1
|
Donoso-Piñol P, Briceño G, Evaristo JAM, Nogueira FCS, Schalchli H, Diez MC. Proteome Changes Induced by Iprodione Exposure in the Pesticide-Tolerant Pseudomonas sp. C9 Strain Isolated from a Biopurification System. Int J Mol Sci 2024; 25:10471. [PMID: 39408799 PMCID: PMC11476656 DOI: 10.3390/ijms251910471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Iprodione is a pesticide that belongs to the dicarboximide fungicide family. This pesticide was designed to combat various agronomical pests; however, its use has been restricted due to its environmental toxicity and risks to human health. In this study, we explored the proteomic changes in the Pseudomonas sp. C9 strain when exposed to iprodione, to gain insights into the affected metabolic pathways and enzymes involved in iprodione tolerance and biodegradation processes. As a result, we identified 1472 differentially expressed proteins in response to iprodione exposure, with 978 proteins showing significant variations. We observed that the C9 strain upregulated the expression of efflux pumps, enhancing its tolerance to iprodione and other harmful compounds. Peptidoglycan-binding proteins LysM, glutamine amidotransferase, and protein Ddl were similarly upregulated, indicating their potential role in altering and preserving bacterial cell wall structure, thereby enhancing tolerance. We also observed the presence of hydrolases and amidohydrolases, essential enzymes for iprodione biodegradation. Furthermore, the exclusive identification of ABC transporters and multidrug efflux complexes among proteins present only during iprodione exposure suggests potential counteraction against the inhibitory effects of iprodione on downregulated proteins. These findings provide new insights into iprodione tolerance and biodegradation by the Pseudomonas sp. C9 strain.
Collapse
Affiliation(s)
- Pamela Donoso-Piñol
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Gabriela Briceño
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco 4780000, Chile
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA-BIOREN), Universidad de La Frontera, Temuco 4780000, Chile;
| | - Joseph A. M. Evaristo
- Laboratorio de Proteómica, LADETEC, Instituto de Química, Universidad Federal de Rio de Janeiro, Rio de Janeiro 22775-000, Brazil; (J.A.M.E.); (F.C.S.N.)
| | - Fábio C. S. Nogueira
- Laboratorio de Proteómica, LADETEC, Instituto de Química, Universidad Federal de Rio de Janeiro, Rio de Janeiro 22775-000, Brazil; (J.A.M.E.); (F.C.S.N.)
| | - Heidi Schalchli
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco 4780000, Chile
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA-BIOREN), Universidad de La Frontera, Temuco 4780000, Chile;
| | - María Cristina Diez
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA-BIOREN), Universidad de La Frontera, Temuco 4780000, Chile;
- Departamento de Ingeniería Química, Universidad de La Frontera, Temuco 4780000, Chile
| |
Collapse
|
2
|
Xiong C, Huang Y, Li Z, Wu L, Liu Z, Zhu W, Li J, Xu R, Hong X. Comparative chloroplast genomics reveals the phylogeny and the adaptive evolution of Begonia in China. BMC Genomics 2023; 24:648. [PMID: 37891463 PMCID: PMC10612195 DOI: 10.1186/s12864-023-09563-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 08/08/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND The Begonia species are common shade plants that are mostly found in southwest China. They have not been well studied despite their medicinal and decorative uses because gene penetration, decreased adaptability, and restricted availability are all caused by frequent interspecific hybridization. RESULT To understand the patterns of mutation in the chloroplast genomes of different species of Begonia, as well as their evolutionary relationships, we collected seven Begonia species in China and sequenced their chloroplast genomes. Begonia species exhibit a quadripartite structure of chloroplast genomes (157,634 - 169,694 bp), consisting of two pairs of inverted repeats (IR: 26,529 - 37,674 bp), a large single copy (LSC: 75,477 - 86,500 bp), and a small single copy (SSC: 17,861 - 18,367 bp). 128-143 genes (comprising 82-93 protein-coding genes, 8 ribosomal RNAs, and 36-43 transfer RNAs) are found in the chloroplast genomes. Based on comparative analyses, this taxon has a relatively similar genome structure. A total of six substantially divergent DNA regions (trnT-UGU-trnL-UAA, atpF-atpH, ycf4-cemA, psbC-trnS-UGA, rpl32-trnL-UAG, and ccsA-ndhD) are found in the seventeen chloroplast genomes. These regions are suitable for species identification and phylogeographic analysis. Phylogenetic analysis shows that Begonia species that were suited to comparable environments grouped in a small clade and that all Begonia species formed one big clade in the phylogenetic tree, supporting the genus' monophyly. In addition, positive selection sites were discovered in eight genes (rpoC1, rpoB, psbE, psbK, petA, rps12, rpl2, and rpl22), the majority of which are involved in protein production and photosynthesis. CONCLUSION Using these genome resources, we can resolve deep-level phylogenetic relationships between Begonia species and their families, leading to a better understanding of evolutionary processes. In addition to enhancing species identification and phylogenetic resolution, these results demonstrate the utility of complete chloroplast genomes in phylogenetically and taxonomically challenging plant groupings.
Collapse
Affiliation(s)
- Chao Xiong
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, 430023, People's Republic of China
| | - Yang Huang
- College of Tourism and Landscape Architecture, Guilin University of Technology, Guilin, Guangxi, 541006, People's Republic of China
| | - Zhenglong Li
- Anhui Provincial Engineering Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, 230601, People's Republic of China
| | - Lan Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Zhiguo Liu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, 430023, People's Republic of China
| | - Wenjun Zhu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, 430023, People's Republic of China
| | - Jianhui Li
- College of Chemistry and Material Engineering, Quzhou University, Quzhou, Zhejiang, 324000, People's Republic of China
| | - Ran Xu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, 430023, People's Republic of China.
| | - Xin Hong
- Anhui Provincial Engineering Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, 230601, People's Republic of China.
| |
Collapse
|
3
|
Scobeyeva VA, Artyushin IV, Krinitsina AA, Nikitin PA, Antipin MI, Kuptsov SV, Belenikin MS, Omelchenko DO, Logacheva MD, Konorov EA, Samoilov AE, Speranskaya AS. Gene Loss, Pseudogenization in Plastomes of Genus Allium ( Amaryllidaceae), and Putative Selection for Adaptation to Environmental Conditions. Front Genet 2021; 12:674783. [PMID: 34306019 PMCID: PMC8296844 DOI: 10.3389/fgene.2021.674783] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/15/2021] [Indexed: 01/07/2023] Open
Abstract
Amaryllidaceae is a large family with more than 1,600 species, belonging to 75 genera. The largest genus—Allium—is vast, comprising about a thousand species. Allium species (as well as other members of the Amaryllidaceae) are widespread and diversified, they are adapted to a wide range of habitats from shady forests to open habitats like meadows, steppes, and deserts. The genes present in chloroplast genomes (plastomes) play fundamental roles for the photosynthetic plants. Plastome traits could thus be associated with geophysical abiotic characteristics of habitats. Most chloroplast genes are highly conserved and are used as phylogenetic markers for many families of vascular plants. Nevertheless, some studies revealed signatures of positive selection in chloroplast genes of many plant families including Amaryllidaceae. We have sequenced plastomes of the following nine Allium (tribe Allieae of Allioideae) species: A. zebdanense, A. moly, A. victorialis, A. macleanii, A. nutans, A. obliquum, A. schoenoprasum, A. pskemense, A. platyspathum, A. fistulosum, A. semenovii, and Nothoscordum bivalve (tribe Leucocoryneae of Allioideae). We compared our data with previously published plastomes and provided our interpretation of Allium plastome genes’ annotations because we found some noteworthy inconsistencies with annotations previously reported. For Allium species we estimated the integral evolutionary rate, counted SNPs and indels per nucleotide position as well as compared pseudogenization events in species of three main phylogenetic lines of genus Allium to estimate whether they are potentially important for plant physiology or just follow the phylogenetic pattern. During examination of the 38 species of Allium and the 11 of other Amaryllidaceae species we found that rps16, rps2, infA, ccsA genes have lost their functionality multiple times in different species (regularly evolutionary events), while the pseudogenization of other genes was stochastic events. We found that the “normal” or “pseudo” state of rps16, rps2, infA, ccsA genes correlates well with the evolutionary line of genus the species belongs to. The positive selection in various NADH dehydrogenase (ndh) genes as well as in matK, accD, and some others were found. Taking into account known mechanisms of coping with excessive light by cyclic electron transport, we can hypothesize that adaptive evolution in genes, coding subunits of NADH-plastoquinone oxidoreductase could be driven by abiotic factors of alpine habitats, especially by intensive light and UV radiation.
Collapse
Affiliation(s)
- Victoria A Scobeyeva
- Department of Evolution, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,Department of Molecular and Biological Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ilya V Artyushin
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Anastasiya A Krinitsina
- Department of Higher Plants, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Pavel A Nikitin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Maxim I Antipin
- Botanical Garden, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Sergei V Kuptsov
- Botanical Garden, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Maxim S Belenikin
- Department of Molecular and Biological Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Denis O Omelchenko
- Laboratory of Plant Genomics, Institute for Information Transmission Problems, Moscow, Russia
| | - Maria D Logacheva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Evgenii A Konorov
- Laboratory of Animal Genetics, Vavilov Institute of General Genetics, Russian Academy of Science (RAS), Moscow, Russia
| | - Andrey E Samoilov
- Group of Genomics and Postgenomic Technologies, Central Research Institute of Epidemiology, Moscow, Russia
| | - Anna S Speranskaya
- Department of Higher Plants, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,Group of Genomics and Postgenomic Technologies, Central Research Institute of Epidemiology, Moscow, Russia
| |
Collapse
|
4
|
Bodine TJ, Evangelista MA, Chang HT, Ayoub CA, Samuel BS, Sucgang R, Zechiedrich L. Escherichia coli DNA ligase B may mitigate damage from oxidative stress. PLoS One 2017; 12:e0180800. [PMID: 28700629 PMCID: PMC5507437 DOI: 10.1371/journal.pone.0180800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 06/21/2017] [Indexed: 01/02/2023] Open
Abstract
Escherichia coli encodes two DNA ligases, ligase A, which is essential under normal laboratory growth conditions, and ligase B, which is not. Here we report potential functions of ligase B. We found that across the entire Enterobacteriaceae family, ligase B is highly conserved in both amino acid identity and synteny with genes associated with oxidative stress. Deletion of ligB sensitized E. coli to specific DNA damaging agents and antibiotics resulted in a weak mutator phenotype, and decreased biofilm formation. Overexpression of ligB caused a dramatic extension of lag phase that eventually resumed normal growth. The ligase function of ligase B was not required to mediate the extended lag phase, as overexpression of a ligase-deficient ligB mutant also blocked growth. Overexpression of ligB during logarithmic growth caused an immediate block of cell growth and DNA replication, and death of about half of cells. These data support a potential role for ligase B in the base excision repair pathway or the mismatch repair pathway.
Collapse
Affiliation(s)
- Truston J. Bodine
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States of America
| | - Michael A. Evangelista
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Huan Ting Chang
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
- Department of BioSciences, Rice University, Houston, TX, United States of America
| | - Christopher A. Ayoub
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Buck S. Samuel
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, United States of America
| | - Richard Sucgang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Lynn Zechiedrich
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States of America
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, United States of America
- * E-mail:
| |
Collapse
|
5
|
A Transporter Interactome Is Essential for the Acquisition of Antimicrobial Resistance to Antibiotics. PLoS One 2016; 11:e0152917. [PMID: 27050393 PMCID: PMC4822809 DOI: 10.1371/journal.pone.0152917] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 03/21/2016] [Indexed: 01/12/2023] Open
Abstract
Awareness of the problem of antimicrobial resistance (AMR) has escalated and drug-resistant infections are named among the most urgent problems facing clinicians today. Our experiments here identify a transporter interactome and portray its essential function in acquisition of antimicrobial resistance. By exposing E. coli cells to consecutive increasing concentrations of the fluoroquinolone norfloxacin we generated in the laboratory highly resistant strains that carry multiple mutations, most of them identical to those identified in clinical isolates. With this experimental paradigm, we show that the MDTs function in a coordinated mode to provide an essential first-line defense mechanism, preventing the drug reaching lethal concentrations, until a number of stable efficient alterations occur that allow survival. Single-component efflux transporters remove the toxic compounds from the cytoplasm to the periplasmic space where TolC-dependent transporters expel them from the cell. We postulate a close interaction between the two types of transporters to prevent rapid leak of the hydrophobic substrates back into the cell. The findings change the prevalent concept that in Gram-negative bacteria a single multidrug transporter, AcrAB-TolC type, is responsible for the resistance. The concept of a functional interactome, the process of identification of its members, the elucidation of the nature of the interactions and its role in cell physiology will change the existing paradigms in the field. We anticipate that our work will have an impact on the present strategy searching for inhibitors of AcrAB-TolC as adjuvants of existing antibiotics and provide novel targets for this urgent undertaking.
Collapse
|
6
|
Ishii T, Hayakawa H, Sekiguchi T, Adachi N, Sekiguchi M. Role of Auf1 in elimination of oxidatively damaged messenger RNA in human cells. Free Radic Biol Med 2015; 79:109-16. [PMID: 25486179 DOI: 10.1016/j.freeradbiomed.2014.11.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/22/2014] [Accepted: 11/26/2014] [Indexed: 11/22/2022]
Abstract
In aerobically growing cells, in which reactive oxygen species are produced, the guanine base of RNA is oxidized to 8-oxo-7,8-dihydroguanine, which induces alterations in gene expression. Here we show that the human Auf1 protein, also called HNRNPD, binds specifically to RNA containing this oxidized base and may be involved in cellular processes associated with managing the problems caused by RNA oxidation. Auf1-deficient cells were constructed from human HeLa and Nalm-6 lines using two different targeting procedures. Both types of Auf1-deficient cells are viable, but exhibit growth retardation. The stability of messenger RNA for four different housekeeping genes was determined in Auf1-deficient and -proficient cells, treated with or without hydrogen peroxide. The level of oxidized messenger RNA was considerably higher in Auf1-deficient cells than in Auf1-proficient cells. Auf1 may play a role in the elimination of oxidized RNA, which is required for the maintenance of proper gene expression under conditions of oxidative stress.
Collapse
Affiliation(s)
- Takashi Ishii
- Frontier Research Center and Department of Biochemistry, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Hiroshi Hayakawa
- Frontier Research Center and Department of Biochemistry, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Takeshi Sekiguchi
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Noritaka Adachi
- Graduate School of Nanobioscience, Yokohama City University, Yokohama 236-0027, Japan
| | - Mutsuo Sekiguchi
- Frontier Research Center and Department of Biochemistry, Fukuoka Dental College, Fukuoka 814-0193, Japan.
| |
Collapse
|
7
|
Gordon AJE, Satory D, Halliday JA, Herman C. Lost in transcription: transient errors in information transfer. Curr Opin Microbiol 2015; 24:80-7. [PMID: 25637723 DOI: 10.1016/j.mib.2015.01.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/29/2014] [Accepted: 01/10/2015] [Indexed: 10/24/2022]
Abstract
Errors in information transfer from DNA to RNA to protein are inevitable. Here, we focus on errors that occur in nascent transcripts during transcription, epimutations. Recent approaches using novel cDNA library preparation and next-generation sequencing begin to directly determine the rate of epimutation and allow analysis of the epimutational spectrum of transcription errors, the type and sequence context of the errors produced in a transcript by an RNA polymerase. The phenotypic consequences of transcription errors have been assessed using both forward and reverse epimutation systems. These studies reveal that transient transcription errors can produce a modification of cell phenotype, partial phenotypic suppression of a mutant allele, and a heritable change in cell phenotype, epigenetic switching in a bistable gene network.
Collapse
Affiliation(s)
- Alasdair J E Gordon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dominik Satory
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jennifer A Halliday
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
8
|
Zhang Y, Okada R, Isaka M, Tatsuno I, Isobe KI, Hasegawa T. Analysis of the roles of NrdR and DnaB from Streptococcus pyogenes in response to host defense. APMIS 2014; 123:252-9. [PMID: 25469586 DOI: 10.1111/apm.12340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/01/2014] [Indexed: 12/01/2022]
Abstract
Toxic shock syndrome caused by Streptococcus pyogenes (S. pyogenes) is a re-emerging infectious disease. Many virulence-associated proteins play important roles in its pathogenesis and the production of these proteins is controlled by many regulatory factors. CovS is one of the most important two-component sensor proteins in S. pyogenes, and it has been analyzed extensively. Our recent analyses revealed the existence of a transposon between covS and nrdR in several strains, and we speculated that this insertion has some importance. Hence, we examined the significances of the NrdR stand-alone regulator and DnaB, which is encoded by the gene located immediately downstream of nrdR in S. pyogenes infection. We established an nrdR-only knockout strain, and both nrdR and partial dnaB knockout strain. These established knockout strains exhibited a deteriorated response to H2 O2 exposure. nrdR and partial dnaB knockout strain was more easily killed by human polynuclear blood cells, but the nrdR-only knockout strain had no significant difference compared to wild type in contrast to the combined knockout strain. In addition, the mouse infection model experiment illustrated that nrdR and partial dnaB knockout strain, but not the nrdR-only knockout strain, was less virulent compared with the parental strain. These results suggest that DnaB is involved in response to host defense.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Gordon AJE, Satory D, Wang M, Halliday JA, Golding I, Herman C. Removal of 8-oxo-GTP by MutT hydrolase is not a major contributor to transcriptional fidelity. Nucleic Acids Res 2014; 42:12015-26. [PMID: 25294823 PMCID: PMC4231768 DOI: 10.1093/nar/gku912] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Living in an oxygen-rich environment is dangerous for a cell. Reactive oxygen species can damage DNA, RNA, protein and lipids. The MutT protein in Escherichia coli removes 8-oxo-deoxyguanosine triphosphate (8-oxo-dGTP) and 8-oxo-guanosine triphosphate (8-oxo-GTP) from the nucleotide pools precluding incorporation into DNA and RNA. While 8-oxo-dGTP incorporation into DNA is mutagenic, it is not clear if 8-oxo-GTP incorporation into RNA can have phenotypic consequences for the cell. We use a bistable epigenetic switch sensitive to transcription errors in the Escherichia coli lacI transcript to monitor transient RNA errors. We do not observe any increase in epigenetic switching in mutT cells. We revisit the original observation of partial phenotypic suppression of a lacZamber allele in a mutT background that was attributed to RNA errors. We find that Lac+ revertants can completely account for the increase in β-galactosidase levels in mutT lacZamber cultures, without invoking participation of transient transcription errors. Moreover, we observe a fluctuation type of distribution of β-galactosidase appearance in a growing culture, consistent with Lac+ DNA revertant events. We conclude that the absence of MutT produces a DNA mutator but does not equally create an RNA mutator.
Collapse
Affiliation(s)
- Alasdair J E Gordon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dominik Satory
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mengyu Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Jennifer A Halliday
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ido Golding
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas, 77030, USA Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|