz R, Yoo HM, Liu X, Huang DW, Webster D, Young RM, Nakagawa M, Ceribelli M, Wright GW, Yang Y, Zhao H, Yu X, Xu W, Chan WC, Jaffe ES, Gascoyne RD, Campo E, Rosenwald A, Ott G, Delabie J, Rimsza L, Staudt LM. Targeting Non-proteolytic Protein Ubiquitination for the Treatment of Diffuse Large B Cell Lymphoma. Cancer Cell 2016; 29:494-507. [PMID: 27070702 PMCID: PMC6026033 DOI: 10.1016/j.ccell.2016.03.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 01/27/2016] [Accepted: 03/11/2016] [Indexed: 10/22/2022]
Abstract
Chronic active B cell receptor (BCR) signaling, a hallmark of the activated B cell-like (ABC) subtype of diffuse large B cell lymphoma (DLBCL), engages the CARD11-MALT1-BCL10 (CBM) adapter complex to activate IκB kinase (IKK) and the classical NF-κB pathway. Here we show that the CBM complex includes the E3 ubiquitin ligases cIAP1 and cIAP2, which are essential mediators of BCR-dependent NF-κB activity in ABC DLBCL. cIAP1/2 attach K63-linked polyubiquitin chains on themselves and on BCL10, resulting in the recruitment of IKK and the linear ubiquitin chain ligase LUBAC, which is essential for IKK activation. SMAC mimetics target cIAP1/2 for destruction, and consequently suppress NF-κB and selectively kill BCR-dependent ABC DLBCL lines, supporting their clinical evaluation in patients with ABC DLBCL.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Apoptosis Regulatory Proteins
- B-Cell CLL-Lymphoma 10 Protein
- B-Lymphocytes/drug effects
- B-Lymphocytes/metabolism
- Baculoviral IAP Repeat-Containing 3 Protein
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- CARD Signaling Adaptor Proteins/metabolism
- CRISPR-Cas Systems
- Caspases/metabolism
- Cell Line, Tumor
- Dipeptides/pharmacology
- Dipeptides/therapeutic use
- Enzyme Activation
- Gene Dosage
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/drug effects
- Guanylate Cyclase/metabolism
- Humans
- I-kappa B Kinase/metabolism
- Indoles/pharmacology
- Indoles/therapeutic use
- Inhibitor of Apoptosis Proteins/antagonists & inhibitors
- Inhibitor of Apoptosis Proteins/genetics
- Inhibitor of Apoptosis Proteins/physiology
- Intracellular Signaling Peptides and Proteins/chemistry
- Lymphoma, Large B-Cell, Diffuse/classification
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Mitochondrial Proteins/chemistry
- Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein
- Multiprotein Complexes/metabolism
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/metabolism
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplasm Proteins/physiology
- Protein Processing, Post-Translational/drug effects
- Receptors, Antigen, B-Cell/metabolism
- Triazoles/pharmacology
- Triazoles/therapeutic use
- Ubiquitin-Protein Ligases/antagonists & inhibitors
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/physiology
- Ubiquitination/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Yibin Yang
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 4N115, Bethesda, MD 20892, USA
| | - Priscilla Kelly
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 4N115, Bethesda, MD 20892, USA
| | - Arthur L Shaffer
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 4N115, Bethesda, MD 20892, USA
| | - Roland Schmitz
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 4N115, Bethesda, MD 20892, USA
| | - Hee Min Yoo
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 4N115, Bethesda, MD 20892, USA
| | - Xinyue Liu
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 4N115, Bethesda, MD 20892, USA
| | - Da Wei Huang
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 4N115, Bethesda, MD 20892, USA
| | - Daniel Webster
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 4N115, Bethesda, MD 20892, USA
| | - Ryan M Young
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 4N115, Bethesda, MD 20892, USA
| | - Masao Nakagawa
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 4N115, Bethesda, MD 20892, USA
| | - Michele Ceribelli
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 4N115, Bethesda, MD 20892, USA
| | - George W Wright
- Biometric Research Branch, Division of Cancer Diagnosis and Treatment, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yandan Yang
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 4N115, Bethesda, MD 20892, USA
| | - Hong Zhao
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 4N115, Bethesda, MD 20892, USA
| | - Xin Yu
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 4N115, Bethesda, MD 20892, USA
| | - Weihong Xu
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 4N115, Bethesda, MD 20892, USA
| | - Wing C Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Elaine S Jaffe
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | | - Elias Campo
- Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Andreas Rosenwald
- Department of Pathology, University of Würzburg, 97080 Würzburg, Germany
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, 70376 Stuttgart, Germany
| | - Jan Delabie
- Department of Pathology, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Lisa Rimsza
- Department of Pathology, University of Arizona, Tucson, AZ 85724, USA
| | - Louis M Staudt
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 4N115, Bethesda, MD 20892, USA.
| |
Collapse
|
8
|
Dubosclard V, Fontan E, Agou F. Use of fluorescence spectroscopy for quantitative investigations of ubiquitin interactions with the ubiquitin-binding domains of NEMO. Methods Mol Biol 2015; 1280:321-37. [PMID: 25736758 DOI: 10.1007/978-1-4939-2422-6_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Ubiquitin serves as a signal for a variety of cellular processes and its specific interaction with ubiquitin-binding domain (UBD) regulates key cellular events including protein degradation, cell-cycle control, DNA repair, and kinase activation. Several binding mechanisms for isolated UBDs have been reported in recent years. However, little is known about the mechanism through which proteins containing multiple-UBDs achieve specificity for a particular oligomer of polyUb. The NF-κB essential modulator (NEMO, also known IKKγ), which plays a key role in the NF-κB signaling pathway, belongs to the latter family of proteins since it contains two distal NOA (also known UBAN/CC2-LZ/NUB) and ZF UBDs, separated by an unstructured proline-rich linker of about 40 residues in length. Here, we show a new procedure for fast purification of this bipartite domain. We also describe the use of intrinsic fluorescence spectroscopy for quantitative investigations of ubiquitin interactions between two distal ubiquitin-binding domains of NEMO (NOA and ZF). This spectroscopic method has many advantages over other techniques like GST pulldown and Biacore's SPR for monitoring avid interactions between two UBDs, especially when UBDs are located at significant distance from each other within the protein.
Collapse
Affiliation(s)
- Virginie Dubosclard
- Unité de Signalisation Moléculaire et Activation Cellulaire, Département de Biologie Cellulaire et Infection, Institut Pasteur, 25 rue du Dr. Roux, 75015, Paris, France
| | | | | |
Collapse
|
9
|
Hooper C, Jackson SS, Coughlin EE, Coon JJ, Miyamoto S. Covalent modification of the NF-κB essential modulator (NEMO) by a chemical compound can regulate its ubiquitin binding properties in vitro. J Biol Chem 2014; 289:33161-74. [PMID: 25296760 DOI: 10.1074/jbc.m114.582478] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Post-translational modification by ubiquitin plays important roles in multiple physiological and pathological processes. Ubiquitin-binding proteins play a critical role in recognizing and relaying polyubiquitin-based signaling. NEMO (NF-κB Essential Modulator) is a central player in canonical NF-κB signaling whose major function is to bind to Lys-63- and/or M1- (or linear) linked polyubiquitin chains generated in response to cell stimulation. Here we show that Withaferin A (WA), a steroidal lactone, causes a change in NEMO's interaction with specific types of polyubiquitin chains in vitro. WA induces full-length recombinant NEMO to bind to long Lys-48-linked polyubiquitin chains but not tetra-ubiquitin species. Significantly, the UBAN (ubiquitin binding in ABIN and NEMO) domain, essential for the ability of NEMO to bind M1/Lys-63-linked polyubiquitin, is dispensable for the WA-induced gain-of-function activity. Mass spectrometric analysis demonstrated that WA covalently modifies NEMO on a cysteine residue within the C-terminal zinc finger (ZF) domain. Point mutations to the ZF can reverse the WA-induced Lys-48-polyubiquitin binding phenotype. Our study demonstrates the feasibility of directly altering the ubiquitin interaction properties of an ubiquitin-binding protein by a chemical compound, thereby shedding light on a novel drug class to potentially alter polyubiquitin-based cellular processes.
Collapse
Affiliation(s)
- Christopher Hooper
- From the McArdle Laboratory for Cancer Research, Department of Oncology, Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, Wisconsin 53705 and
| | - Shawn S Jackson
- From the McArdle Laboratory for Cancer Research, Department of Oncology, Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, Wisconsin 53705 and Medical Scientist Training Program, and
| | - Emma E Coughlin
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Joshua J Coon
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706 Department of Chemistry, Department of Biomolecular Chemistry, and
| | - Shigeki Miyamoto
- From the McArdle Laboratory for Cancer Research, Department of Oncology, Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, Wisconsin 53705 and Medical Scientist Training Program, and
| |
Collapse
|