1
|
Brown VE, Moore SL, Chen M, House N, Ramsden P, Wu HJ, Ribich S, Grassian AR, Choi YJ. CDK2 regulates collapsed replication fork repair in CCNE1-amplified ovarian cancer cells via homologous recombination. NAR Cancer 2023; 5:zcad039. [PMID: 37519629 PMCID: PMC10373114 DOI: 10.1093/narcan/zcad039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/22/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023] Open
Abstract
CCNE1 amplification is a common alteration in high-grade serous ovarian cancer and occurs in 15-20% of these tumors. These amplifications are mutually exclusive with homologous recombination deficiency, and, as they have intact homologous recombination, are intrinsically resistant to poly (ADP-ribose) polymerase inhibitors or chemotherapy agents. Understanding the molecular mechanisms that lead to this mutual exclusivity may reveal therapeutic vulnerabilities that could be leveraged in the clinic in this still underserved patient population. Here, we demonstrate that CCNE1-amplified high-grade serous ovarian cancer cells rely on homologous recombination to repair collapsed replication forks. Cyclin-dependent kinase 2, the canonical partner of cyclin E1, uniquely regulates homologous recombination in this genetic context, and as such cyclin-dependent kinase 2 inhibition synergizes with DNA damaging agents in vitro and in vivo. We demonstrate that combining a selective cyclin-dependent kinase 2 inhibitor with a DNA damaging agent could be a powerful tool in the clinic for high-grade serous ovarian cancer.
Collapse
Affiliation(s)
- Victoria E Brown
- To whom correspondence should be addressed. Tel: +1 617 374 7580;
| | - Sydney L Moore
- Blueprint Medicines, Cambridge, MA 02139, USA
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Maxine Chen
- Blueprint Medicines, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
2
|
Raimundo L, Calheiros J, Saraiva L. Exploiting DNA Damage Repair in Precision Cancer Therapy: BRCA1 as a Prime Therapeutic Target. Cancers (Basel) 2021; 13:cancers13143438. [PMID: 34298653 PMCID: PMC8303227 DOI: 10.3390/cancers13143438] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/21/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Chemical inhibition of central DNA damage repair (DDR) proteins has become a promising approach in precision cancer therapy. In particular, BRCA1 and its DDR-associated proteins constitute important targets for developing DNA repair inhibiting drugs. This review provides relevant insights on DDR biology and pharmacology, aiming to boost the development of more effective DDR targeted therapies. Abstract Precision medicine aims to identify specific molecular alterations, such as driver mutations, allowing tailored and effective anticancer therapies. Poly(ADP)-ribose polymerase inhibitors (PARPi) are the prototypical example of targeted therapy, exploiting the inability of cancer cells to repair DNA damage. Following the concept of synthetic lethality, PARPi have gained great relevance, particularly in BRCA1 dysfunctional cancer cells. In fact, BRCA1 mutations culminate in DNA repair defects that can render cancer cells more vulnerable to therapy. However, the efficacy of these drugs has been greatly affected by the occurrence of resistance due to multi-connected DNA repair pathways that may compensate for each other. Hence, the search for additional effective agents targeting DNA damage repair (DDR) is of crucial importance. In this context, BRCA1 has assumed a central role in developing drugs aimed at inhibiting DNA repair activity. Collectively, this review provides an in-depth understanding of the biology and regulatory mechanisms of DDR pathways, highlighting the potential of DDR-associated molecules, particularly BRCA1 and its interconnected partners, in precision cancer medicine. It also affords an overview about what we have achieved and a reflection on how much remains to be done in this field, further addressing encouraging clues for the advance of DDR targeted therapy.
Collapse
|
3
|
Mason-Osann E, Terranova K, Lupo N, Lock YJ, Carson LM, Flynn RL. RAD54 promotes alternative lengthening of telomeres by mediating branch migration. EMBO Rep 2020; 21:e49495. [PMID: 32337843 PMCID: PMC7271314 DOI: 10.15252/embr.201949495] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/19/2020] [Accepted: 03/31/2020] [Indexed: 12/15/2022] Open
Abstract
Cancer cells can activate the alternative lengthening of telomeres (ALT) pathway to promote replicative immortality. The ALT pathway promotes telomere elongation through a homologous recombination pathway known as break‐induced replication (BIR), which is often engaged to repair single‐ended double‐stranded breaks (DSBs). Single‐ended DSBs are resected to promote strand invasion and facilitate the formation of a local displacement loop (D‐loop), which can trigger DNA synthesis, and ultimately promote telomere elongation. However, the exact proteins involved in the maturation, migration, and resolution of D‐loops at ALT telomeres are unclear. In vitro, the DNA translocase RAD54 both binds D‐loops and promotes branch migration suggesting that RAD54 may function to promote ALT activity. Here, we demonstrate that RAD54 is enriched at ALT telomeres and promotes telomeric DNA synthesis through its ATPase‐dependent branch migration activity. Loss of RAD54 leads to the formation of unresolved recombination intermediates at telomeres that form ultra‐fine anaphase bridges in mitosis. These data demonstrate an important role for RAD54 in promoting ALT‐mediated telomere synthesis.
Collapse
Affiliation(s)
- Emily Mason-Osann
- Departments of Pharmacology & Experimental Therapeutics, Medicine Cancer Center, Boston University School of Medicine, Boston, MA, USA
| | - Katherine Terranova
- Departments of Pharmacology & Experimental Therapeutics, Medicine Cancer Center, Boston University School of Medicine, Boston, MA, USA
| | - Nicholas Lupo
- Departments of Pharmacology & Experimental Therapeutics, Medicine Cancer Center, Boston University School of Medicine, Boston, MA, USA
| | - Ying Jie Lock
- Departments of Pharmacology & Experimental Therapeutics, Medicine Cancer Center, Boston University School of Medicine, Boston, MA, USA
| | - Lisa M Carson
- Departments of Pharmacology & Experimental Therapeutics, Medicine Cancer Center, Boston University School of Medicine, Boston, MA, USA
| | - Rachel Litman Flynn
- Departments of Pharmacology & Experimental Therapeutics, Medicine Cancer Center, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
4
|
Prakash A, Garcia-Moreno JF, Brown JAL, Bourke E. Clinically Applicable Inhibitors Impacting Genome Stability. Molecules 2018; 23:E1166. [PMID: 29757235 PMCID: PMC6100577 DOI: 10.3390/molecules23051166] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 12/14/2022] Open
Abstract
Advances in technology have facilitated the molecular profiling (genomic and transcriptomic) of tumours, and has led to improved stratification of patients and the individualisation of treatment regimes. To fully realize the potential of truly personalised treatment options, we need targeted therapies that precisely disrupt the compensatory pathways identified by profiling which allow tumours to survive or gain resistance to treatments. Here, we discuss recent advances in novel therapies that impact the genome (chromosomes and chromatin), pathways targeted and the stage of the pathways targeted. The current state of research will be discussed, with a focus on compounds that have advanced into trials (clinical and pre-clinical). We will discuss inhibitors of specific DNA damage responses and other genome stability pathways, including those in development, which are likely to synergistically combine with current therapeutic options. Tumour profiling data, combined with the knowledge of new treatments that affect the regulation of essential tumour signalling pathways, is revealing fundamental insights into cancer progression and resistance mechanisms. This is the forefront of the next evolution of advanced oncology medicine that will ultimately lead to improved survival and may, one day, result in many cancers becoming chronic conditions, rather than fatal diseases.
Collapse
Affiliation(s)
- Anu Prakash
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| | - Juan F Garcia-Moreno
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| | - James A L Brown
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| | - Emer Bourke
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| |
Collapse
|
5
|
Goyal N, Rossi MJ, Mazina OM, Chi Y, Moritz RL, Clurman BE, Mazin AV. RAD54 N-terminal domain is a DNA sensor that couples ATP hydrolysis with branch migration of Holliday junctions. Nat Commun 2018; 9:34. [PMID: 29295984 PMCID: PMC5750232 DOI: 10.1038/s41467-017-02497-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/28/2017] [Indexed: 11/08/2022] Open
Abstract
In eukaryotes, RAD54 catalyzes branch migration (BM) of Holliday junctions, a basic process during DNA repair, replication, and recombination. RAD54 also stimulates RAD51 recombinase and has other activities. Here, we investigate the structural determinants for different RAD54 activities. We find that the RAD54 N-terminal domain (NTD) is responsible for initiation of BM through two coupled, but distinct steps; specific binding to Holliday junctions and RAD54 oligomerization. Furthermore, we find that the RAD54 oligomeric state can be controlled by NTD phosphorylation at S49, a CDK2 consensus site, which inhibits RAD54 oligomerization and, consequently, BM. Importantly, the effect of phosphorylation on RAD54 oligomerization is specific for BM, as it does not affect stimulation of RAD51 recombinase by RAD54. Thus, the transition of the oligomeric states provides an important control of the biological functions of RAD54 and, likely, other multifunctional proteins.
Collapse
Affiliation(s)
- Nadish Goyal
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Matthew J Rossi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Olga M Mazina
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Yong Chi
- Divisions of Clinical Research and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | | | - Bruce E Clurman
- Divisions of Clinical Research and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Alexander V Mazin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
| |
Collapse
|
6
|
Hengel SR, Spies MA, Spies M. Small-Molecule Inhibitors Targeting DNA Repair and DNA Repair Deficiency in Research and Cancer Therapy. Cell Chem Biol 2017; 24:1101-1119. [PMID: 28938088 PMCID: PMC5679738 DOI: 10.1016/j.chembiol.2017.08.027] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/11/2017] [Accepted: 08/30/2017] [Indexed: 01/13/2023]
Abstract
To maintain stable genomes and to avoid cancer and aging, cells need to repair a multitude of deleterious DNA lesions, which arise constantly in every cell. Processes that support genome integrity in normal cells, however, allow cancer cells to develop resistance to radiation and DNA-damaging chemotherapeutics. Chemical inhibition of the key DNA repair proteins and pharmacologically induced synthetic lethality have become instrumental in both dissecting the complex DNA repair networks and as promising anticancer agents. The difficulty in capitalizing on synthetically lethal interactions in cancer cells is that many potential targets do not possess well-defined small-molecule binding determinates. In this review, we discuss several successful campaigns to identify and leverage small-molecule inhibitors of the DNA repair proteins, from PARP1, a paradigm case for clinically successful small-molecule inhibitors, to coveted new targets, such as RAD51 recombinase, RAD52 DNA repair protein, MRE11 nuclease, and WRN DNA helicase.
Collapse
Affiliation(s)
- Sarah R Hengel
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - M Ashley Spies
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA; Department of Pharmaceutical Sciences and Experimental Therapeutics, Division of Medicinal and Natural Products Chemistry, University of Iowa, Iowa City, IA 52242, USA.
| | - Maria Spies
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
7
|
Lewis RA, Li J, Allenby NEE, Errington J, Hayles J, Nurse P. Screening and purification of natural products from actinomycetes that affect the cell shape of fission yeast. J Cell Sci 2017; 130:3173-3185. [PMID: 28775153 PMCID: PMC5612171 DOI: 10.1242/jcs.194571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 07/21/2017] [Indexed: 12/15/2022] Open
Abstract
This study was designed to identify bioactive compounds that alter the cellular shape of the fission yeast Schizosaccharomyces pombe by affecting functions involved in the cell cycle or cell morphogenesis. We used a multidrug-sensitive fission yeast strain, SAK950 to screen a library of 657 actinomycete bacteria and identified 242 strains that induced eight different major shape phenotypes in S. pombe. These include the typical cell cycle-related phenotype of elongated cells, and the cell morphology-related phenotype of rounded cells. As a proof of principle, we purified four of these activities, one of which is a novel compound and three that are previously known compounds, leptomycin B, streptonigrin and cycloheximide. In this study, we have also shown novel effects for two of these compounds, leptomycin B and cycloheximide. The identification of these four compounds and the explanation of the S. pombe phenotypes in terms of their known, or predicted bioactivities, confirm the effectiveness of this approach. Summary: A cell shape-based visual screen of S. pombe in the presence of actinomycete-derived bioactivities and an explanation for the phenotypes following identification of the compounds.
Collapse
Affiliation(s)
- Richard A Lewis
- Cell Cycle Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Demuris Ltd, Newcastle Biomedicine Bioincubators, William Leech Building, Newcastle University Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Juanjuan Li
- Cell Cycle Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Nicholas E E Allenby
- Demuris Ltd, Newcastle Biomedicine Bioincubators, William Leech Building, Newcastle University Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Jeffery Errington
- Demuris Ltd, Newcastle Biomedicine Bioincubators, William Leech Building, Newcastle University Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Jacqueline Hayles
- Cell Cycle Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Paul Nurse
- Cell Cycle Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| |
Collapse
|
8
|
Bhattacharya S, Asaithamby A. Repurposing DNA repair factors to eradicate tumor cells upon radiotherapy. Transl Cancer Res 2017; 6:S822-S839. [PMID: 30613483 DOI: 10.21037/tcr.2017.05.22] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer is the leading cause of death worldwide. Almost 50% of all cancer patients undergo radiation therapy (RT) during treatment, with varying success. The main goal of RT is to kill tumor cells by damaging their DNA irreversibly while sparing the surrounding normal tissue. The outcome of RT is often determined by how tumors recognize and repair their damaged DNA. A growing body of evidence suggests that tumors often show abnormal expression of DNA double-strand break (DSB) repair genes that are absent from normal cells. Defects in a specific DNA repair pathway make tumor cells overly dependent on alternative or backup pathways to repair their damaged DNA. These tumor cell-specific abnormalities in the DNA damage response (DDR) machinery can potentially be used as biomarkers for treatment outcomes or as targets for sensitization to ionizing radiation (IR). An improved understanding of genetic or epigenetic alterations in the DNA repair pathways specific to cancer cells has paved the way for new treatments that combine pharmacological exploitation of tumor-specific molecular vulnerabilities with IR. Inhibiting DNA repair pathways has the potential to greatly enhance the therapeutic ratio of RT. In this review, we will discuss DNA repair pathways in active cells and how these pathways are deregulated in tumors. We will also describe the impact of targeting cancer-specific aberrations in the DDR as a treatment strategy to improve the efficacy of RT. Finally, we will address the current roadblocks and future prospects of these approaches.
Collapse
Affiliation(s)
- Souparno Bhattacharya
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Aroumougame Asaithamby
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
9
|
Molecular inhibitors of DNA repair: searching for the ultimate tumor killing weapon. Future Med Chem 2015; 7:1543-58. [DOI: 10.4155/fmc.15.95] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
DNA repair (DR) inhibitors are small molecules that interact with DR proteins in order to disrupt their function and induce a ‘strike’ to the high fidelity of the mammalian DNA repair systems. Many anticancer therapies aim to harm the DNA of the usually highly proliferative cancer cell, causing it to undergo apoptosis. In response to this, cancer cells attempt to fix the induced lesion and reconstitute its genomic integrity, in turn reducing the efficacy of treatment. To overcome this, DR inhibitors suppress DNA repair proteins’ function, increasing the potency and tumor killing effect of chemotherapy or radiotherapy. In this review, we discuss clinically applied novel inhibitors under translational investigation and we apply bioinformatic tools in order to identify repair proteins implicated in more than two phenomenically distinct DNA repair pathways (e.g., base excision repair and nonhomologous end joining), that is, the concept of ‘synthetic lethality’. Our study can aid towards the optimization of this therapeutic strategy and, therefore, maximizing treatment effectiveness like in the case of radiation therapy.
Collapse
|
10
|
Mason JM, Dusad K, Wright WD, Grubb J, Budke B, Heyer WD, Connell PP, Weichselbaum RR, Bishop DK. RAD54 family translocases counter genotoxic effects of RAD51 in human tumor cells. Nucleic Acids Res 2015; 43:3180-96. [PMID: 25765654 PMCID: PMC4381078 DOI: 10.1093/nar/gkv175] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 02/20/2015] [Indexed: 12/14/2022] Open
Abstract
The RAD54 family DNA translocases have several biochemical activities. One activity, demonstrated previously for the budding yeast translocases, is ATPase-dependent disruption of RAD51-dsDNA binding. This activity is thought to promote dissociation of RAD51 from heteroduplex DNA following strand exchange during homologous recombination. In addition, previous experiments in budding yeast have shown that the same activity of Rad54 removes Rad51 from undamaged sites on chromosomes; mutants lacking Rad54 accumulate nonrepair-associated complexes that can block growth and lead to chromosome loss. Here, we show that human RAD54 also promotes the dissociation of RAD51 from dsDNA and not ssDNA. We also show that translocase depletion in tumor cell lines leads to the accumulation of RAD51 on chromosomes, forming complexes that are not associated with markers of DNA damage. We further show that combined depletion of RAD54L and RAD54B and/or artificial induction of RAD51 overexpression blocks replication and promotes chromosome segregation defects. These results support a model in which RAD54L and RAD54B counteract genome-destabilizing effects of direct binding of RAD51 to dsDNA in human tumor cells. Thus, in addition to having genome-stabilizing DNA repair activity, human RAD51 has genome-destabilizing activity when expressed at high levels, as is the case in many human tumors.
Collapse
Affiliation(s)
- Jennifer M Mason
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, Box 13, 920 East 58th St., Chicago, IL 60637, USA
| | - Kritika Dusad
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, Box 13, 920 East 58th St., Chicago, IL 60637, USA
| | - William Douglass Wright
- Department of Molecular and Cellular Biology, University of California, Davis, Davis CA 95616, USA
| | - Jennifer Grubb
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, Box 13, 920 East 58th St., Chicago, IL 60637, USA
| | - Brian Budke
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, Box 13, 920 East 58th St., Chicago, IL 60637, USA
| | - Wolf-Dietrich Heyer
- Department of Molecular and Cellular Biology, University of California, Davis, Davis CA 95616, USA Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Philip P Connell
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, Box 13, 920 East 58th St., Chicago, IL 60637, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, Box 13, 920 East 58th St., Chicago, IL 60637, USA
| | - Douglas K Bishop
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, Box 13, 920 East 58th St., Chicago, IL 60637, USA Department of Microbiology and Molecular Genetics, University of California, Davis, Davis CA 95616, USA
| |
Collapse
|
11
|
DNA Double-Strand Break Repair Inhibitors as Cancer Therapeutics. ACTA ACUST UNITED AC 2015; 22:17-29. [DOI: 10.1016/j.chembiol.2014.11.013] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 10/26/2014] [Accepted: 11/10/2014] [Indexed: 12/29/2022]
|
12
|
Huang F, Mazin AV. Targeting the homologous recombination pathway by small molecule modulators. Bioorg Med Chem Lett 2014; 24:3006-13. [PMID: 24856061 DOI: 10.1016/j.bmcl.2014.04.088] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/22/2014] [Accepted: 04/24/2014] [Indexed: 10/25/2022]
Abstract
During the last decade, the use of small molecule (MW <500 Da) compounds that modulate (inhibit or activate) important proteins of different biological pathways became widespread. Recently, the homologous recombination (HR) pathway emerged as a target for such modulators. Development of small molecule modulators pursues two distinct but not mutually exclusive purposes: to create a research tool to study the activities or functions of proteins of interest and to produce drugs targeting specific pathologies. Here, we review the progress of small molecule development in the area of HR.
Collapse
Affiliation(s)
- Fei Huang
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102-1192, United States
| | - Alexander V Mazin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102-1192, United States.
| |
Collapse
|
13
|
Shahar OD, Kalousi A, Eini L, Fisher B, Weiss A, Darr J, Mazina O, Bramson S, Kupiec M, Eden A, Meshorer E, Mazin AV, Brino L, Goldberg M, Soutoglou E. A high-throughput chemical screen with FDA approved drugs reveals that the antihypertensive drug Spironolactone impairs cancer cell survival by inhibiting homology directed repair. Nucleic Acids Res 2014; 42:5689-701. [PMID: 24682826 PMCID: PMC4027216 DOI: 10.1093/nar/gku217] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
DNA double-strand breaks (DSBs) are the most severe type of DNA damage. DSBs are repaired by non-homologous end-joining or homology directed repair (HDR). Identifying novel small molecules that affect HDR is of great importance both for research use and therapy. Molecules that elevate HDR may improve gene targeting whereas inhibiting molecules can be used for chemotherapy, since some of the cancers are more sensitive to repair impairment. Here, we performed a high-throughput chemical screen for FDA approved drugs, which affect HDR in cancer cells. We found that HDR frequencies are increased by retinoic acid and Idoxuridine and reduced by the antihypertensive drug Spironolactone. We further revealed that Spironolactone impairs Rad51 foci formation, sensitizes cancer cells to DNA damaging agents, to Poly (ADP-ribose) polymerase (PARP) inhibitors and cross-linking agents and inhibits tumor growth in xenografts, in mice. This study suggests Spironolactone as a new candidate for chemotherapy.
Collapse
Affiliation(s)
- Or David Shahar
- Department of Genetics, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Alkmini Kalousi
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104 CNRS, UdS, INSERM U964, BP 10142, F-67404 Illkirch Cedex, CU de Strasbourg, France
| | - Lital Eini
- Department of Genetics, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Benoit Fisher
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104 CNRS, UdS, INSERM U964, BP 10142, F-67404 Illkirch Cedex, CU de Strasbourg, France
| | - Amelie Weiss
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104 CNRS, UdS, INSERM U964, BP 10142, F-67404 Illkirch Cedex, CU de Strasbourg, France
| | - Jonatan Darr
- Department of Genetics, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Olga Mazina
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Shay Bramson
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Martin Kupiec
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Amir Eden
- Department of Genetics, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Eran Meshorer
- Department of Genetics, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Alexander V Mazin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Laurent Brino
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104 CNRS, UdS, INSERM U964, BP 10142, F-67404 Illkirch Cedex, CU de Strasbourg, France
| | - Michal Goldberg
- Department of Genetics, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Evi Soutoglou
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104 CNRS, UdS, INSERM U964, BP 10142, F-67404 Illkirch Cedex, CU de Strasbourg, France
| |
Collapse
|