1
|
Ballmer D, Akiyoshi B. Dynamic localization of the chromosomal passenger complex in trypanosomes is controlled by the orphan kinesins KIN-A and KIN-B. eLife 2024; 13:RP93522. [PMID: 38564240 PMCID: PMC10987093 DOI: 10.7554/elife.93522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
The chromosomal passenger complex (CPC) is an important regulator of cell division, which shows dynamic subcellular localization throughout mitosis, including kinetochores and the spindle midzone. In traditional model eukaryotes such as yeasts and humans, the CPC consists of the catalytic subunit Aurora B kinase, its activator INCENP, and the localization module proteins Borealin and Survivin. Intriguingly, Aurora B and INCENP as well as their localization pattern are conserved in kinetoplastids, an evolutionarily divergent group of eukaryotes that possess unique kinetochore proteins and lack homologs of Borealin or Survivin. It is not understood how the kinetoplastid CPC assembles nor how it is targeted to its subcellular destinations during the cell cycle. Here, we identify two orphan kinesins, KIN-A and KIN-B, as bona fide CPC proteins in Trypanosoma brucei, the kinetoplastid parasite that causes African sleeping sickness. KIN-A and KIN-B form a scaffold for the assembly of the remaining CPC subunits. We show that the C-terminal unstructured tail of KIN-A interacts with the KKT8 complex at kinetochores, while its N-terminal motor domain promotes CPC translocation to spindle microtubules. Thus, the KIN-A:KIN-B complex constitutes a unique 'two-in-one' CPC localization module, which directs the CPC to kinetochores from S phase until metaphase and to the central spindle in anaphase. Our findings highlight the evolutionary diversity of CPC proteins and raise the possibility that kinesins may have served as the original transport vehicles for Aurora kinases in early eukaryotes.
Collapse
Affiliation(s)
- Daniel Ballmer
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological SciencesEdinburghUnited Kingdom
| | - Bungo Akiyoshi
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological SciencesEdinburghUnited Kingdom
| |
Collapse
|
2
|
de Regt AK, Clark CJ, Asbury CL, Biggins S. Tension can directly suppress Aurora B kinase-triggered release of kinetochore-microtubule attachments. Nat Commun 2022; 13:2152. [PMID: 35443757 PMCID: PMC9021268 DOI: 10.1038/s41467-022-29542-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 03/03/2022] [Indexed: 11/09/2022] Open
Abstract
Chromosome segregation requires sister kinetochores to attach microtubules emanating from opposite spindle poles. Proper attachments come under tension and are stabilized, but defective attachments lacking tension are released, giving another chance for correct attachments to form. This error correction process depends on Aurora B kinase, which phosphorylates kinetochores to destabilize their microtubule attachments. However, the mechanism by which Aurora B distinguishes tense versus relaxed kinetochores remains unclear because it is difficult to detect kinase-triggered detachment and to manipulate kinetochore tension in vivo. To address these challenges, we apply an optical trapping-based assay using soluble Aurora B and reconstituted kinetochore-microtubule attachments. Strikingly, the tension on these attachments suppresses their Aurora B-triggered release, suggesting that tension-dependent changes in the conformation of kinetochores can regulate Aurora B activity or its outcome. Our work uncovers the basis for a key mechano-regulatory event that ensures accurate segregation and may inform studies of other mechanically regulated enzymes.
Collapse
Affiliation(s)
- Anna K de Regt
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Cordell J Clark
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Charles L Asbury
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA.
| | - Sue Biggins
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
3
|
Sherwin D, Wang Y. The Opposing Functions of Protein Kinases and Phosphatases in Chromosome Bipolar Attachment. Int J Mol Sci 2019; 20:ijms20246182. [PMID: 31817904 PMCID: PMC6940769 DOI: 10.3390/ijms20246182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/22/2019] [Accepted: 12/06/2019] [Indexed: 01/17/2023] Open
Abstract
Accurate chromosome segregation during cell division is essential to maintain genome integrity in all eukaryotic cells, and chromosome missegregation leads to aneuploidy and therefore represents a hallmark of many cancers. Accurate segregation requires sister kinetochores to attach to microtubules emanating from opposite spindle poles, known as bipolar attachment or biorientation. Recent studies have uncovered several mechanisms critical to chromosome bipolar attachment. First, a mechanism exists to ensure that the conformation of sister centromeres is biased toward bipolar attachment. Second, the phosphorylation of some kinetochore proteins destabilizes kinetochore attachment to facilitate error correction, but a protein phosphatase reverses this phosphorylation. Moreover, the activity of the spindle assembly checkpoint is regulated by kinases and phosphatases at the kinetochore, and this checkpoint prevents anaphase entry in response to faulty kinetochore attachment. The fine-tuned kinase/phosphatase balance at kinetochores is crucial for faithful chromosome segregation during both mitosis and meiosis. Here, we discuss the function and regulation of protein phosphatases in the establishment of chromosome bipolar attachment with a focus on the model organism budding yeast.
Collapse
Affiliation(s)
| | - Yanchang Wang
- Correspondence: ; Tel.: +1-850-644-0402; Fax: +1-850-644-5781
| |
Collapse
|
4
|
Funabiki H. Correcting aberrant kinetochore microtubule attachments: a hidden regulation of Aurora B on microtubules. Curr Opin Cell Biol 2019; 58:34-41. [PMID: 30684807 DOI: 10.1016/j.ceb.2018.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 12/16/2018] [Indexed: 01/06/2023]
Abstract
For equal chromosome segregation, a pair of kinetochores on each duplicated chromosome must attach to microtubules connecting to opposite poles. The protein kinase Aurora B plays a critical role in destabilizing microtubules attached in a wrong orientation through phosphorylating kinetochore proteins. The mechanism behind this selective destabilization of aberrant attachments remains elusive. While Aurora B is most enriched on the centromere from prophase to metaphase, emerging evidence suggests the importance of Aurora B on microtubules in this process. Here I discuss two hypothetical models that could explain the requirement of Aurora B on microtubules for selective destabilization of aberrant attachments; microtubule-induced substrate masking and treadmill-removal of Aurora B on microtubules proximal to polymerizing ends.
Collapse
Affiliation(s)
- Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
5
|
Dhatchinamoorthy K, Mattingly M, Gerton JL. Regulation of kinetochore configuration during mitosis. Curr Genet 2018; 64:1197-1203. [DOI: 10.1007/s00294-018-0841-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 12/15/2022]
|
6
|
Ibarlucea-Benitez I, Ferro LS, Drubin DG, Barnes G. Kinesins relocalize the chromosomal passenger complex to the midzone for spindle disassembly. J Cell Biol 2018; 217:1687-1700. [PMID: 29563217 PMCID: PMC5940302 DOI: 10.1083/jcb.201708114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 01/30/2018] [Accepted: 02/28/2018] [Indexed: 11/22/2022] Open
Abstract
Mitotic spindle disassembly after chromosome separation is as important as spindle assembly, yet the molecular mechanisms for spindle disassembly are unclear. In this study, we investigated how the chromosomal passenger complex (CPC), which contains the Aurora B kinase Ipl1, swiftly concentrates at the spindle midzone in late anaphase, and we researched the role of this dramatic relocalization during spindle disassembly. We showed that the kinesins Kip1 and Kip3 are essential for CPC relocalization. In cells lacking Kip1 and Kip3, spindle disassembly is severely delayed until after contraction of the cytokinetic ring. Purified Kip1 and Kip3 interact directly with the CPC and recruit it to microtubules in vitro, and single-molecule experiments showed that the CPC diffuses dynamically on microtubules but that diffusion stops when the CPC encounters a Kip1 molecule. We propose that Kip1 and Kip3 trap the CPC at the spindle midzone in late anaphase to ensure timely spindle disassembly.
Collapse
Affiliation(s)
| | - Luke S Ferro
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Georjana Barnes
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| |
Collapse
|
7
|
Zaytsev AV, Segura-Peña D, Godzi M, Calderon A, Ballister ER, Stamatov R, Mayo AM, Peterson L, Black BE, Ataullakhanov FI, Lampson MA, Grishchuk EL. Bistability of a coupled Aurora B kinase-phosphatase system in cell division. eLife 2016; 5:e10644. [PMID: 26765564 PMCID: PMC4798973 DOI: 10.7554/elife.10644] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 01/13/2016] [Indexed: 01/08/2023] Open
Abstract
Aurora B kinase, a key regulator of cell division, localizes to specific cellular locations, but the regulatory mechanisms responsible for phosphorylation of substrates located remotely from kinase enrichment sites are unclear. Here, we provide evidence that this activity at a distance depends on both sites of high kinase concentration and the bistability of a coupled kinase-phosphatase system. We reconstitute this bistable behavior and hysteresis using purified components to reveal co-existence of distinct high and low Aurora B activity states, sustained by a two-component kinase autoactivation mechanism. Furthermore, we demonstrate these non-linear regimes in live cells using a FRET-based phosphorylation sensor, and provide a mechanistic theoretical model for spatial regulation of Aurora B phosphorylation. We propose that bistability of an Aurora B-phosphatase system underlies formation of spatial phosphorylation patterns, which are generated and spread from sites of kinase autoactivation, thereby regulating cell division.
Collapse
Affiliation(s)
- Anatoly V Zaytsev
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Dario Segura-Peña
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Maxim Godzi
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
| | - Abram Calderon
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Edward R Ballister
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Rumen Stamatov
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Alyssa M Mayo
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Laura Peterson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, United States
| | - Ben E Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Fazly I Ataullakhanov
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
- Federal Research and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
- Department of Physics, Moscow State University, Moscow, Russia
| | - Michael A Lampson
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Ekaterina L Grishchuk
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
8
|
Samejima K, Platani M, Wolny M, Ogawa H, Vargiu G, Knight PJ, Peckham M, Earnshaw WC. The Inner Centromere Protein (INCENP) Coil Is a Single α-Helix (SAH) Domain That Binds Directly to Microtubules and Is Important for Chromosome Passenger Complex (CPC) Localization and Function in Mitosis. J Biol Chem 2015; 290:21460-72. [PMID: 26175154 PMCID: PMC4571873 DOI: 10.1074/jbc.m115.645317] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Indexed: 11/06/2022] Open
Abstract
The chromosome passenger complex (CPC) is a master regulator of mitosis. Inner centromere protein (INCENP) acts as a scaffold regulating CPC localization and activity. During early mitosis, the N-terminal region of INCENP forms a three-helix bundle with Survivin and Borealin, directing the CPC to the inner centromere where it plays essential roles in chromosome alignment and the spindle assembly checkpoint. The C-terminal IN box region of INCENP is responsible for binding and activating Aurora B kinase. The central region of INCENP has been proposed to comprise a coiled coil domain acting as a spacer between the N- and C-terminal domains that is involved in microtubule binding and regulation of the spindle checkpoint. Here we show that the central region (213 residues) of chicken INCENP is not a coiled coil but a ∼ 32-nm-long single α-helix (SAH) domain. The N-terminal half of this domain directly binds to microtubules in vitro. By analogy with previous studies of myosin 10, our data suggest that the INCENP SAH might stretch up to ∼ 80 nm under physiological forces. Thus, the INCENP SAH could act as a flexible "dog leash," allowing Aurora B to phosphorylate dynamic substrates localized in the outer kinetochore while at the same time being stably anchored to the heterochromatin of the inner centromere. Furthermore, by achieving this flexibility via an SAH domain, the CPC avoids a need for dimerization (required for coiled coil formation), which would greatly complicate regulation of the proximity-induced trans-phosphorylation that is critical for Aurora B activation.
Collapse
Affiliation(s)
- Kumiko Samejima
- From The Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, United Kingdom and
| | - Melpomeni Platani
- From The Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, United Kingdom and
| | - Marcin Wolny
- The Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Hiromi Ogawa
- From The Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, United Kingdom and
| | - Giulia Vargiu
- From The Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, United Kingdom and
| | - Peter J Knight
- The Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Michelle Peckham
- The Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - William C Earnshaw
- From The Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, United Kingdom and
| |
Collapse
|
9
|
van der Horst A, Vromans MJM, Bouwman K, van der Waal MS, Hadders MA, Lens SMA. Inter-domain Cooperation in INCENP Promotes Aurora B Relocation from Centromeres to Microtubules. Cell Rep 2015; 12:380-7. [PMID: 26166576 DOI: 10.1016/j.celrep.2015.06.038] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/13/2015] [Accepted: 06/10/2015] [Indexed: 01/08/2023] Open
Abstract
The chromosomal passenger complex is essential for error-free chromosome segregation and proper execution of cytokinesis. To coordinate nuclear division with cytoplasmic division, its enzymatic subunit, Aurora B, relocalizes from centromeres in metaphase to the spindle midzone in anaphase. In budding yeast, this requires dephosphorylation of the microtubule-binding (MTB) domain of the INCENP analog Sli15. The mechanistic basis for this relocalization in metazoans is incompletely understood. We demonstrate that the putative coiled-coil domain within INCENP drives midzone localization of Aurora B via a direct, electrostatic interaction with microtubules. Furthermore, we provide evidence that the CPC multimerizes via INCENP's centromere-targeting domain (CEN box), which increases the MTB affinity of INCENP. In (pro)metaphase, the MTB affinity of INCENP is outcompeted by the affinity of its CEN box for centromeres, while at anaphase onset—when the histone mark H2AT120 is dephosphorylated—INCENP and Aurora B switch from centromere to microtubule localization.
Collapse
Affiliation(s)
- Armando van der Horst
- Department of Medical Oncology, Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, the Netherlands
| | - Martijn J M Vromans
- Department of Medical Oncology, Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, the Netherlands
| | - Kim Bouwman
- Department of Medical Oncology, Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, the Netherlands
| | - Maike S van der Waal
- Department of Medical Oncology, Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, the Netherlands
| | - Michael A Hadders
- Department of Medical Oncology, Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, the Netherlands
| | - Susanne M A Lens
- Department of Medical Oncology, Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, the Netherlands.
| |
Collapse
|
10
|
Noujaim M, Bechstedt S, Wieczorek M, Brouhard GJ. Microtubules accelerate the kinase activity of Aurora-B by a reduction in dimensionality. PLoS One 2014; 9:e86786. [PMID: 24498282 PMCID: PMC3912212 DOI: 10.1371/journal.pone.0086786] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 12/13/2013] [Indexed: 11/19/2022] Open
Abstract
Aurora-B is the kinase subunit of the Chromosome Passenger Complex (CPC), a key regulator of mitotic progression that corrects improper kinetochore attachments and establishes the spindle midzone. Recent work has demonstrated that the CPC is a microtubule-associated protein complex and that microtubules are able to activate the CPC by contributing to Aurora-B auto-phosphorylation in trans. Aurora-B activation is thought to occur when the local concentration of Aurora-B is high, as occurs when Aurora-B is enriched at centromeres. It is not clear, however, whether distributed binding to large structures such as microtubules would increase the local concentration of Aurora-B. Here we show that microtubules accelerate the kinase activity of Aurora-B by a "reduction in dimensionality." We find that microtubules increase the kinase activity of Aurora-B toward microtubule-associated substrates while reducing the phosphorylation levels of substrates not associated to microtubules. Using the single molecule assay for microtubule-associated proteins, we show that a minimal CPC construct binds to microtubules and diffuses in a one-dimensional (1D) random walk. The binding of Aurora-B to microtubules is salt-dependent and requires the C-terminal tails of tubulin, indicating that the interaction is electrostatic. We show that the rate of Aurora-B auto-activation is faster with increasing concentrations of microtubules. Finally, we demonstrate that microtubules lose their ability to stimulate Aurora-B when their C-terminal tails are removed by proteolysis. We propose a model in which microtubules act as scaffolds for the enzymatic activity of Aurora-B. The scaffolding activity of microtubules enables rapid Aurora-B activation and efficient phosphorylation of microtubule-associated substrates.
Collapse
Affiliation(s)
- Michael Noujaim
- Department of Biology, McGill University, Montréal, Québec, Canada
| | | | - Michal Wieczorek
- Department of Biology, McGill University, Montréal, Québec, Canada
| | - Gary J. Brouhard
- Department of Biology, McGill University, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|