1
|
Shears SB, Wang H. Inositol phosphate kinases: Expanding the biological significance of the universal core of the protein kinase fold. Adv Biol Regul 2019; 71:118-127. [PMID: 30392847 PMCID: PMC9364425 DOI: 10.1016/j.jbior.2018.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 05/06/2023]
Abstract
The protein kinase family is characterized by substantial conservation of architectural elements that are required for both ATP binding and phosphotransferase activity. Many of these structural features have also been identified in homologous enzymes that phosphorylate a variety of alternative, non-protein substrates. A comparative structural analysis of these different kinase sub-classes is a portal to a greater understanding of reaction mechanisms, enzyme regulation, inhibitor-development strategies, and superfamily-level evolutionary relationships. To serve such advances, we review structural elements of the protein kinase fold that are conserved in the subfamily of inositol phosphate kinases (InsPKs) that share a PxxxDxKxG catalytic signature: inositol 1,4,5-trisphosphate kinase (IP3K), inositol hexakisphosphate kinase (IP6K), and inositol polyphosphate multikinase (IPMK). We describe conservation of the fundamental two-lobe kinase architecture: an N-lobe constructed upon an anti-parallel β-strand scaffold, which is coupled to a largely helical C-lobe by a single, adenine-binding hinge. This equivalency also includes a G-loop that embraces the β/γ-phosphates of ATP, a transition-state stabilizing residue (Lys/His), and a Mg-positioning aspartate residue within a catalytic triad. Furthermore, we expand this list of conserved structural features to include some not previously identified in InsPKs: a 'gatekeeper' residue in the N-lobe, and an 'αF'-like helix in the C-lobe that anchors two structurally-stabilizing, hydrophobic spines, formed from non-consecutive residues that span the two lobes. We describe how this wide-ranging structural homology can be exploited to develop lead inhibitors of IP6K and IPMK, by using strategies similar to those that have generated ATP-competing inhibitors of protein-kinases. We provide several examples to illustrate how such an approach could benefit human health.
Collapse
Affiliation(s)
- Stephen B Shears
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| | - Huanchen Wang
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
2
|
Whitfield H, Gilmartin M, Baker K, Riley AM, Godage HY, Potter BVL, Hemmings AM, Brearley CA. A Fluorescent Probe Identifies Active Site Ligands of Inositol Pentakisphosphate 2-Kinase. J Med Chem 2018; 61:8838-8846. [PMID: 30160967 DOI: 10.1021/acs.jmedchem.8b01022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Inositol pentakisphosphate 2-kinase catalyzes the phosphorylation of the axial 2-OH of myo-inositol 1,3,4,5,6-pentakisphosphate for de novo synthesis of myo-inositol hexakisphosphate. Disruption of inositol pentakisphosphate 2-kinase profoundly influences cellular processes, from nuclear mRNA export and phosphate homeostasis in yeast and plants to establishment of left-right asymmetry in zebrafish. We elaborate an active site fluorescent probe that allows high throughput screening of Arabidopsis inositol pentakisphosphate 2-kinase. We show that the probe has a binding constant comparable to the Km values of inositol phosphate substrates of this enzyme and can be used to prospect for novel substrates and inhibitors of inositol phosphate kinases. We identify several micromolar Ki inhibitors and validate this approach by solving the crystal structure of protein in complex with purpurogallin. We additionally solve structures of protein in complexes with epimeric higher inositol phosphates. This probe may find utility in characterization of a wide family of inositol phosphate kinases.
Collapse
Affiliation(s)
- Hayley Whitfield
- School of Biological Sciences , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , U.K
| | - Megan Gilmartin
- School of Biological Sciences , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , U.K
| | - Kendall Baker
- School of Biological Sciences , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , U.K
| | - Andrew M Riley
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology , University of Oxford , Mansfield Road , Oxford OX1 3QT , U.K
| | - H Y Godage
- Medicinal Chemistry, Department of Pharmacy and Pharmacology , University of Bath , Claverton Down , Bath BA2 7AY , U.K
| | - Barry V L Potter
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology , University of Oxford , Mansfield Road , Oxford OX1 3QT , U.K.,Medicinal Chemistry, Department of Pharmacy and Pharmacology , University of Bath , Claverton Down , Bath BA2 7AY , U.K
| | - Andrew M Hemmings
- School of Biological Sciences , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , U.K
| | - Charles A Brearley
- School of Biological Sciences , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , U.K
| |
Collapse
|
3
|
Whitfield H, Riley AM, Diogenous S, Godage HY, Potter BVL, Brearley CA. Simple synthesis of 32P-labelled inositol hexakisphosphates for study of phosphate transformations. PLANT AND SOIL 2018; 427:149-161. [PMID: 29880988 PMCID: PMC5984642 DOI: 10.1007/s11104-017-3315-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/12/2017] [Indexed: 06/08/2023]
Abstract
BACKGROUND AND AIMS In many soils inositol hexakisphosphate in its various forms is as abundant as inorganic phosphate. The organismal and geochemical processes that exchange phosphate between inositol hexakisphosphate and other pools of soil phosphate are poorly defined, as are the organisms and enzymes involved. We rationalized that simple enzymic synthesis of inositol hexakisphosphate labeled with 32P would greatly enable study of transformation of soil inositol phosphates when combined with robust HPLC separations of different inositol phosphates. METHODS We employed the enzyme inositol pentakisphosphate 2-kinase, IP5 2-K, to transfer phosphate from [γ-32P]ATP to axial hydroxyl(s) of myo-, neo- and 1D-chiro-inositol phosphate substrates. RESULTS 32P-labeled inositol phosphates were separated by anion exchange HPLC with phosphate eluents. Additional HPLC methods were developed to allow facile separation of myo-, neo-, 1D-chiro- and scyllo-inositol hexakisphosphate on acid gradients. CONCLUSIONS We developed enzymic approaches that allow the synthesis of labeled myo-inositol 1,[32P]2,3,4,5,6-hexakisphosphate; neo-inositol 1,[32P]2,3,4,[32P]5,6 - hexakisphosphate and 1D-chiro-inositol [32P]1,2,3,4,5,[32P]6-hexakisphosphate. Additionally, we describe HPLC separations of all inositol hexakisphosphates yet identified in soils, using a collection of soil inositol phosphates described in the seminal historic studies of Cosgrove, Tate and coworkers. Our study will enable others to perform radiotracer experiments to analyze fluxes of phosphate to/from inositol hexakisphosphates in different soils.
Collapse
Affiliation(s)
- Hayley Whitfield
- School of Biological Sciences, University of Norwich, Norwich Research Park, Norwich, NR4 7TJ UK
| | - Andrew M. Riley
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Rd, Oxford, OX1 3QT UK
| | - Soulla Diogenous
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY UK
| | - Himali Y. Godage
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY UK
| | - Barry V. L. Potter
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Rd, Oxford, OX1 3QT UK
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY UK
| | - Charles A. Brearley
- School of Biological Sciences, University of Norwich, Norwich Research Park, Norwich, NR4 7TJ UK
| |
Collapse
|
4
|
Synthesis and preliminary in vivo evaluation of new [ 18F]fluoro-inositols as Positron Emission Tomography radiotracers. Bioorg Med Chem 2017; 25:5603-5612. [PMID: 28893600 DOI: 10.1016/j.bmc.2017.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/25/2017] [Accepted: 08/20/2017] [Indexed: 11/24/2022]
Abstract
This study describes the synthesis and radiosynthesis of eight new [18F]fluoro-inositol-based radiotracers in myo- and scyllo-inositol configuration. These radiotracers are equipped with a propyl linker bearing fluorine-18. This fluorinated arm is either on a hydroxyl group, i.e. O-alkylated inositols, or on the cyclohexyl backbone, i.e. C-branched derivatives. To modulate lipophilicity, inositols were synthesized in acetylated or hydroxylated form. Automated radiosynthesis was performed on the AllInOne module and the radiotracers were produced in good radiochemical yields (15-31.5% dc). Preliminary in vivo preclinical evaluation of these eight [18F]fluoro-inositols as Positron Emission Tomography (PET) imaging agents in a breast tumour-bearing mouse model was performed and compared with [18F]-2-fluoro-2-deoxy-d-glucose ([18F]FDG). Amongst the different inositols, [18F]myo-2 showed the highest tumour uptake 2.34±0.39%ID/g, revealing the potential of this tracer for monitoring breast cancer.
Collapse
|
5
|
Franco-Echevarría E, Sanz-Aparicio J, Troffer-Charlier N, Poterszman A, González B. Crystallization and Preliminary X-Ray Diffraction Analysis of a Mammal Inositol 1,3,4,5,6-Pentakisphosphate 2-Kinase. Protein J 2017; 36:240-248. [PMID: 28429156 DOI: 10.1007/s10930-017-9717-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IP5 2-K) is an enzyme that catalyses the formation of phytic acid (IP6) from IP5 and ATP. In mammals, IP6 is involved in multiple events such as DNA repair and mRNA edit and it is the precursor of inositol pyrophosphates, emerging compounds shown to have an essential role in apoptosis. In addition, IP5 2-K have functions in cells independently of its catalytic activity, for example in rRNA biogenesis. We pursue the structure determination of a mammal IP5 2-K by Protein Crystallography. For this purpose, we have designed protocols for recombinant expression and purification of Mus musculus IP5 2-K (mIP5 2-K). The recombinant protein has been expressed in two different hosts, E. coli and insect cells using the LSLt and GST fusion proteins, respectively. Both macromolecule preparations yielded crystals of similar quality. Best crystals diffracted to 4.3 Å (E. coli expression) and 4.0 Å (insect cells expression) maximum resolution. Both type of crystals belong to space group P212121 with an estimated solvent content compatible with the presence of two molecules per asymmetric unit. Gel filtration experiments are in agreement with this enzyme being a monomer. Crystallographic data analysis is currently undergoing.
Collapse
Affiliation(s)
- Elsa Franco-Echevarría
- Departament of Crystallography and Structural Biology, Insitute of Physical-Chemistry "Rocasolano," CSIC, Serrano 119, 28006, Madrid, Spain
| | - Julia Sanz-Aparicio
- Departament of Crystallography and Structural Biology, Insitute of Physical-Chemistry "Rocasolano," CSIC, Serrano 119, 28006, Madrid, Spain
| | - Nathalie Troffer-Charlier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, 1 rue Laurent Fries, BP 10142, 67404, Illkirch Cedex, France
| | - Arnaud Poterszman
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, 1 rue Laurent Fries, BP 10142, 67404, Illkirch Cedex, France
| | - Beatriz González
- Departament of Crystallography and Structural Biology, Insitute of Physical-Chemistry "Rocasolano," CSIC, Serrano 119, 28006, Madrid, Spain.
| |
Collapse
|
6
|
Franco-Echevarría E, Sanz-Aparicio J, Brearley CA, González-Rubio JM, González B. The crystal structure of mammalian inositol 1,3,4,5,6-pentakisphosphate 2-kinase reveals a new zinc-binding site and key features for protein function. J Biol Chem 2017; 292:10534-10548. [PMID: 28450399 PMCID: PMC5481561 DOI: 10.1074/jbc.m117.780395] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/25/2017] [Indexed: 12/28/2022] Open
Abstract
Inositol 1,3,4,5,6-pentakisphosphate 2-kinases (IP5 2-Ks) are part of a family of enzymes in charge of synthesizing inositol hexakisphosphate (IP6) in eukaryotic cells. This protein and its product IP6 present many roles in cells, participating in mRNA export, embryonic development, and apoptosis. We reported previously that the full-length IP5 2-K from Arabidopsis thaliana is a zinc metallo-enzyme, including two separated lobes (the N- and C-lobes). We have also shown conformational changes in IP5 2-K and have identified the residues involved in substrate recognition and catalysis. However, the specific features of mammalian IP5 2-Ks remain unknown. To this end, we report here the first structure for a murine IP5 2-K in complex with ATP/IP5 or IP6. Our structural findings indicated that the general folding in N- and C-lobes is conserved with A. thaliana IP5 2-K. A helical scaffold in the C-lobe constitutes the inositol phosphate-binding site, which, along with the participation of the N-lobe, endows high specificity to this protein. However, we also noted large structural differences between the orthologues from these two eukaryotic kingdoms. These differences include a novel zinc-binding site and regions unique to the mammalian IP5 2-K, as an unexpected basic patch on the protein surface. In conclusion, our findings have uncovered distinct features of a mammalian IP5 2-K and set the stage for investigations into protein-protein or protein-RNA interactions important for IP5 2-K function and activity.
Collapse
Affiliation(s)
- Elsa Franco-Echevarría
- From the Departamento de Cristalografía y Biología Estructural, Instituto de Química-Física "Rocasolano," Consejo Superior de Investigaciones Científicas, Serrano 119, 28006 Madrid, Spain and
| | - Julia Sanz-Aparicio
- From the Departamento de Cristalografía y Biología Estructural, Instituto de Química-Física "Rocasolano," Consejo Superior de Investigaciones Científicas, Serrano 119, 28006 Madrid, Spain and
| | - Charles A Brearley
- the School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Juana M González-Rubio
- From the Departamento de Cristalografía y Biología Estructural, Instituto de Química-Física "Rocasolano," Consejo Superior de Investigaciones Científicas, Serrano 119, 28006 Madrid, Spain and
| | - Beatriz González
- From the Departamento de Cristalografía y Biología Estructural, Instituto de Química-Física "Rocasolano," Consejo Superior de Investigaciones Científicas, Serrano 119, 28006 Madrid, Spain and
| |
Collapse
|
7
|
Abstract
Inositol hexakisphosphate kinase 2 (IP6K2) potentiates pro-apoptotic signalling and increases the sensitivity of mammalian cells to cytotoxic agents. Diphosphoinositol pentakisphosphate kinase (PPIP5K) generates inositol pyrophosphates (InsPPs) that are structurally distinct from those produced by IP6K2 and their possible roles in affecting cell viability remain unclear. In the present study, we tested the impact of PPIP5K1 on cellular sensitivity to various genotoxic agents to determine if PPIP5K1 and IP6K2 contribute similarly to apoptosis. We observed that PPIP5K1 overexpression decreased sensitivity of cells toward several cytotoxic agents, including etoposide, cisplatin, and sulindac. We further tested the impact of PPIP5K1 overexpression on an array of apoptosis markers and observed that PPIP5K1 decreased p53 phosphorylation on key residues, including Ser-15, -46, and -392. Overexpression of a kinase-impaired PPIP5K1 mutant failed to protect cells from apoptosis, indicating this protection is a consequence PPIP5K1 catalytic activity, in contrast with the sensitivity conferred by IP6K2, which is dependent on both catalytic and non-catalytic functions. These observations reveal distinct roles for PPIP5K1 and IP6K2 and the InsPPs they produce in controlling cell death.
Collapse
|
8
|
Synthesis and in vitro anticancer activity evaluation of novel bioreversible phosphate inositol derivatives. Eur J Med Chem 2015; 93:172-81. [DOI: 10.1016/j.ejmech.2015.01.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/29/2014] [Accepted: 01/31/2015] [Indexed: 01/13/2023]
|
9
|
Chen WB, Liu JB, Dou DL, Song FB, Li LY, Xi Z. Synthesis and screening of novel inositol phosphonate derivatives for anticancer functions in vitro. CHINESE CHEM LETT 2015. [DOI: 10.1016/j.cclet.2014.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
10
|
Gosein V, Miller GJ. Conformational stability of inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IPK1) dictates its substrate selectivity. J Biol Chem 2013; 288:36788-95. [PMID: 24165122 DOI: 10.1074/jbc.m113.512731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IPK1) converts inositol 1,3,4,5,6-pentakisphosphate(IP5) to inositol hexakisphosphate (IP6). IPK1 shares structural similarity with protein kinases and is suspected to employ a similar mechanism of activation. Previous studies revealed roles for the 1- and 3-phosphates of IP5 in IPK1 activation and revealed that the N-lobe of IPK1 is unstable in the absence of inositol phosphate (IP). Here, we demonstrate the link between IPK1 substrate specificity and the stability of its N-lobe. Limited proteolysis of IPK1 revealed that N-lobe stability is dependent on the presence of the 1-phosphate of the substrate, whereas overall stability of IPK1 was increased in ternary complexes with nucleotide and IPs possessing 1- and 3-phosphates that engage the N-lobe of IPK1. Thus, the 1- and 3-phosphates possess dual roles in both IPK1 activation and IPK1 stability. To test whether kinase stability directly contributed to substrate selectivity of the kinase, we engineered IPK1 mutants with disulfide bonds that artificially stabilized the N-lobe in an IP-independent manner thereby mimicking its substrate-bound state in the absence of IP. IPK1 E82C/S142C exhibited a DTT-sensitive 5-fold increase in kcat for 3,4,5,6-inositol tetrakisphosphate (3,4,5,6-IP4) as compared with wild-type IPK1. The crystal structure of the IPK1 E82C/S142C mutant confirmed the presence of the disulfide bond and revealed a small shift in the N-lobe. Finally, we determined that IPK1 E82C/S142C is substantially more stable than wild-type IPK1 under nonreducing conditions, revealing that increased stability of IPK1 E82C/S142C correlates with changes in substrate specificity by allowing IPs lacking the stabilizing 1-phosphate to be used. Taken together, our results show that IPK1 substrate selection is linked to the ability of each potential substrate to stabilize IPK1.
Collapse
Affiliation(s)
- Varin Gosein
- From the Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec H3G 1Y6, Canada
| | | |
Collapse
|