1
|
Roth S, Gandomkar S, Rossi F, Hall M. Mild hydrolysis of chemically stable valerolactams by a biocatalytic ATP-dependent system fueled by metaphosphate. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2024; 26:4498-4505. [PMID: 38654979 PMCID: PMC11033972 DOI: 10.1039/d3gc04434c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/07/2023] [Indexed: 04/26/2024]
Abstract
Medium-sized 5- and 6-membered ring lactams are molecules with remarkable stability, in contrast to smaller β-lactams. As monomers, they grant access to nylon-4 and nylon-5, which are alternative polyamides to widespread caprolactam-based nylon-6. Chemical hydrolysis of monocyclic γ- and δ-lactams to the corresponding amino acids requires harsh reaction conditions and up to now, no mild (enzymatic) protocol has been reported. Herein, the biocatalytic potential of a pair of heterologously expressed bacterial ATP-dependent oxoprolinases - OplA and OplB - was exploited. Strong activity in the presence of excess of ATP was monitored on δ-valerolactam and derivatives thereof, while trace activity was detected on γ-butyrolactam. An ATP recycling system based on cheap Graham's salt (sodium metaphosphate) and a polyphosphate kinase allowed the use of catalytic amounts of ATP, leading to up to full conversion of 10 mM δ-valerolactam at 30 °C in aqueous medium. Further improvements were obtained by co-expressing OplA and OplB using the pETDuet1 vector, a strategy which enhanced the soluble expression yield and the protein stability. Finally, a range of phosphodonors was investigated in place of ATP. With acetyl phosphate and carbamoyl phosphate, turnover numbers up to 176 were reached, providing hints on a possible mechanism, which was studied by 31P-NMR.
Collapse
Affiliation(s)
- Sebastian Roth
- Institute of Chemistry, University of Graz Heinrichstrasse 28 8010 Graz Austria
| | - Somayyeh Gandomkar
- Institute of Chemistry, University of Graz Heinrichstrasse 28 8010 Graz Austria
| | - Federico Rossi
- Institute of Chemistry, University of Graz Heinrichstrasse 28 8010 Graz Austria
| | - Mélanie Hall
- Institute of Chemistry, University of Graz Heinrichstrasse 28 8010 Graz Austria
- BioHealth, University of Graz Heinrichstrasse 28 8010 Graz Austria
| |
Collapse
|
2
|
Huang YH, Huang CY. The complexed crystal structure of dihydropyrimidinase reveals a potential interactive link with the neurotransmitter γ-aminobutyric acid (GABA). Biochem Biophys Res Commun 2024; 692:149351. [PMID: 38056157 DOI: 10.1016/j.bbrc.2023.149351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
Dihydropyrimidinase (DHPase) plays a crucial role in pyrimidine degradation, showcasing a broad substrate specificity that extends beyond pyrimidine catabolism, hinting at additional roles for this ancient enzyme. In this study, we solved the crystal structure of Pseudomonas aeruginosa DHPase (PaDHPase) complexed with the neurotransmitter γ-aminobutyric acid (GABA) at a resolution of 1.97 Å (PDB ID 8WQ9). Our structural analysis revealed two GABA binding sites in each monomer of PaDHPase. Interactions between PaDHPase and GABA molecules, involving residues within a contact distance of <4 Å, were examined. In silico analyses via PISA and PLIP software revealed hydrogen bonds formed between the side chain of Cys318 and GABA 1, as well as the main chains of Ser333, Ile335, and Asn337 with GABA 2. Comparative structural analysis between GABA-bound and unbound states unveiled significant conformational changes at the active site, particularly within dynamic loop I, supporting the conclusion that PaDHPase binds GABA through the loop-out mechanism. Building upon this molecular evidence, we discuss and propose a working model. The study expands the GABA interactome by identifying DHPase as a novel GABA-interacting protein and provides structural insight into the interaction between a dimetal center in the protein's active site and GABA. Further investigations are warranted to explore potential interactions of GABA with other DHPase-like proteins and to understand whether DHPase may have additional regulatory and physiological roles in the cell, extending beyond pyrimidine catabolism.
Collapse
Affiliation(s)
- Yen-Hua Huang
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Chien-Kuo N. Rd., Taichung City, Taiwan
| | - Cheng-Yang Huang
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Chien-Kuo N. Rd., Taichung City, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, No.110, Sec.1, Chien-Kuo N. Rd., Taichung City, Taiwan.
| |
Collapse
|
3
|
Meelua W, Wanjai T, Thinkumrob N, Oláh J, Cairns JRK, Hannongbua S, Ryde U, Jitonnom J. A computational study of the reaction mechanism and stereospecificity of dihydropyrimidinase. Phys Chem Chem Phys 2023; 25:8767-8778. [PMID: 36912034 DOI: 10.1039/d2cp05262h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Dihydropyrimidinase (DHPase) is a key enzyme in the pyrimidine pathway, the catabolic route for synthesis of β-amino acids. It catalyses the reversible conversion of 5,6-dihydrouracil (DHU) or 5,6-dihydrothymine (DHT) to the corresponding N-carbamoyl-β-amino acids. This enzyme has the potential to be used as a tool in the production of β-amino acids. Here, the reaction mechanism and origin of stereospecificity of DHPases from Saccharomyces kluyveri and Sinorhizobium meliloti CECT4114 were investigated and compared using a quantum mechanical cluster approach based on density functional theory. Two models of the enzyme active site were designed from the X-ray crystal structure of the native enzyme: a small cluster to characterize the mechanism and the stationary points and a large model to probe the stereospecificity and the role of stereo-gate-loop (SGL) residues. It is shown that a hydroxide ion first performs a nucleophilic attack on the substrate, followed by the abstraction of a proton by Asp358, which occurs concertedly with protonation of the ring nitrogen by the same residue. For the DHT substrate, the enzyme displays a preference for the L-configuration, in good agreement with experimental observation. Comparison of the reaction energetics of the two models reveals the importance of SGL residues in the stereospecificity of catalysis. The role of the conserved Tyr172 residue in transition-state stabilization is confirmed as the Tyr172Phe mutation increases the activation barrier of the reaction by ∼8 kcal mol-1. A detailed understanding of the catalytic mechanism of the enzyme could offer insight for engineering in order to enhance its activity and substrate scope.
Collapse
Affiliation(s)
- Wijitra Meelua
- Demonstration School, University of Phayao, Phayao 56000, Thailand
- Unit of Excellence in Computational Molecular Science and Catalysis, and Division of Chemistry, School of Science, University of Phayao, Phayao 56000, Thailand.
| | - Tanchanok Wanjai
- Unit of Excellence in Computational Molecular Science and Catalysis, and Division of Chemistry, School of Science, University of Phayao, Phayao 56000, Thailand.
| | - Natechanok Thinkumrob
- Unit of Excellence in Computational Molecular Science and Catalysis, and Division of Chemistry, School of Science, University of Phayao, Phayao 56000, Thailand.
| | - Julianna Oláh
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rakpart 3, Budapest H-1111, Hungary
| | - James R Ketudat Cairns
- Center for Biomolecular Structure, Function and Application and School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Supa Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, Lund SE-221 00, Sweden
| | - Jitrayut Jitonnom
- Unit of Excellence in Computational Molecular Science and Catalysis, and Division of Chemistry, School of Science, University of Phayao, Phayao 56000, Thailand.
| |
Collapse
|
4
|
Hishinuma E, Narita Y, Rico EMG, Ueda A, Obuchi K, Tanaka Y, Saito S, Tadaka S, Kinoshita K, Maekawa M, Mano N, Nakayoshi T, Oda A, Hirasawa N, Hiratsuka M. Functional Characterization of 12 Dihydropyrimidinase Allelic Variants in Japanese Individuals for the Prediction of 5-Fluorouracil Treatment-Related Toxicity. Drug Metab Dispos 2023; 51:165-173. [PMID: 36414408 DOI: 10.1124/dmd.122.001045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/11/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022] Open
Abstract
The drug 5-fluorouracil (5-FU) is the first-choice chemotherapeutic agent against advanced-stage cancers. However, 10% to 30% of treated patients experience grade 3 to 4 toxicity. The deficiency of dihydropyrimidinase (DHPase), which catalyzes the second step of the 5-FU degradation pathway, is correlated with the risk of developing toxicity. Thus, genetic polymorphisms within DPYS, the DHPase-encoding gene, could potentially serve as predictors of severe 5-FU-related toxicity. We identified 12 novel DPYS variants in 3554 Japanese individuals, but the effects of these mutations on function remain unknown. In the current study, we performed in vitro enzymatic analyses of the 12 newly identified DHPase variants. Dihydrouracil or dihydro-5-FU hydrolytic ring-opening kinetic parameters, Km and Vmax , and intrinsic clearance (CLint = Vmax /Km ) of the wild-type DHPase and eight variants were measured. Five of these variants (R118Q, H295R, T418I, Y448H, and T513A) showed significantly reduced CLint compared with that in the wild-type. The parameters for the remaining four variants (V59F, D81H, T136M, and R490H) could not be determined as dihydrouracil and dihydro-5-FU hydrolytic ring-opening activity was undetectable. We also determined DHPase variant protein stability using cycloheximide and bortezomib. The mechanism underlying the observed changes in the kinetic parameters was clarified using blue-native polyacrylamide gel electrophoresis and three-dimensional structural modeling. The results suggested that the decrease or loss of DHPase enzymatic activity was due to reduced stability and oligomerization of DHPase variant proteins. Our findings support the use of DPYS polymorphisms as novel pharmacogenomic markers for predicting severe 5-FU-related toxicity in the Japanese population. SIGNIFICANCE STATEMENT: DHPase contributes to the degradation of 5-fluorouracil, and genetic polymorphisms that cause decreased activity of DHPase can cause severe toxicity. In this study, we performed functional analysis of 12 DHPase variants in the Japanese population and identified 9 genetic polymorphisms that cause reduced DHPase function. In addition, we found that the ability to oligomerize and the conformation of the active site are important for the enzymatic activity of DHPase.
Collapse
Affiliation(s)
- Eiji Hishinuma
- Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., Y.T., S.S., K.K., M.M., N.H., M.H.), Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (Y.N., E.M.G.R., K.O., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., S.T., K.K., M.H.), Graduate School of Life Sciences (Y.T.), and Graduate School of Information Sciences (K.K.), Tohoku University, Sendai, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.); Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya Japan (T.N., A.O.); and Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan (T.N.)
| | - Yoko Narita
- Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., Y.T., S.S., K.K., M.M., N.H., M.H.), Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (Y.N., E.M.G.R., K.O., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., S.T., K.K., M.H.), Graduate School of Life Sciences (Y.T.), and Graduate School of Information Sciences (K.K.), Tohoku University, Sendai, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.); Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya Japan (T.N., A.O.); and Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan (T.N.)
| | - Evelyn Marie Gutiérrez Rico
- Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., Y.T., S.S., K.K., M.M., N.H., M.H.), Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (Y.N., E.M.G.R., K.O., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., S.T., K.K., M.H.), Graduate School of Life Sciences (Y.T.), and Graduate School of Information Sciences (K.K.), Tohoku University, Sendai, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.); Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya Japan (T.N., A.O.); and Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan (T.N.)
| | - Akiko Ueda
- Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., Y.T., S.S., K.K., M.M., N.H., M.H.), Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (Y.N., E.M.G.R., K.O., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., S.T., K.K., M.H.), Graduate School of Life Sciences (Y.T.), and Graduate School of Information Sciences (K.K.), Tohoku University, Sendai, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.); Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya Japan (T.N., A.O.); and Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan (T.N.)
| | - Kai Obuchi
- Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., Y.T., S.S., K.K., M.M., N.H., M.H.), Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (Y.N., E.M.G.R., K.O., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., S.T., K.K., M.H.), Graduate School of Life Sciences (Y.T.), and Graduate School of Information Sciences (K.K.), Tohoku University, Sendai, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.); Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya Japan (T.N., A.O.); and Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan (T.N.)
| | - Yoshikazu Tanaka
- Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., Y.T., S.S., K.K., M.M., N.H., M.H.), Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (Y.N., E.M.G.R., K.O., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., S.T., K.K., M.H.), Graduate School of Life Sciences (Y.T.), and Graduate School of Information Sciences (K.K.), Tohoku University, Sendai, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.); Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya Japan (T.N., A.O.); and Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan (T.N.)
| | - Sakae Saito
- Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., Y.T., S.S., K.K., M.M., N.H., M.H.), Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (Y.N., E.M.G.R., K.O., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., S.T., K.K., M.H.), Graduate School of Life Sciences (Y.T.), and Graduate School of Information Sciences (K.K.), Tohoku University, Sendai, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.); Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya Japan (T.N., A.O.); and Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan (T.N.)
| | - Shu Tadaka
- Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., Y.T., S.S., K.K., M.M., N.H., M.H.), Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (Y.N., E.M.G.R., K.O., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., S.T., K.K., M.H.), Graduate School of Life Sciences (Y.T.), and Graduate School of Information Sciences (K.K.), Tohoku University, Sendai, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.); Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya Japan (T.N., A.O.); and Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan (T.N.)
| | - Kengo Kinoshita
- Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., Y.T., S.S., K.K., M.M., N.H., M.H.), Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (Y.N., E.M.G.R., K.O., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., S.T., K.K., M.H.), Graduate School of Life Sciences (Y.T.), and Graduate School of Information Sciences (K.K.), Tohoku University, Sendai, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.); Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya Japan (T.N., A.O.); and Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan (T.N.)
| | - Masamitsu Maekawa
- Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., Y.T., S.S., K.K., M.M., N.H., M.H.), Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (Y.N., E.M.G.R., K.O., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., S.T., K.K., M.H.), Graduate School of Life Sciences (Y.T.), and Graduate School of Information Sciences (K.K.), Tohoku University, Sendai, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.); Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya Japan (T.N., A.O.); and Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan (T.N.)
| | - Nariyasu Mano
- Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., Y.T., S.S., K.K., M.M., N.H., M.H.), Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (Y.N., E.M.G.R., K.O., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., S.T., K.K., M.H.), Graduate School of Life Sciences (Y.T.), and Graduate School of Information Sciences (K.K.), Tohoku University, Sendai, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.); Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya Japan (T.N., A.O.); and Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan (T.N.)
| | - Tomoki Nakayoshi
- Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., Y.T., S.S., K.K., M.M., N.H., M.H.), Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (Y.N., E.M.G.R., K.O., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., S.T., K.K., M.H.), Graduate School of Life Sciences (Y.T.), and Graduate School of Information Sciences (K.K.), Tohoku University, Sendai, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.); Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya Japan (T.N., A.O.); and Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan (T.N.)
| | - Akifumi Oda
- Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., Y.T., S.S., K.K., M.M., N.H., M.H.), Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (Y.N., E.M.G.R., K.O., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., S.T., K.K., M.H.), Graduate School of Life Sciences (Y.T.), and Graduate School of Information Sciences (K.K.), Tohoku University, Sendai, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.); Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya Japan (T.N., A.O.); and Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan (T.N.)
| | - Noriyasu Hirasawa
- Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., Y.T., S.S., K.K., M.M., N.H., M.H.), Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (Y.N., E.M.G.R., K.O., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., S.T., K.K., M.H.), Graduate School of Life Sciences (Y.T.), and Graduate School of Information Sciences (K.K.), Tohoku University, Sendai, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.); Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya Japan (T.N., A.O.); and Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan (T.N.)
| | - Masahiro Hiratsuka
- Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., Y.T., S.S., K.K., M.M., N.H., M.H.), Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (Y.N., E.M.G.R., K.O., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., S.T., K.K., M.H.), Graduate School of Life Sciences (Y.T.), and Graduate School of Information Sciences (K.K.), Tohoku University, Sendai, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.); Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya Japan (T.N., A.O.); and Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan (T.N.)
| |
Collapse
|
5
|
Crystal Structure of Allantoinase from Escherichia coli BL21: A Molecular Insight into a Role of the Active Site Loops in Catalysis. Molecules 2023; 28:molecules28020827. [PMID: 36677881 PMCID: PMC9863593 DOI: 10.3390/molecules28020827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Allantoinase (ALLase; EC 3.5.2.5) possesses a binuclear metal center in which two metal ions are bridged by a posttranslationally carbamylated lysine. ALLase acts as a key enzyme for the biogenesis and degradation of ureides by catalyzing the conversion of allantoin into allantoate. Biochemically, ALLase belongs to the cyclic amidohydrolase family, which also includes dihydropyrimidinase, dihydroorotase, hydantoinase (HYDase), and imidase. Previously, the crystal structure of ALLase from Escherichia coli K-12 (EcALLase-K12) was reported; however, the two active site loops crucial for substrate binding were not determined. This situation would limit further docking and protein engineering experiments. Here, we solved the crystal structure of E. coli BL21 ALLase (EcALLase-BL21) at a resolution of 2.07 Å (PDB ID 8HFD) to obtain more information for structural analyses. The structure has a classic TIM barrel fold. As compared with the previous work, the two missed active site loops in EcALLase-K12 were clearly determined in our structure of EcALLase-BL21. EcALLase-BL21 shared active site similarity with HYDase, an important biocatalyst for industrial production of semisynthetic penicillin and cephalosporins. Based on this structural comparison, we discussed the functional role of the two active site loops in EcALLase-BL21 to better understand the substrate/inhibitor binding mechanism for further biotechnological and pharmaceutical applications.
Collapse
|
6
|
Kato K, Nakayoshi T, Nagura A, Hishinuma E, Hiratsuka M, Kurimoto E, Oda A. Structural investigation of pathogenic variants in dihydropyrimidinase using molecular dynamics simulations. J Mol Graph Model 2022; 117:108288. [PMID: 35961217 DOI: 10.1016/j.jmgm.2022.108288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 07/18/2022] [Accepted: 08/01/2022] [Indexed: 01/14/2023]
Abstract
Dihydropyrimidinase (DHP) is an enzyme that catabolizes the degradation of pyrimidine and fluoropyrimidine drugs such as 5-fluorouracil. DHP deficiency triggers various clinical symptoms and increases the risk of fluoropyrimidine drug toxicity. Various pathogenic variants of DHP cause DHP deficiency, and their catalytic activities have been well studied. However, the three-dimensional structures of DHP variants have not been clarified. In this study, we investigated the effects of mutations on DHP structures using the molecular dynamics simulations. Simulations of the wild type and 10 variants were performed and compared. In the T68R, D81G, G278D, and L337P variants, the flexibilities of structures related to the interaction for oligomer formation increased in comparison with those of the wild type. W117R, T343A, and R412 M mutations affected the structures of stereochemistry gate loops or the substrate-binding pocket. The three-dimensional structures of W360R and G435R variants were suggested to collapse. On the other hand, only slight structural changes were observed in the R181W variant, whose experimentally observed activity was similar to that of the wild type. The computational results are expected to clarify the relationship between clinical mutations and structural effects of drug-metabolizing enzymes.
Collapse
Affiliation(s)
- Koichi Kato
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi, 468-8503, Japan; Faculty of Pharmaceutical Sciences, Shonan University of Medical Sciences, 16-48 Kamishinano, Totsu-ka-ku, Yokohama, Kanagawa, 244-0806, Japan; College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, Aichi, 463-8521, Japan
| | - Tomoki Nakayoshi
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi, 468-8503, Japan; Graduate School of Information Sciences, Hiroshima City University, 3-4-1 Ozukahigasi, Asaminami-ku, Hiroshima, Hiroshima, 731-3194, Japan
| | - Ayuka Nagura
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi, 468-8503, Japan
| | - Eiji Hishinuma
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, 980-8573, Japan; Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Miyagi, 980-8573, Japan
| | - Masahiro Hiratsuka
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, 980-8573, Japan; Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Miyagi, 980-8573, Japan; Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Miyagi, 980-8574, Japan
| | - Eiji Kurimoto
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi, 468-8503, Japan
| | - Akifumi Oda
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi, 468-8503, Japan; Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
7
|
Lin ES, Huang CY. Cytotoxic Activities and the Allantoinase Inhibitory Effect of the Leaf Extract of the Carnivorous Pitcher Plant Nepenthes miranda. PLANTS (BASEL, SWITZERLAND) 2022; 11:2265. [PMID: 36079647 PMCID: PMC9460348 DOI: 10.3390/plants11172265] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 05/14/2023]
Abstract
Nepenthes are carnivorous pitcher plants that have several ethnobotanical uses, such as curing stomachache and fever. Here, we prepared different extracts from the stem, leaf, and pitcher of Nepenthes miranda to further investigate their pharmacological potential. The leaf extract of N. miranda obtained by 100% acetone (N. miranda-leaf-acetone) was used in this study to analyze the cytotoxic activities, antioxidation capacity, antibacterial activity, and allantoinase (ALLase) inhibitory effect of this plant. The cytotoxic effects of N. miranda-leaf-acetone on the survival, apoptosis, and migration of the cancer cell lines PC-9 pulmonary adenocarcinoma, B16F10 melanoma, and 4T1 mammary carcinoma cells were demonstrated. Based on collective data, the cytotoxic activities of N. miranda-leaf-acetone followed the order: B16F10 > 4T1 > PC-9 cells. In addition, the cytotoxic activities of N. miranda-leaf-acetone were synergistically enhanced when co-acting with the clinical anticancer drug 5-fluorouracil. N. miranda-leaf-acetone could also inhibit the activity of ALLase, a key enzyme in the catabolism pathway for purine degradation. Through gas chromatography−mass spectrometry, the 16 most abundant ingredients in N. miranda-leaf-acetone were identified. The top six compounds in N. miranda-leaf-acetone, namely, plumbagin, lupenone, palmitic acid, stigmast-5-en-3-ol, neophytadiene, and citraconic anhydride, were docked to ALLase, and their docking scores were compared. The docking results suggested plumbagin and stigmast-5-en-3-ol as potential inhibitors of ALLase. Overall, these results may indicate the pharmacological potential of N. miranda for further medical applications.
Collapse
Affiliation(s)
- En-Shyh Lin
- Department of Beauty Science, National Taichung University of Science and Technology, Taichung City 403, Taiwan
| | - Cheng-Yang Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| |
Collapse
|
8
|
Molecular Insights into How the Dimetal Center in Dihydropyrimidinase Can Bind the Thymine Antagonist 5-Aminouracil: A Different Binding Mode from the Anticancer Drug 5-Fluorouracil. Bioinorg Chem Appl 2022; 2022:1817745. [PMID: 35198016 PMCID: PMC8860565 DOI: 10.1155/2022/1817745] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/27/2022] [Indexed: 12/20/2022] Open
Abstract
Dihydropyrimidinase (DHPase) is a key enzyme for pyrimidine degradation. DHPase contains a binuclear metal center in which two Zn ions are bridged by a posttranslationally carbamylated lysine. DHPase catalyzes the hydrolysis of dihydrouracil to N-carbamoyl-β-alanine. Whether 5-aminouracil (5-AU), a thymine antagonist and an anticancer drug that can block DNA synthesis and induce replication stress, can interact with DHPase remains to be investigated. In this study, we determined the crystal structure of Pseudomonas aeruginosa DHPase (PaDHPase) complexed with 5-AU at 2.1 Å resolution (PDB entry 7E3U). This complexed structure revealed that 5-AU interacts with Znα (3.2 Å), Znβ (3.0 Å), the main chains of residues Ser289 (2.8 Å) and Asn337 (3.3 Å), and the side chain of residue Tyr155 (2.8 Å). These residues are also known as the substrate-binding sites of DHPase. Dynamic loop I (amino acid residues Pro65-Val70) in PaDHPase is not involved in the binding of 5-AU. The fluorescence quenching analysis and site-directed mutagenesis were used to confirm the binding mode revealed by the complexed crystal structure. The 5-AU binding mode of PaDHPase is, however, different from that of 5-fluorouracil, the best-known fluoropyrimidine used for anticancer therapy. These results provide molecular insights that may facilitate the development of new inhibitors targeting DHPase and constitute the 5-AU interactome.
Collapse
|
9
|
Guan HH, Huang YH, Lin ES, Chen CJ, Huang CY. Structural Analysis of Saccharomyces cerevisiae Dihydroorotase Reveals Molecular Insights into the Tetramerization Mechanism. Molecules 2021; 26:molecules26237249. [PMID: 34885830 PMCID: PMC8659124 DOI: 10.3390/molecules26237249] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 11/16/2022] Open
Abstract
Dihydroorotase (DHOase), a dimetalloenzyme containing a carbamylated lysine within the active site, is a member of the cyclic amidohydrolase family, which also includes allantoinase (ALLase), dihydropyrimidinase (DHPase), hydantoinase, and imidase. Unlike most known cyclic amidohydrolases, which are tetrameric, DHOase exists as a monomer or dimer. Here, we report and analyze two crystal structures of the eukaryotic Saccharomyces cerevisiae DHOase (ScDHOase) complexed with malate. The structures of different DHOases were also compared. An asymmetric unit of these crystals contained four crystallographically independent ScDHOase monomers. ScDHOase shares structural similarity with Escherichia coli DHOase (EcDHOase). Unlike EcDHOase, ScDHOase can form tetramers, both in the crystalline state and in solution. In addition, the subunit-interacting residues of ScDHOase for dimerization and tetramerization are significantly different from those of other DHOases. The tetramerization pattern of ScDHOase is also different from those of DHPase and ALLase. Based on sequence analysis and structural evidence, we identify two unique helices (α6 and α10) and a loop (loop 7) for tetramerization, and discuss why the residues for tetramerization in ScDHOase are not necessarily conserved among DHOases.
Collapse
Affiliation(s)
- Hong-Hsiang Guan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 33076, Taiwan;
| | - Yen-Hua Huang
- School of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Chien-Kuo N. Rd., Taichung City 402, Taiwan;
| | - En-Shyh Lin
- Department of Beauty Science, National Taichung University of Science and Technology, No.193, Sec.1, San-Min Rd., Taichung City 403, Taiwan;
| | - Chun-Jung Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 33076, Taiwan;
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan City 701, Taiwan
- Department of Physics, National Tsing Hua University, Hsinchu 30043, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300193, Taiwan
- Correspondence: (C.-J.C.); (C.-Y.H.)
| | - Cheng-Yang Huang
- School of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Chien-Kuo N. Rd., Taichung City 402, Taiwan;
- Department of Medical Research, Chung Shan Medical University Hospital, No.110, Sec.1, Chien-Kuo N. Rd., Taichung City 402, Taiwan
- Correspondence: (C.-J.C.); (C.-Y.H.)
| |
Collapse
|
10
|
Complexed Crystal Structure of Saccharomyces cerevisiae Dihydroorotase with Inhibitor 5-Fluoroorotate Reveals a New Binding Mode. Bioinorg Chem Appl 2021; 2021:2572844. [PMID: 34630544 PMCID: PMC8497156 DOI: 10.1155/2021/2572844] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/30/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023] Open
Abstract
Dihydroorotase (DHOase) possesses a binuclear metal center in which two Zn ions are bridged by a posttranslationally carbamylated lysine. DHOase catalyzes the reversible cyclization of N-carbamoyl aspartate (CA-asp) to dihydroorotate (DHO) in the third step of the pathway for the biosynthesis of pyrimidine nucleotides and is an attractive target for potential anticancer and antimalarial chemotherapy. Crystal structures of ligand-bound DHOase show that the flexible loop extends toward the active site when CA-asp is bound (loop-in mode) or moves away from the active site, facilitating the product DHO release (loop-out mode). DHOase binds the product-like inhibitor 5-fluoroorotate (5-FOA) in a similar mode to DHO. In the present study, we report the crystal structure of DHOase from Saccharomyces cerevisiae (ScDHOase) complexed with 5-FOA at 2.5 Å resolution (PDB entry 7CA0). ScDHOase shares structural similarity with Escherichia coli DHOase (EcDHOase). However, our complexed structure revealed that ScDHOase bound 5-FOA differently from EcDHOase. 5-FOA ligated the Zn atoms in the active site of ScDHOase. In addition, 5-FOA bound to ScDHOase through the loop-in mode. We also characterized the binding of 5-FOA to ScDHOase by using the site-directed mutagenesis and fluorescence quenching method. Based on these lines of molecular evidence, we discussed whether these different binding modes are species- or crystallography-dependent.
Collapse
|
11
|
Guan HH, Huang YH, Lin ES, Chen CJ, Huang CY. Plumbagin, a Natural Product with Potent Anticancer Activities, Binds to and Inhibits Dihydroorotase, a Key Enzyme in Pyrimidine Biosynthesis. Int J Mol Sci 2021; 22:6861. [PMID: 34202294 PMCID: PMC8267945 DOI: 10.3390/ijms22136861] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 12/11/2022] Open
Abstract
Dihydroorotase (DHOase) is the third enzyme in the de novo biosynthesis pathway for pyrimidine nucleotides, and an attractive target for potential anticancer chemotherapy. By screening plant extracts and performing GC-MS analysis, we identified and characterized that the potent anticancer drug plumbagin (PLU), isolated from the carnivorous plant Nepenthes miranda, was a competitive inhibitor of DHOase. We also solved the complexed crystal structure of yeast DHOase with PLU (PDB entry 7CA1), to determine the binding interactions and investigate the binding modes. Mutational and structural analyses indicated the binding of PLU to DHOase through loop-in mode, and this dynamic loop may serve as a drug target. PLU exhibited cytotoxicity on the survival, migration, and proliferation of 4T1 cells and induced apoptosis. These results provide structural insights that may facilitate the development of new inhibitors targeting DHOase, for further clinical anticancer chemotherapies.
Collapse
Affiliation(s)
- Hong-Hsiang Guan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan;
| | - Yen-Hua Huang
- School of Biomedical Sciences, Chung Shan Medical University, No. 110, Sec.1, Chien-Kuo N. Rd., Taichung City 402, Taiwan;
| | - En-Shyh Lin
- Department of Beauty Science, National Taichung University of Science and Technology, No. 193, Sec.1, San-Min Rd., Taichung City 403, Taiwan;
| | - Chun-Jung Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan;
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan City 701, Taiwan
- Department of Physics, National Tsing Hua University, Hsinchu 30043, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300193, Taiwan
| | - Cheng-Yang Huang
- School of Biomedical Sciences, Chung Shan Medical University, No. 110, Sec.1, Chien-Kuo N. Rd., Taichung City 402, Taiwan;
- Department of Medical Research, Chung Shan Medical University Hospital, No. 110, Sec.1, Chien-Kuo N. Rd., Taichung City 402, Taiwan
| |
Collapse
|
12
|
In Vitro Assessment of Fluoropyrimidine-Metabolizing Enzymes: Dihydropyrimidine Dehydrogenase, Dihydropyrimidinase, and β-Ureidopropionase. J Clin Med 2020; 9:jcm9082342. [PMID: 32707991 PMCID: PMC7464968 DOI: 10.3390/jcm9082342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 01/22/2023] Open
Abstract
Fluoropyrimidine drugs (FPs), including 5-fluorouracil, tegafur, capecitabine, and doxifluridine, are among the most widely used anticancer agents in the treatment of solid tumors. However, severe toxicity occurs in approximately 30% of patients following FP administration, emphasizing the importance of predicting the risk of acute toxicity before treatment. Three metabolic enzymes, dihydropyrimidine dehydrogenase (DPD), dihydropyrimidinase (DHP), and β-ureidopropionase (β-UP), degrade FPs; hence, deficiencies in these enzymes, arising from genetic polymorphisms, are involved in severe FP-related toxicity, although the effect of these polymorphisms on in vivo enzymatic activity has not been clarified. Furthermore, the clinical usefulness of current methods for predicting in vivo activity, such as pyrimidine concentrations in blood or urine, is unknown. In vitro tests have been established as advantageous for predicting the in vivo activity of enzyme variants. This is due to several studies that evaluated FP activities after enzyme metabolism using transient expression systems in Escherichia coli or mammalian cells; however, there are no comparative reports of these results. Thus, in this review, we summarized the results of in vitro analyses involving DPD, DHP, and β-UP in an attempt to encourage further comparative studies using these drug types and to aid in the elucidation of their underlying mechanisms.
Collapse
|
13
|
Huang CY. Structure, catalytic mechanism, posttranslational lysine carbamylation, and inhibition of dihydropyrimidinases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 122:63-96. [PMID: 32951816 DOI: 10.1016/bs.apcsb.2020.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dihydropyrimidinase catalyzes the reversible hydrolytic ring opening of dihydrouracil and dihydrothymine to N-carbamoyl-β-alanine and N-carbamyl-β-aminoisobutyrate, respectively. Dihydropyrimidinase from microorganisms is normally known as hydantoinase because of its role as a biocatalyst in the synthesis of d- and l-amino acids for the industrial production of antibiotic precursors and its broad substrate specificity. Dihydropyrimidinase belongs to the cyclic amidohydrolase family, which also includes imidase, allantoinase, and dihydroorotase. Although these metal-dependent enzymes share low levels of amino acid sequence homology, they possess similar active site architectures and may use a similar mechanism for catalysis. By contrast, the five human dihydropyrimidinase-related proteins possess high amino acid sequence identity and are structurally homologous to dihydropyrimidinase, but they are neuronal proteins with no dihydropyrimidinase activity. In this chapter, we summarize and discuss current knowledge and the recent advances on the structure, catalytic mechanism, and inhibition of dihydropyrimidinase.
Collapse
Affiliation(s)
- Cheng-Yang Huang
- School of Biomedical Sciences, Chung Shan Medical University, Taichung City, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung City, Taiwan
| |
Collapse
|
14
|
Huang YH, Lien Y, Chen JH, Lin ES, Huang CY. Identification and characterization of dihydropyrimidinase inhibited by plumbagin isolated from Nepenthes miranda extract. Biochimie 2020; 171-172:124-135. [PMID: 32147511 DOI: 10.1016/j.biochi.2020.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023]
Abstract
Dihydropyrimidinase is a member of the cyclic amidohydrolase family, which also includes allantoinase, dihydroorotase, hydantoinase, and imidase. This enzyme is important in pyrimidine metabolism, and blocking its activity would be detrimental to cell survival. This study investigated the dihydropyrimidinase inhibition by plumbagin isolated from the extract of carnivorous plant Nepenthes miranda (Nm). Plumbagin inhibited dihydropyrimidinase with IC50 value of 58 ± 3 μM. Double reciprocal results of Lineweaver-Burk plot indicated that this compound is a competitive inhibitor of dihydropyrimidinase. Fluorescence quenching analysis revealed that plumbagin could form a stable complex with dihydropyrimidinase with the Kd value of 37.7 ± 1.4 μM. Docking experiments revealed that the dynamic loop crucial for stabilization of the intermediate state in dihydropyrimidinase might be involved in the inhibition effect of plumbagin. Mutation at either Y155 or K156 within the dynamic loop of dihydropyrimidinase caused low plumbagin binding affinity. In addition to their dihydropyrimidinase inhibition, plumbagin and Nm extracts also exhibited cytotoxicity on melanoma cell survival, migration, and proliferation. Further research can directly focus on designing compounds that target the dynamic loop in dihydropyrimidinase during catalysis.
Collapse
Affiliation(s)
- Yen-Hua Huang
- School of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Chien-Kuo N. Rd., Taichung City, Taiwan
| | - Yi Lien
- School of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Chien-Kuo N. Rd., Taichung City, Taiwan
| | - Jung-Hung Chen
- School of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Chien-Kuo N. Rd., Taichung City, Taiwan
| | - En-Shyh Lin
- Department of Beauty Science, National Taichung University of Science and Technology, No.193, Sec.1, San-Min Rd., Taichung City, Taiwan
| | - Cheng-Yang Huang
- School of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Chien-Kuo N. Rd., Taichung City, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, No.110, Sec.1, Chien-Kuo N. Rd., Taichung City, Taiwan.
| |
Collapse
|
15
|
Huang YH, Ning ZJ, Huang CY. Crystal structure of dihydropyrimidinase in complex with anticancer drug 5-fluorouracil. Biochem Biophys Res Commun 2019; 519:160-165. [PMID: 31481233 DOI: 10.1016/j.bbrc.2019.08.153] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 12/29/2022]
Abstract
Dihydropyrimidinase (DHPase) catalyzes the reversible cyclization of dihydrouracil to N-carbamoyl-β-alanine in the second step of the pyrimidine degradation pathway. Whether 5-fluorouracil (5-FU), the best-known fluoropyrimidine that is used to target the enzyme thymidylate synthase for anticancer therapy, can bind to DHPase remains unknown. In this study, we found that 5-FU can form a stable complex with Pseudomonas aeruginosa DHPase (PaDHPase). The crystal structure of PaDHPase complexed with 5-FU was determined at 1.76 Å resolution (PDB entry 6KLK). Various interactions between 5-FU and PaDHPase were examined. Six residues, namely, His61, Tyr155, Asp316, Cys318, Ser289 and Asn337, of PaDHPase were involved in 5-FU binding. Except for Cys318, these residues are also known as the substrate-binding sites of DHPase. 5-FU interacts with the main chains of residues Ser289 (3.0 Å) and Asn337 (3.2 Å) and the side chains of residues Tyr155 (2.8 Å) and Cys318 (2.9 Å). Mutation at either Tyr155 or Cys318 of PaDHPase caused a low 5-FU binding activity of PaDHPase. This structure and the binding mode provided molecular insights into how the dimetal center in DHPase undergoes a conformational change during 5-FU binding. Further research can directly focus on revisiting the role of DHPase in anticancer therapy.
Collapse
Affiliation(s)
- Yen-Hua Huang
- School of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Chien-Kuo N. Rd., Taichung City, Taiwan
| | - Zhi-Jun Ning
- School of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Chien-Kuo N. Rd., Taichung City, Taiwan
| | - Cheng-Yang Huang
- School of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Chien-Kuo N. Rd., Taichung City, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, No.110, Sec.1, Chien-Kuo N. Rd., Taichung City, Taiwan.
| |
Collapse
|
16
|
Iradi-Serrano M, Tola-García L, Cortese MS, Ugalde U. The Early Asexual Development Regulator fluG Codes for a Putative Bifunctional Enzyme. Front Microbiol 2019; 10:778. [PMID: 31057506 PMCID: PMC6478659 DOI: 10.3389/fmicb.2019.00778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/27/2019] [Indexed: 11/13/2022] Open
Abstract
FluG is a long recognized early regulator of asexual development in Aspergillus nidulans. fluG null mutants show profuse aerial growth and no conidial production. Initial studies reported sequence homology of FluG with a prokaryotic type I glutamine synthetase, but catalytic activity has not been demonstrated. In this study, we conducted an in-depth analysis of the FluG sequence, which revealed a single polypeptide containing a putative N-terminal amidohydrolase region linked to a putative C-terminal γ-glutamyl ligase region. Each region corresponded, separately and completely, to respective single function bacterial enzymes. Separate expression of these regions confirmed that the C-terminal region was essential for asexual development. The N-terminal region alone did not support conidial development, but contributed to increased conidial production under high nutrient availability. Point mutations directed at respective key catalytic residues in each region demonstrated that they were essential for biological function. Moreover, the substitution of the N- and C-terminal regions with homologs from Lactobacillus paracasei and Pseudomonas aeruginosa, respectively, maintained functionality, albeit with altered characteristics. Taken together, the results lead us to conclude that FluG is a bifunctional enzyme that participates in an as yet unidentified metabolic or signaling pathway involving a γ-glutamylated intermediate that contributes to developmental fate.
Collapse
Affiliation(s)
| | | | | | - Unai Ugalde
- Microbial Biochemistry Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country, San Sebastian, Spain
| |
Collapse
|
17
|
Sheng X, Hou Q, Liu Y. Computational evidence for the importance of lysine carboxylation in the reaction catalyzed by carboxyl transferase domain of pyruvate carboxylase: a QM/MM study. Theor Chem Acc 2019. [DOI: 10.1007/s00214-018-2408-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Crystal structures of monometallic dihydropyrimidinase and the human dihydroorotase domain K1556A mutant reveal no lysine carbamylation within the active site. Biochem Biophys Res Commun 2018; 505:439-444. [PMID: 30268498 DOI: 10.1016/j.bbrc.2018.09.153] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 09/23/2018] [Indexed: 01/05/2023]
Abstract
Dihydropyrimidinase (DHPase) is a member of the cyclic amidohydrolase family, which also includes allantoinase, dihydroorotase (DHOase), hydantoinase, and imidase. Almost all of these zinc metalloenzymes possess a binuclear metal center in which two metal ions are bridged by a post-translational carbamylated Lys. Crystal structure of Tetraodon nigroviridis DHPase reveals that one zinc ion is sufficient to stabilize Lys carbamylation. In this study, we found that one metal coordination was not sufficient to fix CO2 to the Lys in bacterial DHPase. We prepared and characterized mono-Zn DHPase from Pseudomonas aeruginosa (PaDHPase), and the catalytic activity of mono-Zn PaDHPase was not detected. The crystal structure of mono-Zn PaDHPase determined at 2.23 Å resolution (PDB entry 6AJD) revealed that Lys150 was no longer carbamylated. This finding indicated the decarbamylation of the Lys during the metal chelating process. To confirm the state of Lys carbamylation in mono-Zn PaDHPase in solution, mass spectrometric (MS) analysis was carried out. The MS result was in agreement with the theoretical value for uncarbamylated PaDHPase. Crystal structure of the human DHOase domain (huDHOase) K1556A mutant was also determined (PDB entry 5YNZ), and the structure revealed that the active site of huDHOase K1556A mutant contained one metal ion. Like mono-Zn PaDHPase, oxygen ligands of the carbamylated Lys were not required for Znα binding. Considering the collective data from X-ray crystal structure and MS analysis, mono-Zn PaDHPase in both crystalline state and solution was not carbamylated. In addition, structural evidences indicated that post-translational carbamylated Lys was not required for Znα binding in PaDHPase and in huDHOase.
Collapse
|
19
|
Structural Basis for pH-Dependent Oligomerization of Dihydropyrimidinase from Pseudomonas aeruginosa PAO1. Bioinorg Chem Appl 2018; 2018:9564391. [PMID: 29666631 PMCID: PMC5832032 DOI: 10.1155/2018/9564391] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/20/2017] [Accepted: 12/03/2017] [Indexed: 11/18/2022] Open
Abstract
Dihydropyrimidinase, a dimetalloenzyme containing a carboxylated lysine within the active site, is a member of the cyclic amidohydrolase family, which also includes allantoinase, dihydroorotase, hydantoinase, and imidase. Unlike all known dihydropyrimidinases, which are tetrameric, pseudomonal dihydropyrimidinase forms a dimer at neutral pH. In this paper, we report the crystal structure of P. aeruginosa dihydropyrimidinase at pH 5.9 (PDB entry 5YKD). The crystals of P. aeruginosa dihydropyrimidinase belonged to space group C2221 with cell dimensions of a = 108.9, b = 155.7, and c = 235.6 Å. The structure of P. aeruginosa dihydropyrimidinase was solved at 2.17 Å resolution. An asymmetric unit of the crystal contained four crystallographically independent P. aeruginosa dihydropyrimidinase monomers. Gel filtration chromatographic analysis of purified P. aeruginosa dihydropyrimidinase revealed a mixture of dimers and tetramers at pH 5.9. Thus, P. aeruginosa dihydropyrimidinase can form a stable tetramer both in the crystalline state and in the solution. Based on sequence analysis and structural comparison of the dimer-dimer interface between P. aeruginosa dihydropyrimidinase and Thermus sp. dihydropyrimidinase, different oligomerization mechanisms are proposed.
Collapse
|
20
|
Nakajima Y, Meijer J, Dobritzsch D, Ito T, Zhang C, Wang X, Watanabe Y, Tashiro K, Meinsma R, Roelofsen J, Zoetekouw L, van Kuilenburg ABP. Dihydropyrimidinase deficiency in four East Asian patients due to novel and rare DPYS mutations affecting protein structural integrity and catalytic activity. Mol Genet Metab 2017; 122:216-222. [PMID: 29054612 DOI: 10.1016/j.ymgme.2017.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/09/2017] [Accepted: 10/09/2017] [Indexed: 01/07/2023]
Abstract
Dihydropyrimidinase (DHP) is the second enzyme of the pyrimidine degradation pathway and catalyzes the ring opening of 5,6-dihydrouracil and 5,6-dihydrothymine. To date, only 31 genetically confirmed patients with a DHP deficiency have been reported and the clinical, biochemical and genetic spectrum of DHP deficient patients is, therefore, still largely unknown. Here, we show that 4 newly identified DHP deficient patients presented with strongly elevated levels of 5,6-dihydrouracil and 5,6-dihydrothymine in urine and a highly variable clinical presentation, ranging from asymptomatic to infantile spasm and reduced white matter and brain atrophy. Analysis of the DHP gene (DPYS) showed the presence of 8 variants including 4 novel/rare missense variants and one novel deletion. Functional analysis of recombinantly expressed DHP mutants carrying the p.M250I, p.H295R, p.Q334R, p.T418I and the p.R490H variant showed residual DHP activities of 2.0%, 9.8%, 9.7%, 64% and 0.3%, respectively. The crystal structure of human DHP indicated that all point mutations were likely to cause rearrangements of loops shaping the active site, primarily affecting substrate binding and stability of the enzyme. The observation that the identified mutations were more prevalent in East Asians and the Japanese population indicates that DHP deficiency may be more common than anticipated in these ethnic groups.
Collapse
Affiliation(s)
- Yoko Nakajima
- Fujita Health University School of Medicine, Department of Pediatrics, Toyoake 470-1192, Japan; Academic Medical Center, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, 1105, AZ, Amsterdam, The Netherlands
| | - Judith Meijer
- Academic Medical Center, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, 1105, AZ, Amsterdam, The Netherlands
| | - Doreen Dobritzsch
- Uppsala University, Department of Chemistry, Biomedical Center, S-751 24 Uppsala, Sweden
| | - Tetsuya Ito
- Fujita Health University School of Medicine, Department of Pediatrics, Toyoake 470-1192, Japan
| | - Chunhua Zhang
- MILS International, Department of Research and Development, Kanazawa 921-8105, Japan
| | - Xu Wang
- Beijing Children's Hospital, Capital University of Medical Sciences, Department of Neurology, Beijing 100045, China
| | - Yoriko Watanabe
- Kurume University, School of Medicine, Department of Pediatrics, Kurume 830-0011, Japan
| | - Kyoko Tashiro
- Kurume University, School of Medicine, Research Institute of Medical Mass Spectrometry, Kurume 830-0011, Japan
| | - Rutger Meinsma
- Academic Medical Center, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, 1105, AZ, Amsterdam, The Netherlands
| | - Jeroen Roelofsen
- Academic Medical Center, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, 1105, AZ, Amsterdam, The Netherlands
| | - Lida Zoetekouw
- Academic Medical Center, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, 1105, AZ, Amsterdam, The Netherlands
| | - André B P van Kuilenburg
- Academic Medical Center, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, 1105, AZ, Amsterdam, The Netherlands.
| |
Collapse
|
21
|
Hishinuma E, Akai F, Narita Y, Maekawa M, Yamaguchi H, Mano N, Oda A, Hirasawa N, Hiratsuka M. Functional characterization of 21 allelic variants of dihydropyrimidinase. Biochem Pharmacol 2017. [PMID: 28642038 DOI: 10.1016/j.bcp.2017.06.121] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dihydropyrimidinase (DHP, EC 3.5.2.2), encoded by the gene DPYS, is the second enzyme in the catabolic pathway of pyrimidine and of fluoropyrimidine drugs such as 5-fluorouracil, which are commonly used in anticancer treatment; DHP catalyzes the hydrolytic ring opening of dihydrouracil and dihydro-5-fluorouracil. DPYS mutations are known to contribute to interindividual variations in the toxicity of fluoropyrimidine drugs, but the functional characterization of DHP allelic variants remains inadequate. In this study, in vitro analysis was performed on 22 allelic variants of DHP by transiently expressing wild-type DHP and 21 DHP variants in 293FT cells and characterizing their enzymatic activities by using dihydrouracil and dihydro-5-fluorouracil as substrates. DHP expression levels and oligomeric forms were determined using immunoblotting and blue native PAGE, respectively, and the stability of the DHP variants was assessed by examining the proteins in variant-transfected cells treated with cycloheximide or bortezomib. Moreover, three kinetic parameters, Km, Vmax, and intrinsic clearance (Vmax/Km), for the hydrolysis of dihydrouracil and dihydro-5-fluorouracil were determined. We found that 5/21 variants showed significantly decreased intrinsic clearance as compared to wild-type DHP, and that 9/21 variants were expressed at low levels and were inactive due to proteasome-mediated degradation. The band patterns observed in the immunoblotting of blue native gels corresponded to DHP activity, and, notably, 18/21 DHP variants exhibited decreased or null enzymatic activity and these variants also showed a drastically reduced ability to form large oligomers. Thus, detection of DPYS genetic polymorphisms might facilitate the prediction severe adverse effects of fluoropyrimidine-based treatments.
Collapse
Affiliation(s)
- Eiji Hishinuma
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Fumika Akai
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Yoko Narita
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Hiroaki Yamaguchi
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Akifumi Oda
- Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Japan
| | - Noriyasu Hirasawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Masahiro Hiratsuka
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8575, Japan.
| |
Collapse
|
22
|
Tzeng CT, Huang YH, Huang CY. Crystal structure of dihydropyrimidinase from Pseudomonas aeruginosa PAO1: Insights into the molecular basis of formation of a dimer. Biochem Biophys Res Commun 2016; 478:1449-55. [PMID: 27576201 DOI: 10.1016/j.bbrc.2016.08.144] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 08/25/2016] [Indexed: 01/31/2023]
Abstract
Dihydropyrimidinase, a tetrameric metalloenzyme, is a member of the cyclic amidohydrolase family, which also includes allantoinase, dihydroorotase, hydantoinase, and imidase. In this paper, we report the crystal structure of dihydropyrimidinase from Pseudomonas aeruginosa PAO1 at 2.1 Å resolution. The structure of P. aeruginosa dihydropyrimidinase reveals a classic (β/α)8-barrel structure core embedding the catalytic dimetal center and a β-sandwich domain, which is commonly found in the architecture of dihydropyrimidinases. In contrast to all dihydropyrimidinases, P. aeruginosa dihydropyrimidinase forms a dimer, rather than a tetramer, both in the crystalline state and in the solution. Basing on sequence analysis and structural comparison of the C-terminal region and the dimer-dimer interface between P. aeruginosa dihydropyrimidinase and Thermus sp. dihydropyrimidinase, we propose a working model to explain why this enzyme cannot be a tetramer.
Collapse
Affiliation(s)
- Ching-Ting Tzeng
- School of Biomedical Sciences, Chung Shan Medical University, No. 110, Sec. 1, Chien-Kuo N. Rd., Taichung City, Taiwan
| | - Yen-Hua Huang
- School of Biomedical Sciences, Chung Shan Medical University, No. 110, Sec. 1, Chien-Kuo N. Rd., Taichung City, Taiwan
| | - Cheng-Yang Huang
- School of Biomedical Sciences, Chung Shan Medical University, No. 110, Sec. 1, Chien-Kuo N. Rd., Taichung City, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, No. 110, Sec. 1, Chien-Kuo N. Rd., Taichung City, Taiwan.
| |
Collapse
|
23
|
Huang CY. Inhibition of a Putative Dihydropyrimidinase from Pseudomonas aeruginosa PAO1 by Flavonoids and Substrates of Cyclic Amidohydrolases. PLoS One 2015; 10:e0127634. [PMID: 25993634 PMCID: PMC4437985 DOI: 10.1371/journal.pone.0127634] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/16/2015] [Indexed: 02/04/2023] Open
Abstract
Dihydropyrimidinase is a member of the cyclic amidohydrolase family, which also includes allantoinase, dihydroorotase, hydantoinase, and imidase. These metalloenzymes possess very similar active sites and may use a similar mechanism for catalysis. However, whether the substrates and inhibitors of other cyclic amidohydrolases can inhibit dihydropyrimidinase remains unclear. This study investigated the inhibition of dihydropyrimidinase by flavonoids and substrates of other cyclic amidohydrolases. Allantoin, dihydroorotate, 5-hydantoin acetic acid, acetohydroxamate, orotic acid, and 3-amino-1,2,4-triazole could slightly inhibit dihydropyrimidinase, and the IC50 values of these compounds were within the millimolar range. The inhibition of dihydropyrimidinase by flavonoids, such as myricetin, quercetin, kaempferol, galangin, dihydromyricetin, and myricitrin, was also investigated. Some of these compounds are known as inhibitors of allantoinase and dihydroorotase. Although the inhibitory effects of these flavonoids on dihydropyrimidinase were substrate-dependent, dihydromyricetin significantly inhibited dihydropyrimidinase with IC50 values of 48 and 40 μM for the substrates dihydrouracil and 5-propyl-hydantoin, respectively. The results from the Lineweaver−Burk plot indicated that dihydromyricetin was a competitive inhibitor. Results from fluorescence quenching analysis indicated that dihydromyricetin could form a stable complex with dihydropyrimidinase with the Kd value of 22.6 μM. A structural study using PatchDock showed that dihydromyricetin was docked in the active site pocket of dihydropyrimidinase, which was consistent with the findings from kinetic and fluorescence studies. This study was the first to demonstrate that naturally occurring product dihydromyricetin inhibited dihydropyrimidinase, even more than the substrate analogs (>3 orders of magnitude). These flavonols, particularly myricetin, may serve as drug leads and dirty drugs (for multiple targets) for designing compounds that target several cyclic amidohydrolases.
Collapse
Affiliation(s)
- Cheng-Yang Huang
- School of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Chien-Kuo N. Rd., Taichung City, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, No.110, Sec.1, Chien-Kuo N. Rd., Taichung City, Taiwan
- * E-mail:
| |
Collapse
|
24
|
Peng WF, Huang CY. Allantoinase and dihydroorotase binding and inhibition by flavonols and the substrates of cyclic amidohydrolases. Biochimie 2014; 101:113-22. [PMID: 24418229 DOI: 10.1016/j.biochi.2014.01.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 01/02/2014] [Indexed: 01/10/2023]
Abstract
Allantoinase and dihydroorotase are members of the cyclic amidohydrolases family. Allantoinase and dihydroorotase possess very similar binuclear metal centers in the active site and may use a similar mechanism for catalysis. However, whether the substrate specificities of allantoinase and dihydroorotase overlap and whether the substrates of other cyclic amidohydrolases inhibit allantoinase and dihydroorotase remain unknown. In this study, the binding and inhibition of allantoinase (Salmonella enterica serovar Typhimurium LT2) and dihydroorotase (Klebsiella pneumoniae) by flavonols and the substrates of other cyclic amidohydrolases were investigated. Hydantoin and phthalimide, substrates of hydantoinase and imidase, were not hydrolyzed by allantoinase and dihydroorotase. Hydantoin and dihydroorotate competitively inhibited allantoinase, whereas hydantoin and allantoin bind to dihydroorotase, but do not affect its activity. We further investigated the effects of the flavonols myricetin, quercetin, kaempferol, and galangin, on the inhibition of allantoinase and dihydroorotase. Allantoinase and dihydroorotase were both significantly inhibited by kaempferol, with IC50 values of 35 ± 3 μM and 31 ± 2 μM, respectively. Myricetin strongly inhibited dihydroorotase, with an IC50 of 40 ± 1 μM. The double reciprocal of the Lineweaver-Burk plot indicated that kaempferol was a competitive inhibitor for allantoinase but an uncompetitive inhibitor for dihydroorotase. A structural study using PatchDock showed that kaempferol was docked in the active site pocket of allantoinase but outside the active site pocket of dihydroorotase. These results constituted a first study that naturally occurring product flavonols inhibit the cyclic amidohydrolases, allantoinase, and dihydroorotase, even more than the substrate analogs (>3 orders of magnitude). Thus, flavonols may serve as drug leads for designing compounds that target several cyclic amidohydrolases.
Collapse
Affiliation(s)
- Wei-Feng Peng
- School of Biomedical Sciences, Chung Shan Medical University, No. 110, Sec. 1, Chien-Kuo N. Rd., Taichung City, Taiwan; School of Medicine, College of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Chien-Kuo N. Rd., Taichung City, Taiwan
| | - Cheng-Yang Huang
- School of Biomedical Sciences, Chung Shan Medical University, No. 110, Sec. 1, Chien-Kuo N. Rd., Taichung City, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, No. 110, Sec. 1, Chien-Kuo N. Rd., Taichung City, Taiwan.
| |
Collapse
|
25
|
Martínez-Gómez AI, Soriano-Maldonado P, Andújar-Sánchez M, Clemente-Jiménez JM, Rodríguez-Vico F, Neira JL, Las Heras-Vázquez FJ, Martínez-Rodríguez S. Biochemical and mutational studies of allantoinase from Bacillus licheniformis CECT 20T. Biochimie 2013; 99:178-88. [PMID: 24333989 DOI: 10.1016/j.biochi.2013.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 12/03/2013] [Indexed: 10/25/2022]
Abstract
Allantoinases (allantoin amidohydrolase, E.C. 3.5.2.5) catalyze the hydrolysis of the amide bond of allantoin to form allantoic acid, in those organisms where allantoin is not the final product of uric acid degradation. Despite their importance in the purine catabolic pathway, sequences of microbial allantoinases with proven activity are scarce, and only the enzyme from Escherichia coli (AllEco) has been studied in detail in the genomic era. In this work, we report the cloning, purification and characterization of the recombinant allantoinase from Bacillus licheniformis CECT 20T (AllBali). The enzyme was a homotetramer with an apparent Tm of 62 ± 1 °C. Optimal parameters for the enzyme activity were pH 7.5 and 50 °C, showing apparent Km and kcat values of 17.7 ± 2.7 mM and 24.4 ± 1.5 s(-1), respectively. Co(2+) proved to be the most effective cofactor, inverting the enantioselectivity of AllBali when compared to that previously reported for other allantoinases. The common ability of different cyclic amidohydrolases to hydrolyze distinct substrates to the natural one also proved true for AllBali. The enzyme was able to hydrolyze hydantoin, dihydrouracil and 5-ethyl-hydantoin, although at relative rates 3-4 orders of magnitude lower than with allantoin. Mutagenesis experiments suggest that S292 is likely implicated in the binding of the allantoin ring through the carbonyl group of the polypeptide main chain, which is the common mechanism observed in other members of the amidohydrolase family. In addition, our results suggest an allosteric effect of H2O2 toward allantoinase.
Collapse
Affiliation(s)
- Ana Isabel Martínez-Gómez
- Dpto. Química y Física, Universidad de Almería, Campus de Excelencia Internacional Agroalimentario, ceiA3, 04120 Almería, Spain; Centro de Investigación en Biotecnología Agroalimentaria, BITAL, Almería, Spain
| | - Pablo Soriano-Maldonado
- Dpto. Química y Física, Universidad de Almería, Campus de Excelencia Internacional Agroalimentario, ceiA3, 04120 Almería, Spain; Centro de Investigación en Biotecnología Agroalimentaria, BITAL, Almería, Spain
| | - Montserrat Andújar-Sánchez
- Dpto. Química y Física, Universidad de Almería, Campus de Excelencia Internacional Agroalimentario, ceiA3, 04120 Almería, Spain; Centro de Investigación en Biotecnología Agroalimentaria, BITAL, Almería, Spain
| | - Josefa María Clemente-Jiménez
- Dpto. Química y Física, Universidad de Almería, Campus de Excelencia Internacional Agroalimentario, ceiA3, 04120 Almería, Spain; Centro de Investigación en Biotecnología Agroalimentaria, BITAL, Almería, Spain
| | - Felipe Rodríguez-Vico
- Dpto. Química y Física, Universidad de Almería, Campus de Excelencia Internacional Agroalimentario, ceiA3, 04120 Almería, Spain; Centro de Investigación en Biotecnología Agroalimentaria, BITAL, Almería, Spain
| | - José L Neira
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain; Complex Systems Physics Institute, 50009 Zaragoza, Spain
| | - Francisco Javier Las Heras-Vázquez
- Dpto. Química y Física, Universidad de Almería, Campus de Excelencia Internacional Agroalimentario, ceiA3, 04120 Almería, Spain; Centro de Investigación en Biotecnología Agroalimentaria, BITAL, Almería, Spain
| | - Sergio Martínez-Rodríguez
- Dpto. Química y Física, Universidad de Almería, Campus de Excelencia Internacional Agroalimentario, ceiA3, 04120 Almería, Spain; Centro de Investigación en Biotecnología Agroalimentaria, BITAL, Almería, Spain; Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain; Dpto. Química Física, Universidad de Granada, 18071 Granada, Spain.
| |
Collapse
|