1
|
Locatelli M, Farina C. Role of copper in central nervous system physiology and pathology. Neural Regen Res 2025; 20:1058-1068. [PMID: 38989937 PMCID: PMC11438321 DOI: 10.4103/nrr.nrr-d-24-00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/21/2024] [Accepted: 04/23/2024] [Indexed: 07/12/2024] Open
Abstract
Copper is a transition metal and an essential element for the organism, as alterations in its homeostasis leading to metal accumulation or deficiency have pathological effects in several organs, including the central nervous system. Central copper dysregulations have been evidenced in two genetic disorders characterized by mutations in the copper-ATPases ATP7A and ATP7B, Menkes disease and Wilson's disease, respectively, and also in multifactorial neurological disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis. This review summarizes current knowledge about the role of copper in central nervous system physiology and pathology, reports about unbalances in copper levels and/or distribution under disease, describes relevant animal models for human disorders where copper metabolism genes are dysregulated, and discusses relevant therapeutic approaches modulating copper availability. Overall, alterations in copper metabolism may contribute to the etiology of central nervous system disorders and represent relevant therapeutic targets to restore tissue homeostasis.
Collapse
Affiliation(s)
- Martina Locatelli
- Institute of Experimental Neurology, Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Cinthia Farina
- Institute of Experimental Neurology, Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
2
|
Mertaş B, Boşgelmez İİ. The Role of Genetic, Environmental, and Dietary Factors in Alzheimer's Disease: A Narrative Review. Int J Mol Sci 2025; 26:1222. [PMID: 39940989 PMCID: PMC11818526 DOI: 10.3390/ijms26031222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Alzheimer's disease (AD) is one of the most common and severe forms of dementia and neurodegenerative disease. As life expectancy increases in line with developments in medicine, the elderly population is projected to increase in the next few decades; therefore, an increase in the prevalence of some diseases, such as AD, is also expected. As a result, until a radical treatment becomes available, AD is expected to be more frequently recorded as one of the top causes of death worldwide. Given the current lack of a cure for AD, and the only treatments available being ones that alleviate major symptoms, the identification of contributing factors that influence disease incidence is crucial. In this context, genetic and/or epigenetic factors, mainly environmental, disease-related, dietary, or combinations/interactions of these factors, are assessed. In this review, we conducted a literature search focusing on environmental factors such as air pollution, toxic elements, pesticides, and infectious agents, as well as dietary factors including various diets, vitamin D deficiency, social factors (e.g., tobacco and alcohol use), and variables that are affected by both environmental and genetic factors, such as dietary behavior and gut microbiota. We also evaluated studies on the beneficial effects of antibiotics and diets, such as the Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) and Mediterranean diets.
Collapse
Affiliation(s)
- Beyza Mertaş
- Department of Pharmacology, Faculty of Pharmacy, Düzce University, Düzce 81010, Türkiye;
| | - İ. İpek Boşgelmez
- Department of Toxicology, Faculty of Pharmacy, Erciyes University, Kayseri 38280, Türkiye
| |
Collapse
|
3
|
Middleton DA. NMR studies of amyloid interactions. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 144-145:63-96. [PMID: 39645351 DOI: 10.1016/j.pnmrs.2024.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 12/09/2024]
Abstract
Amyloid fibrils are insoluble, fibrous nanostructures that accumulate extracellularly in biological tissue during the progression of several human disorders, including Alzheimer's disease (AD) and type 2 diabetes. Fibrils are assembled from protein monomers via the transient formation of soluble, cytotoxic oligomers, and have a common molecular architecture consisting of a spinal core of hydrogen-bonded protein β-strands. For the past 25 years, NMR spectroscopy has been at the forefront of research into the structure and assembly mechanisms of amyloid aggregates. Until the recent boom in fibril structure analysis by cryo-electron microscopy, solid-state NMR was unrivalled in its ability to provide atomic-level models of amyloid fibril architecture. Solution-state NMR has also provided complementary information on the early stages in the amyloid assembly mechanism. Now, both NMR modalities are proving to be valuable in unravelling the complex interactions between amyloid species and a diverse range of physiological metal ions, molecules and surfaces that influence the assembly pathway, kinetics, morphology and clearance in vivo. Here, an overview is presented of the main applications of solid-state and solution-state NMR for studying the interactions between amyloid proteins and biomembranes, glycosaminoglycan polysaccharides, metal ions, polyphenols, synthetic therapeutics and diagnostics. Key NMR methodology is reviewed along with examples of how to overcome the challenges of detecting interactions with aggregating proteins. The review heralds this new role for NMR in providing a comprehensive and pathologically-relevant view of the interactions between protein and non-protein components of amyloid. Coverage of both solid- and solution-state NMR methods and applications herein will be informative and valuable to the broad communities that are interested in amyloid proteins.
Collapse
Affiliation(s)
- David A Middleton
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom.
| |
Collapse
|
4
|
Sridharan V, George T, Conroy DW, Shaffer Z, Surewicz WK, Jaroniec CP. Copper binding alters the core structure of amyloid fibrils formed by Y145Stop human prion protein. Phys Chem Chem Phys 2024; 26:26489-26496. [PMID: 39392708 PMCID: PMC11469299 DOI: 10.1039/d4cp03593c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Transmissible spongiform encephalopathies (or prion diseases) such as Creutzfeldt-Jacob disease, mad cow disease, and scrapie are characterized by accumulation in the brain of misfolded prion protein aggregates (PrPSc) that have properties of amyloid fibrils. Given that transition metal ions, such as copper and zinc, appear to be important for physiological functions of cellular PrP (PrPC) as well as for prion disease pathogenesis, exploring their role in the protein aggregation process is of considerable interest. Copper(II) in particular is well-known to bind to the four tandem octapeptide repeats (PHGGGWGQ) located in the N-terminal region of PrP (human PrP amino acids 60-91), as well as to additional histidine binding sites outside the octarepeat region with distinct binding modes depending on Cu2+ concentration. Here, using the Y145Stop human prion protein variant (huPrP23-144) as a model and a combination of multidimensional solution and solid-state NMR spectroscopy, atomic force microscopy and thioflavin T fluorescence assays we probed the binding of Cu2+ to monomeric huPrP23-144 and the impact of this binding on fibril assembly kinetics and their structural properties. Remarkably, we found that fibrils formed by huPrP23-144 containing one molar equivalent of bound Cu2+ adopt a core structure that is distinct from that found for huPrP23-144 in the absence of Cu2+ but, instead, corresponds to a conformational strain formed by huPrP23-144 containing the A117V mutation. A similar huPrP23-144 A117V-like amyloid core structure was adopted by a Cu2+-bound Δ51-91 huPrP23-144 deletion variant lacking the entire octarepeat region, suggesting that Cu2+ binding to His residues 96, 111 and 140 located near the C-terminus of huPrP23-144 is primarily responsible for the observed change in fibril conformation, potentially due to partial structuring of the intrinsically disordered huPrP23-144 by the bound Cu2+ during the fibril assembly process. We also found that fibrils formed by Cu2+-bound huPrP23-144 adopt the native huPrP23-144-like rather than A117V-like structure when the fibrillization reaction is seeded with pre-formed huPrP23-144 amyloid.
Collapse
Affiliation(s)
| | - Tara George
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.
| | - Daniel W Conroy
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.
| | - Zach Shaffer
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.
| | - Witold K Surewicz
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | | |
Collapse
|
5
|
Elseweidy MM, Mahrous M, Ali SI, Shaheen MA, Younis NN. Pentoxifylline as Add-On Treatment to Donepezil in Copper Sulphate-Induced Alzheimer's Disease-Like Neurodegeneration in Rats. Neurotox Res 2023; 41:546-558. [PMID: 37821782 PMCID: PMC10682165 DOI: 10.1007/s12640-023-00672-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023]
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disorder, is characterized by behavioral, cognitive, and progressive memory impairments. Extensive neuronal loss, extracellular accumulation of insoluble senile amyloid-β (Aβ) plaques, and intracellular neurofibrillary tangles (NFTs) are the major pathological features. The present study aimed to investigate the therapeutic effect of donepezil (DON) and pentoxifylline (PTX) in combination to combat the neurodegenerative disorders (experimental AD) induced by CuSO4 intake in experimental rats. Thirty adult male Wistar rats (140-160 g) were used in this study. AD was first induced in rats by CuSO4 supplement to drinking water (10 mg/L) for 14 weeks. The AD group received no further treatment. Oral treatment with DON (10 mg/kg/day), PTX (100 mg/kg/day), or DON + PTX for the other three groups was started from the 10th week of CuSO4 intake for 4 weeks. Cortex markers like acetylcholine (ACh), acetylcholinesterase (AChE), total antioxidant capacity (TAC), and malondialdehyde (MDA) and hippocampus markers like β-amyloid precursor protein cleaving enzyme 1 (BACE1), phosphorylated Tau (p-tau), Clusterin (CLU), tumor necrosis factor-α (TNF-α), caspase-9 (CAS-9), Bax, and Bcl-2 were measured. The histopathology studies were done by using hematoxylin and eosin and Congo red stains as well as immunohistochemistry for neurofilament. CuSO4 induced adverse histological and biochemical changes. The histological injury in the hippocampus was inhibited following the administration of the DON and PTX. The brain tissue levels of AChE, MDA, BACE1, p-tau, CLU, CAS-9, Bax, and TNF-α were significantly increased, while brain tissue levels of ACh, TAC, and Bcl-2 were significantly decreased in CuSO4-treated rats as compared with the untreated control group. The effects induced by either DON or PTX on most studied parameters were comparable. Combined treatment of DON and PTX induced remarkable results compared with their individual use. However, more clinical and preclinical studies are still required to further confirm and prove the long-term efficacy of such combination.
Collapse
Affiliation(s)
- Mohamed M Elseweidy
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Mohamed Mahrous
- Department of Biochemistry, Faculty of Pharmacy, Port-Said University, Port-Said, 42526, Egypt
| | - Sousou I Ali
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed A Shaheen
- Department of Histology and Cell Biology, Faculty of Human Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Nahla N Younis
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
6
|
Cendrowska-Pinkosz M, Krauze M, Juśkiewicz J, Fotschki B, Ognik K. The Influence of Copper Nanoparticles on Neurometabolism Marker Levels in the Brain and Intestine in a Rat Model. Int J Mol Sci 2023; 24:11321. [PMID: 37511079 PMCID: PMC10378742 DOI: 10.3390/ijms241411321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
The aim of this study is to assess the effect of different forms and dosages of copper on the levels of markers depicting the neurodegenerative changes in the brain and the jejunum. The experiment was performed using 40 male Wistar rats fed a typical rat diet with two dosages of Cu used as CuCO3 (6.5 and 13 mg/kg diet) and dietary addition of two CuNP dosages (standard 6.5 and enhanced 13 mg/kg diet), randomly divided into four groups. The levels of neurodegenerative markers were evaluated. Nanoparticles caused a reduction in the level of glycosylated acetylcholinesterase (GAChE), an increase the level of acetylcholinesterase (AChE) and lipoprotein receptor-related protein 1 (LRP1), a reduction in β-amyloid (βAP) in the brain and in the intestine of rats and a reduction in Tau protein in the brain of rats. The highest levels of AChE, the ATP-binding cassette transporters (ABC) and LRP1 and lower levels of toxic GAChE, β-amyloid, Tau, hyper-phosphorylated Tau protein (p-Tau) and the complex of calmodulin and Ca2+ (CAMK2a) were recorded in the tissues of rats receiving a standard dose of Cu. The neuroprotective effect of Cu can be increased by replacing the carbonate form with nanoparticles and there is no need to increase the dose of copper.
Collapse
Affiliation(s)
- Monika Cendrowska-Pinkosz
- Chair and Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
- CM Alergologia, 20-865 Lublin, Poland
| | - Magdalena Krauze
- Department of Biochemistry and Toxicology, Faculty of Animal Science and Bioeconomy, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Jerzy Juśkiewicz
- Department of Biological Functions of Food, Division of Food Science, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, 10-748 Olsztyn, Poland
| | - Bartosz Fotschki
- Department of Biological Functions of Food, Division of Food Science, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, 10-748 Olsztyn, Poland
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, Faculty of Animal Science and Bioeconomy, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| |
Collapse
|
7
|
Carvalho A, Barbosa BM, Flores JS, do Carmo Gonçalves P, Diniz R, Cordeiro Y, Fernández CO, Cukierman DS, Rey NA. New mescaline-related N-acylhydrazone and its unsubstituted benzoyl derivative: Promising metallophores for copper-associated deleterious effects relief in Alzheimer's disease. J Inorg Biochem 2023; 238:112033. [PMID: 36396525 DOI: 10.1016/j.jinorgbio.2022.112033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/03/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease (AD) is related to the presence of extracellular aggregated amyloid-β peptide (Aβ), which binds copper(II) with high affinity in its N-terminal region. In this sense, two new 1-methylimidazole-containing N-acylhydrazonic metallophores, namely, X1TMP and X1Benz, were synthesized as hydrochlorides and characterized. The compound X1TMP contains the 3,4,5-trimethoxybenzoyl moiety present in the structure of mescaline, a natural hallucinogenic protoalkaloid that occurs in some species of cacti. Single crystals of X1Benz, the unsubstituted derivative of X1TMP, were obtained. The experimental partition coefficients of both compounds were determined, as well as their apparent affinity for Cu2+ in aqueous solution. Ascorbate consumption assays showed that these N-acylhydrazones are able to lessen the production of ROS by the Cu(Aβ)-system, and a short-time scale aggregation study, measured through turbidity and confirmed by TEM images, revealed their capacity in preventing Aβ fibrillation at equimolar conditions in the presence and absence of copper. 1H15N HSQC NMR experiments demonstrated a direct interaction between Aβ and X1Benz, the most soluble of the compounds. The Cu2+ sequestering potential of this hydrazone towards Aβ was explored by 1H NMR. Although increasing amounts of X1Benz were unexpectedly not efficient at removing the metal-induced perturbations in Aβ backbone amides, the broadening effects observed on the compound's signals indicate the formation of a ternary Aβ‑copper-X1Benz species, which can be responsible for the observed ROS-lessening and aggregation-preventing activities. Overall, the N-acylhydrazones X1TMP and X1Benz have shown promising prospects as agents for the treatment of AD.
Collapse
Affiliation(s)
- Alessandra Carvalho
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro 22451-900, Brazil
| | - Barbara Marinho Barbosa
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro 22451-900, Brazil
| | - Jesica S Flores
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPINAT), Partner Laboratory of the Max Planck Institute for Multidisciplinary Sciences (MPINAT, MPG), Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, Rosario S2002LRK, Argentina
| | - Phelippe do Carmo Gonçalves
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPINAT), Partner Laboratory of the Max Planck Institute for Multidisciplinary Sciences (MPINAT, MPG), Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, Rosario S2002LRK, Argentina
| | - Renata Diniz
- Department of Chemistry, ICEx, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil
| | - Yraima Cordeiro
- Faculty of Pharmacy, CCS, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Claudio O Fernández
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPINAT), Partner Laboratory of the Max Planck Institute for Multidisciplinary Sciences (MPINAT, MPG), Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, Rosario S2002LRK, Argentina
| | - Daphne S Cukierman
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro 22451-900, Brazil; Faculty of Pharmacy, CCS, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Nicolás A Rey
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro 22451-900, Brazil.
| |
Collapse
|
8
|
Folarin OR, Olopade FE, Olopade JO. Essential Metals in the Brain and the Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry for their Detection. Niger J Physiol Sci 2021; 36:123-147. [PMID: 35947740 DOI: 10.54548/njps.v36i2.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 06/15/2023]
Abstract
Metals are natural component of the ecosystem present throughout the layers of atmosphere; their abundant expression in the brain indicates their importance in the central nervous system (CNS). Within the brain tissue, their distribution is highly compartmentalized, the pattern of which is determined by their primary roles. Bio-imaging of the brain to reveal spatial distribution of metals within specific regions has provided a unique understanding of brain biochemistry and architecture, linking both the structures and the functions through several metal mediated activities. Bioavailability of essential trace metal is needed for normal brain function. However, disrupted metal homeostasis can influence several biochemical pathways in different fields of metabolism and cause characteristic neurological disorders with a typical disease process usually linked with aberrant metal accumulations. In this review we give a brief overview of roles of key essential metals (Iron, Copper and Zinc) including their molecular mechanisms and bio-distribution in the brain as well as their possible involvement in the pathogenesis of related neurodegenerative diseases. In addition, we also reviewed recent applications of Laser Ablation Inductively Couple Plasma Mass Spectrophotometry (LA-ICP-MS) in the detection of both toxic and essential metal dyshomeostasis in neuroscience research and other related brain diseases.
Collapse
|
9
|
Complement System in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms222413647. [PMID: 34948444 PMCID: PMC8705098 DOI: 10.3390/ijms222413647] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 01/02/2023] Open
Abstract
Alzheimer’s disease is a type of dementia characterized by problems with short-term memory, cognition, and difficulties with activities of daily living. It is a progressive, neurodegenerative disorder. The complement system is an ancient part of the innate immune system and comprises of more than thirty serum and membrane-bound proteins. This system has three different activating pathways and culminates into the formation of a membrane attack complex that ultimately causes target cell lysis (usually pathogens) The complement system is involved in several important functions in the central nervous system (CNS) that include neurogenesis, synaptic pruning, apoptosis, and neuronal plasticity. Here, we discuss how the complement system is involved in the effective functioning of CNS, while also contributing to chronic neuroinflammation leading to neurodegenerative disorders such as Alzheimer’s disease. We also discuss potential targets in the complement system for stopping its harmful effects via neuroinflammation and provide perspective for the direction of future research in this field.
Collapse
|
10
|
Golec C, Esteves-Villanueva JO, Martic S. Electrochemical characterization of Cu(II) complexes of brain-related tau peptides. CAN J CHEM 2021. [DOI: 10.1139/cjc-2020-0288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Metal ion dyshomeostasis plays an important role in diseases, including neurodegeneration. Tau protein is a known neurodegeneration biomarker, but its interactions with biologically relevant metal ions, such as Cu(II), are not fully understood. Herein, the Cu(II) complexes of four tau R peptides, based on the tau repeat domains, R1, R2, R3, and R4, were characterized by electrochemical methods, including cyclic voltammetry, square-wave voltammetry, and differential pulse voltammetry in solution under aerobic conditions. The current and potential associated with Cu(II)/(I) redox couple was modulated as a function of R peptide sequence and concentration. All R peptides coordinated Cu(II) resulting in a dramatic decrease in the current associated with free Cu(II), and the appearance of a new redox couple due to metallo–peptide complex. The metallo–peptide complexes were characterized by the irreversible redox couple at more positive potentials and slower electron-transfer rates compared with the free Cu(II). The competition binding studies between R peptides with Cu(II) indicated that the strongest binding affinity was observed for the R3 peptide, which contained 2 His and 1 Cys residues. The formation of complexes was also evaluated as a function of peptide concentration and in the presence of competing Zn(II) ions. Data indicate that all metallo–peptides remain redox active pointing to the potential importance of the interactions between tau protein with metal ions in a biological setting.
Collapse
Affiliation(s)
- Camilla Golec
- Department of Forensic Science and Environmental Life Sciences Program, Trent University, 1600 West Bank Road, Peterborough, ON K9L 0G2, Canada
| | | | - Sanela Martic
- Department of Forensic Science and Environmental Life Sciences Program, Trent University, 1600 West Bank Road, Peterborough, ON K9L 0G2, Canada
| |
Collapse
|
11
|
Fu R, Rooney MT, Zhang R, Cotten ML. Coordination of Redox Ions within a Membrane-Binding Peptide: A Tale of Aromatic Rings. J Phys Chem Lett 2021; 12:4392-4399. [PMID: 33939920 DOI: 10.1021/acs.jpclett.1c00636] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The amino-terminal-copper-and-nickel-binding (ATCUN) motif, a tripeptide sequence ending with a histidine, confers important functions to proteins and peptides. Few high-resolution studies have been performed on the ATCUN motifs of membrane-associated proteins and peptides, limiting our understanding of how they stabilize Cu2+/Ni2+ in membranes. Here, we leverage solid-state NMR to investigate metal-binding to piscidin-1 (P1), a host-defense peptide featuring F1F2H3 as its ATCUN motif. Bound to redox ions, P1 chemically and physically damages pathogenic cell membranes. We design 13C/15N correlation experiments to detect and assign the deprotonated nitrogens produced and/or shifted by Ni2+-binding. Occupying multiple chemical states in P1-apo, H3 and the neighboring H4 respond to metalation by populating only the τ-tautomer. H3, as a proximal histidine, directly coordinates the metal, compared to the distal H4. Density functional theory calculations reflect this noncanonical arrangement and point toward cation-π interactions between the F1/F2/H4 aromatic rings and metal. These structural findings, which are relevant to other ATCUN-containing membrane peptides, could help design new therapeutics and materials for use in the areas of drug-resistant bacteria, neurological disorders, and biomedical imaging.
Collapse
Affiliation(s)
- Riqiang Fu
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Mary T Rooney
- Department of Applied Science, William & Mary, Williamsburg, Virginia 23185, United States
| | - Rongfu Zhang
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Myriam L Cotten
- Department of Applied Science, William & Mary, Williamsburg, Virginia 23185, United States
| |
Collapse
|
12
|
Ejaz HW, Wang W, Lang M. Copper Toxicity Links to Pathogenesis of Alzheimer's Disease and Therapeutics Approaches. Int J Mol Sci 2020; 21:E7660. [PMID: 33081348 PMCID: PMC7589751 DOI: 10.3390/ijms21207660] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is an irreversible, age-related progressive neurological disorder, and the most common type of dementia in aged people. Neuropathological lesions of AD are neurofibrillary tangles (NFTs), and senile plaques comprise the accumulated amyloid-beta (Aβ), loaded with metal ions including Cu, Fe, or Zn. Some reports have identified metal dyshomeostasis as a neurotoxic factor of AD, among which Cu ions seem to be a central cationic metal in the formation of plaque and soluble oligomers, and have an essential role in the AD pathology. Cu-Aβ complex catalyzes the generation of reactive oxygen species (ROS) and results in oxidative damage. Several studies have indicated that oxidative stress plays a crucial role in the pathogenesis of AD. The connection of copper levels in AD is still ambiguous, as some researches indicate a Cu deficiency, while others show its higher content in AD, and therefore there is a need to increase and decrease its levels in animal models, respectively, to study which one is the cause. For more than twenty years, many in vitro studies have been devoted to identifying metals' roles in Aβ accumulation, oxidative damage, and neurotoxicity. Towards the end, a short review of the modern therapeutic approach in chelation therapy, with the main focus on Cu ions, is discussed. Despite the lack of strong proofs of clinical advantage so far, the conjecture that using a therapeutic metal chelator is an effective strategy for AD remains popular. However, some recent reports of genetic-regulating copper transporters in AD models have shed light on treating this refractory disease. This review aims to succinctly present a better understanding of Cu ions' current status in several AD features, and some conflicting reports are present herein.
Collapse
Affiliation(s)
- Hafza Wajeeha Ejaz
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China;
| | - Wei Wang
- School of Medical and Health Sciences, Edith Cowan University, Perth WA6027, Australia;
| | - Minglin Lang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China;
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China
| |
Collapse
|
13
|
Arowoogun J, Akanni OO, Adefisan AO, Owumi SE, Tijani AS, Adaramoye OA. Rutin ameliorates copper sulfate-induced brain damage via antioxidative and anti-inflammatory activities in rats. J Biochem Mol Toxicol 2020; 35:e22623. [PMID: 32881150 DOI: 10.1002/jbt.22623] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/16/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022]
Abstract
Excessive exposure to Copper (Cu) may result in Cu toxicity and adversely affect health outcomes. We investigated the protective role of rutin on Cu-induced brain damage. Experimental rats were treated as follows: group I: control; group II: Cu-sulfate: 200 mg/kg; group III: Cu-sulfate, and rutin 100 mg/kg; and group IV: rutin 100 mg/kg, for 7 weeks. Cu only treatment significantly decreased body weight gain, while rutin cotreatment reversed this decrease. Cu treatment increased malondialdehyde, nitric oxide level, and myeloperoxidase activity and decreased superoxide dismutase and catalase activities in rat brain. Immunohistochemistry showed that COX-2, iNOS, and Bcl-2 proteins were strongly expressed, while Bax was mildly expressed in the brain of Cu-treated rats. Furthermore, brain histology revealed degenerated neurons, and perforated laminae of cerebral cortex in the Cu-only treated rats. Interestingly, coadministration of Cu and rutin reduced the observed histological alteration, improved inflammatory and antioxidant biomarkers, thereby protecting against Cu-induced brain damage via antioxidative and anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Jeremiah Arowoogun
- Department of Biochemistry, Drug Metabolism and Toxicology Research Laboratories, University of Ibadan, Ibadan, Nigeria
| | - Olubukola O Akanni
- Department of Biochemistry, Drug Metabolism and Toxicology Research Laboratories, University of Ibadan, Ibadan, Nigeria
| | - Adedoyin O Adefisan
- Department of Biochemistry, Drug Metabolism and Toxicology Research Laboratories, University of Ibadan, Ibadan, Nigeria
| | - Solomon E Owumi
- Department of Biochemistry, Cancer Research and Molecular Biology Laboratories, University of Ibadan, Ibadan, Nigeria
| | | | - Oluwatosin A Adaramoye
- Department of Biochemistry, Drug Metabolism and Toxicology Research Laboratories, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
14
|
Di Mauro GM, Hardin NZ, Ramamoorthy A. Lipid-nanodiscs formed by paramagnetic metal chelated polymer for fast NMR data acquisition. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183332. [PMID: 32360741 PMCID: PMC7340147 DOI: 10.1016/j.bbamem.2020.183332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
Lipid-nanodiscs have been shown to be an exciting innovation as a membrane-mimicking system for studies on membrane proteins by a variety of biophysical techniques, including NMR spectroscopy. Although NMR spectroscopy is unique in enabling the atomic-resolution investigation of dynamic structures of membrane-associated molecules, it, unfortunately, suffers from intrinsically low sensitivity. The long data acquisition often used to enhance the sensitivity is not desirable for sensitive membrane proteins. Instead, paramagnetic relaxation enhancement (PRE) has been used to reduce NMR data acquisition time or to reduce the amount of sample required to acquire an NMR spectra. However, the PRE approach involves the introduction of external paramagnetic probes in the system, which can induce undesired changes in the sample and on the observed NMR spectra. For example, the addition of paramagnetic ions, as frequently used, can denature the protein via direct interaction and also through sample heating. In this study, we show how the introduction of paramagnetic tags on the outer belt of polymer-nanodiscs can be used to speed-up data acquisition by significantly reducing the spin-lattice relaxation (T1) times with minimum-to-no alteration of the spectral quality. Our results also demonstrate the feasibility of using different types of paramagnetic ions (Eu3+, Gd3+, Dy3+, Er3+, Yb3+) for NMR studies on lipid-nanodiscs. Experimental results characterizing the formation of lipid-nanodiscs by the metal-chelated polymer, and their increased tolerance toward metal ions are also reported.
Collapse
Affiliation(s)
- Giacomo M Di Mauro
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Nathaniel Z Hardin
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA; Biophysics and Chemistry Department, The University of Michigan, Ann Arbor, MI 48109-1055, USA; Macromolecular Science and Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA; Biomedical Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
15
|
Nandi SK, Chakraborty A, Panda AK, Biswas A. M. leprae HSP18 suppresses copper (II) mediated ROS generation: Effect of redox stress on its structure and function. Int J Biol Macromol 2020; 146:648-660. [DOI: 10.1016/j.ijbiomac.2019.12.215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/16/2019] [Accepted: 12/24/2019] [Indexed: 11/25/2022]
|
16
|
Tang M, Lam D. Paramagnetic solid-state NMR of proteins. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2019; 103:9-16. [PMID: 31585788 DOI: 10.1016/j.ssnmr.2019.101621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
The paramagnetic properties of metal ions and stable radicals can affect NMR spectra, which can lead to changes in peak intensities, relaxation times and chemical shifts. The changes from paramagnetic effects provide intriguing opportunities for solid-state NMR studies of proteins. In this review, we summarized the trends and progress of paramagnetic solid-state NMR of proteins in the past decade, and showed that paramagnetic effects have great potential applications for sensitivity enhancement, structure determination and topological analysis for microcrystalline proteins, protein complexes, protein aggregates and membrane proteins.
Collapse
Affiliation(s)
- Ming Tang
- Department of Chemistry, College of Staten Island - Ph.D. Programs in Chemistry and Biochemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| | - Dennis Lam
- Department of Chemistry, College of Staten Island - Ph.D. Programs in Chemistry and Biochemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| |
Collapse
|
17
|
Dorababu A. Critical evaluation of current Alzheimer's drug discovery (2018-19) & futuristic Alzheimer drug model approach. Bioorg Chem 2019; 93:103299. [PMID: 31586701 DOI: 10.1016/j.bioorg.2019.103299] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD), a neurodegenerative disease responsible for death of millions of people worldwide is a progressive clinical disorder which causes neurons to degenerate and ultimately die. It is one of the common causes of dementia wherein a person's incapability to independently think, behave and decline in social skills can be quoted as major symptoms. However the early signs include the simple non-clinical symptoms such as forgetting recent events and conversations. Onset of these symptoms leads to worsened conditions wherein the AD patient suffers severe memory impairment and eventually becomes unable to work out everyday tasks. Even though there is no complete cure for AD, rigorous research has been going on to reduce the progress of AD. Currently, a very few clinical drugs are prevailing for AD treatment. So this is the need of hour to design, develop and discovery of novel anti-AD drugs. The main factors for the cause of AD according to scientific research reveals structural changes in brain proteins such as beta amyloid, tau proteins into plaques and tangles respectively. The abnormal proteins distort the neurons. Despite the high potencies of the synthesized molecules; they could not get on the clinical tests up to human usage. In this review article, the recent research carried out with respect to inhibition of AChE, BuChE, NO, BACE1, MAOs, Aβ, H3R, DAPK, CSF1R, 5-HT4R, PDE, σ1R and GSK-3β is compiled and organized. The summary is focused mainly on cholinesterases, Aβ, BACE1 and MAOs classes of potential inhibitors. The review also covers structure activity relationship of most potent compounds of each class of inhibitors alongside redesign and remodeling of the most significant inhibitors in order to expect cutting edge inhibitory properties towards AD. Alongside the molecular docking studies of the some final compounds are discussed.
Collapse
Affiliation(s)
- Atukuri Dorababu
- Department of Studies in Chemistry, SRMPP Govt. First Grade College, Huvinahadagali 583219, Karnataka, India.
| |
Collapse
|
18
|
Arrigoni F, Prosdocimi T, Mollica L, De Gioia L, Zampella G, Bertini L. Copper reduction and dioxygen activation in Cu-amyloid beta peptide complexes: insight from molecular modelling. Metallomics 2019; 10:1618-1630. [PMID: 30345437 DOI: 10.1039/c8mt00216a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) involves a number of factors including an anomalous interaction of copper with the amyloid peptide (Aβ), inducing oxidative stress with radical oxygen species (ROS) production through a three-step cycle in which O2 is gradually reduced to superoxide, oxygen peroxide and finally OH radicals. The purpose of this work has been to investigate the reactivity of 14 different Cu(ii)-Aβ coordination models with the aim of identifying on an energy basis (Density Functional Theory (DFT) and classical Molecular Dynamics (MD)) the redox competent form(s). Accordingly, we have specifically focused on the first three steps of the cycle, i.e. ascorbate binding to Cu(ii), Cu(ii) → Cu(i) reduction and O2 reduction to O2-. Compared to the recent literature, our results broaden the set of possible redox competent metallopeptide forms responsible for ROS production. Indeed, in addition to the three-coordinated species containing one His ligand, a N-terminal amine group and the carboxylate side chain of the Asp1 residue of Aβ already proposed, we found two other Cu-Aβ coordination modes involving two histidines.
Collapse
Affiliation(s)
- Federica Arrigoni
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
19
|
Witkowska D, Rowińska-Żyrek M. Biophysical approaches for the study of metal-protein interactions. J Inorg Biochem 2019; 199:110783. [PMID: 31349072 DOI: 10.1016/j.jinorgbio.2019.110783] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 12/17/2022]
Abstract
Protein-protein interactions play important roles for a variety of cell functions, often involving metal ions; in fact, metal-ion binding mediates and regulates the activity of a wide range of biomolecules. Enlightening all of the specific features of metal-protein and metal-mediated protein-protein interactions can be a very challenging task; a detailed knowledge of the thermodynamic and spectroscopic parameters and the structural changes of the protein is normally required. For this purpose, many experimental techniques are employed, embracing all fields of Analytical and Bioinorganic Chemistry. In addition, the use of peptide models, reproducing the primary sequence of the metal-binding sites, is also proved to be useful. In this paper, a review of the most useful techniques for studying ligand-protein interactions with a special emphasis on metal-protein interactions is provided, with a critical summary of their strengths and limitations.
Collapse
Affiliation(s)
- Danuta Witkowska
- Public Higher Medical Professional School in Opole, Katowicka 68, 45060 Opole, Poland.
| | | |
Collapse
|
20
|
Pell AJ, Pintacuda G, Grey CP. Paramagnetic NMR in solution and the solid state. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 111:1-271. [PMID: 31146806 DOI: 10.1016/j.pnmrs.2018.05.001] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 05/11/2018] [Accepted: 05/12/2018] [Indexed: 05/22/2023]
Abstract
The field of paramagnetic NMR has expanded considerably in recent years. This review addresses both the theoretical description of paramagnetic NMR, and the way in which it is currently practised. We provide a review of the theory of the NMR parameters of systems in both solution and the solid state. Here we unify the different languages used by the NMR, EPR, quantum chemistry/DFT, and magnetism communities to provide a comprehensive and coherent theoretical description. We cover the theory of the paramagnetic shift and shift anisotropy in solution both in the traditional formalism in terms of the magnetic susceptibility tensor, and using a more modern formalism employing the relevant EPR parameters, such as are used in first-principles calculations. In addition we examine the theory first in the simple non-relativistic picture, and then in the presence of spin-orbit coupling. These ideas are then extended to a description of the paramagnetic shift in periodic solids, where it is necessary to include the bulk magnetic properties, such as magnetic ordering at low temperatures. The description of the paramagnetic shift is completed by describing the current understanding of such shifts due to lanthanide and actinide ions. We then examine the paramagnetic relaxation enhancement, using a simple model employing a phenomenological picture of the electronic relaxation, and again using a more complex state-of-the-art theory which incorporates electronic relaxation explicitly. An additional important consideration in the solid state is the impact of bulk magnetic susceptibility effects on the form of the spectrum, where we include some ideas from the field of classical electrodynamics. We then continue by describing in detail the solution and solid-state NMR methods that have been deployed in the study of paramagnetic systems in chemistry, biology, and the materials sciences. Finally we describe a number of case studies in paramagnetic NMR that have been specifically chosen to highlight how the theory in part one, and the methods in part two, can be used in practice. The systems chosen include small organometallic complexes in solution, solid battery electrode materials, metalloproteins in both solution and the solid state, systems containing lanthanide ions, and multi-component materials used in pharmaceutical controlled-release formulations that have been doped with paramagnetic species to measure the component domain sizes.
Collapse
Affiliation(s)
- Andrew J Pell
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Svante Arrhenius väg 16 C, SE-106 91 Stockholm, Sweden.
| | - Guido Pintacuda
- Institut des Sciences Analytiques (CNRS UMR 5280, ENS de Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Clare P Grey
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
21
|
Synthesis and evaluation of clioquinol-rolipram/roflumilast hybrids as multitarget-directed ligands for the treatment of Alzheimer's disease. Eur J Med Chem 2019; 163:512-526. [DOI: 10.1016/j.ejmech.2018.12.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 02/07/2023]
|
22
|
Theint T, Xia Y, Nadaud PS, Mukhopadhyay D, Schwieters CD, Surewicz K, Surewicz WK, Jaroniec CP. Structural Studies of Amyloid Fibrils by Paramagnetic Solid-State Nuclear Magnetic Resonance Spectroscopy. J Am Chem Soc 2018; 140:13161-13166. [PMID: 30295029 DOI: 10.1021/jacs.8b06758] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Application of paramagnetic solid-state NMR to amyloids is demonstrated, using Y145Stop human prion protein modified with nitroxide spin-label or EDTA-Cu2+ tags as a model. By using sample preparation protocols based on seeding with preformed fibrils, we show that paramagnetic protein analogs can be induced into adopting the wild-type amyloid structure. Measurements of residue-specific intramolecular and intermolecular paramagnetic relaxation enhancements enable determination of protein fold within the fibril core and protofilament assembly. These methods are expected to be widely applicable to other amyloids and protein assemblies.
Collapse
Affiliation(s)
- Theint Theint
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Yongjie Xia
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Philippe S Nadaud
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Dwaipayan Mukhopadhyay
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Charles D Schwieters
- Center for Information Technology , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Krystyna Surewicz
- Department of Physiology and Biophysics , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Witold K Surewicz
- Department of Physiology and Biophysics , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Christopher P Jaroniec
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| |
Collapse
|
23
|
Bagheri S, Squitti R, Haertlé T, Siotto M, Saboury AA. Role of Copper in the Onset of Alzheimer's Disease Compared to Other Metals. Front Aging Neurosci 2018; 9:446. [PMID: 29472855 PMCID: PMC5810277 DOI: 10.3389/fnagi.2017.00446] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/28/2017] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that is characterized by amyloid plaques in patients' brain tissue. The plaques are mainly made of β-amyloid peptides and trace elements including Zn2+, Cu2+, and Fe2+. Some studies have shown that AD can be considered a type of metal dyshomeostasis. Among metal ions involved in plaques, numerous studies have focused on copper ions, which seem to be one of the main cationic elements in plaque formation. The involvement of copper in AD is controversial, as some studies show a copper deficiency in AD, and consequently a need to enhance copper levels, while other data point to copper overload and therefore a need to reduce copper levels. In this paper, the role of copper ions in AD and some contradictory reports are reviewed and discussed.
Collapse
Affiliation(s)
- Soghra Bagheri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli, Brescia, Italy
| | - Thomas Haertlé
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- UR 1268 Biopolymères Interactions Assemblages, Institut National de la Recherche Agronomique, Equipe Fonctions et Interactions des Protéines, Nantes, France
- Department of Animal Nutrition and Feed Management, Poznan University of Life Sciences, Poznań, Poland
| | | | - Ali A. Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
24
|
|
25
|
Ke PC, Sani MA, Ding F, Kakinen A, Javed I, Separovic F, Davis TP, Mezzenga R. Implications of peptide assemblies in amyloid diseases. Chem Soc Rev 2017; 46:6492-6531. [PMID: 28702523 PMCID: PMC5902192 DOI: 10.1039/c7cs00372b] [Citation(s) in RCA: 247] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neurodegenerative disorders and type 2 diabetes are global epidemics compromising the quality of life of millions worldwide, with profound social and economic implications. Despite the significant differences in pathology - much of which are poorly understood - these diseases are commonly characterized by the presence of cross-β amyloid fibrils as well as the loss of neuronal or pancreatic β-cells. In this review, we document research progress on the molecular and mesoscopic self-assembly of amyloid-beta, alpha synuclein, human islet amyloid polypeptide and prions, the peptides and proteins associated with Alzheimer's, Parkinson's, type 2 diabetes and prion diseases. In addition, we discuss the toxicities of these amyloid proteins based on their self-assembly as well as their interactions with membranes, metal ions, small molecules and engineered nanoparticles. Through this presentation we show the remarkable similarities and differences in the structural transitions of the amyloid proteins through primary and secondary nucleation, the common evolution from disordered monomers to alpha-helices and then to β-sheets when the proteins encounter the cell membrane, and, the consensus (with a few exceptions) that off-pathway oligomers, rather than amyloid fibrils, are the toxic species regardless of the pathogenic protein sequence or physicochemical properties. In addition, we highlight the crucial role of molecular self-assembly in eliciting the biological and pathological consequences of the amyloid proteins within the context of their cellular environments and their spreading between cells and organs. Exploiting such structure-function-toxicity relationship may prove pivotal for the detection and mitigation of amyloid diseases.
Collapse
Affiliation(s)
- Pu Chun Ke
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Marc-Antonie Sani
- School of Chemistry, Bio21 Institute, The University of Melbourne, 30 Flemington Rd, Parkville, VIC 3010, Australia
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Aleksandr Kakinen
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Ibrahim Javed
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Frances Separovic
- School of Chemistry, Bio21 Institute, The University of Melbourne, 30 Flemington Rd, Parkville, VIC 3010, Australia
| | - Thomas P. Davis
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, United Kingdom
| | - Raffaele Mezzenga
- ETH Zurich, Department of Health Science & Technology, Schmelzbergstrasse 9, LFO, E23, 8092 Zurich, Switzerland
| |
Collapse
|
26
|
The Influence of Cigarette Smoke Exposure on the Copper Concentration in the Serum Depending on the Use of Menopausal Hormone Therapy. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5732380. [PMID: 28884126 PMCID: PMC5573097 DOI: 10.1155/2017/5732380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/26/2017] [Accepted: 07/12/2017] [Indexed: 01/17/2023]
Abstract
This study evaluated the effect of menopausal hormone therapy (MHT) on serum concentration of copper in postmenopausal women depending on passive or active exposure to tobacco smoke or lack thereof. The study included healthy postmenopausal women aged 42–69 years, who used (n = 76) or did not use (n = 76) MHT. Salivary cotinine and serum copper concentrations were determined in all the study subjects. Salivary cotinine exceeded 14 ng/ml in 14 women from the MHT group (18.5%) and in 16 controls (21.1%). Up to 41 (27%) study subjects had serum copper above the upper normal limit (1.17 mg/l). No correlation was found between salivary cotinine and serum copper in women with cotinine concentrations <14 ng/ml, and these two parameters correlated weakly in subjects with cotinine >14 ng/ml. Salivary concentration of cotinine increased with serum copper level in the MHT group, but not in the controls; smokers using MHT presented with significantly higher serum copper than nonsmokers. These findings imply that MHT does not affect serum concentration of copper in women who are not exposed to tobacco smoke. However, MHT seems to contribute to unfavorable increase in serum copper in passive and active smokers.
Collapse
|
27
|
Aleksis R, Oleskovs F, Jaudzems K, Pahnke J, Biverstål H. Structural studies of amyloid-β peptides: Unlocking the mechanism of aggregation and the associated toxicity. Biochimie 2017; 140:176-192. [PMID: 28751216 DOI: 10.1016/j.biochi.2017.07.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/21/2017] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases worldwide. Formation of amyloid plaques consisting of amyloid-β peptides (Aβ) is one of the hallmarks of AD. Several lines of evidence have shown a correlation between the Aβ aggregation and the disease development. Extensive research has been conducted with the aim to reveal the structures of the neurotoxic Aβ aggregates. However, the exact structure of pathological aggregates and mechanism of the disease still remains elusive due to complexity of the occurring processes and instability of various disease-relevant Aβ species. In this article we review up-to-date structural knowledge about amyloid-β peptides, focusing on data acquired using solution and solid state NMR techniques. Furthermore, we discuss implications from these structural studies on the mechanisms of aggregation and neurotoxicity.
Collapse
Affiliation(s)
- Rihards Aleksis
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, Latvia.
| | - Filips Oleskovs
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, Latvia
| | - Kristaps Jaudzems
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, Latvia
| | - Jens Pahnke
- Department of Neuro-/Pathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) & Oslo University Hospital (OUS), Norway; LIED, University of Lübeck Uzl, Germany; Leibniz-Institute of Plant Biochemistry (IPB), Halle, Germany
| | - Henrik Biverstål
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, Latvia; Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
28
|
Cheignon C, Jones M, Atrián-Blasco E, Kieffer I, Faller P, Collin F, Hureau C. Identification of key structural features of the elusive Cu-Aβ complex that generates ROS in Alzheimer's disease. Chem Sci 2017; 8:5107-5118. [PMID: 28970897 PMCID: PMC5613283 DOI: 10.1039/c7sc00809k] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/29/2017] [Indexed: 12/16/2022] Open
Abstract
Oxidative stress is linked to the etiology of Alzheimer's disease (AD), the most common cause of dementia in the elderly. Redox active metal ions such as copper catalyze the production of Reactive Oxygen Species (ROS) when bound to the amyloid-β (Aβ) peptide encountered in AD. We propose that this reaction proceeds through a low-populated Cu-Aβ state, denoted the "catalytic in-between state" (CIBS), which is in equilibrium with the resting state (RS) of both Cu(i)-Aβ and Cu(ii)-Aβ. The nature of this CIBS is investigated in the present work. We report the use of complementary spectroscopic methods (X-ray absorption spectroscopy, EPR and NMR) to characterize the binding of Cu to a wide series of modified peptides in the RS. ROS production by the resulting Cu-peptide complexes was evaluated using fluorescence and UV-vis based methods and led to the identification of the amino acid residues involved in the Cu-Aβ CIBS species. In addition, a possible mechanism by which the ROS are produced is also proposed. These two main results are expected to affect the current vision of the ROS production mechanism by Cu-Aβ but also in other diseases involving amyloidogenic peptides with weakly structured copper binding sites.
Collapse
Affiliation(s)
- Clémence Cheignon
- LCC (Laboratoire de Chimie de Coordination) , CNRS UPR 8241 , 205 route de Narbonne , 31062 Toulouse Cedex 09 , France . ;
- Université de Toulouse , UPS , INPT , 31077 Toulouse , France
- UMR 152 Pharma Dev , Université de Toulouse , IRD , UPS , France
| | - Megan Jones
- LCC (Laboratoire de Chimie de Coordination) , CNRS UPR 8241 , 205 route de Narbonne , 31062 Toulouse Cedex 09 , France . ;
- Université de Toulouse , UPS , INPT , 31077 Toulouse , France
| | - Elena Atrián-Blasco
- LCC (Laboratoire de Chimie de Coordination) , CNRS UPR 8241 , 205 route de Narbonne , 31062 Toulouse Cedex 09 , France . ;
- Université de Toulouse , UPS , INPT , 31077 Toulouse , France
| | - Isabelle Kieffer
- Observatoire des Sciences de l'Univers de Grenoble (OSUG) , CNRS UMS 832 , 414 Rue de la Piscine , 38400 Saint Martin d'Hères , France
- BM30B/FAME , ESRF , The European Synchrotron , 71 Avenue des Martyrs , 38000 Grenoble , France
| | - Peter Faller
- LCC (Laboratoire de Chimie de Coordination) , CNRS UPR 8241 , 205 route de Narbonne , 31062 Toulouse Cedex 09 , France . ;
- Université de Toulouse , UPS , INPT , 31077 Toulouse , France
| | - Fabrice Collin
- LCC (Laboratoire de Chimie de Coordination) , CNRS UPR 8241 , 205 route de Narbonne , 31062 Toulouse Cedex 09 , France . ;
- Université de Toulouse , UPS , INPT , 31077 Toulouse , France
- UMR 152 Pharma Dev , Université de Toulouse , IRD , UPS , France
| | - Christelle Hureau
- LCC (Laboratoire de Chimie de Coordination) , CNRS UPR 8241 , 205 route de Narbonne , 31062 Toulouse Cedex 09 , France . ;
- Université de Toulouse , UPS , INPT , 31077 Toulouse , France
| |
Collapse
|
29
|
Vitamin C, Aging and Alzheimer's Disease. Nutrients 2017; 9:nu9070670. [PMID: 28654021 PMCID: PMC5537785 DOI: 10.3390/nu9070670] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/01/2017] [Accepted: 06/13/2017] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence in mice models of accelerated senescence indicates a rescuing role of ascorbic acid in premature aging. Supplementation of ascorbic acid appeared to halt cell growth, oxidative stress, telomere attrition, disorganization of chromatin, and excessive secretion of inflammatory factors, and extend lifespan. Interestingly, ascorbic acid (AA) was also found to positively modulate inflamm-aging and immunosenescence, two hallmarks of biological aging. Moreover, ascorbic acid has been shown to epigenetically regulate genome integrity and stability, indicating a key role of targeted nutrition in healthy aging. Growing in vivo evidence supports the role of ascorbic acid in ameliorating factors linked to Alzheimer’s disease (AD) pathogenesis, although evidence in humans yielded equivocal results. The neuroprotective role of ascorbic acid not only relies on the general free radical trapping, but also on the suppression of pro-inflammatory genes, mitigating neuroinflammation, on the chelation of iron, copper, and zinc, and on the suppression of amyloid-beta peptide (Aβ) fibrillogenesis. Epidemiological evidence linking diet, one of the most important modifiable lifestyle factors, and risk of Alzheimer's disease is rapidly increasing. Thus, dietary interventions, as a way to epigenetically modulate the human genome, may play a role in the prevention of AD. The present review is aimed at providing an up to date overview of the main biological mechanisms that are associated with ascorbic acid supplementation/bioavailability in the process of aging and Alzheimer’s disease. In addition, we will address new fields of research and future directions.
Collapse
|
30
|
Evlice A, Ulusu NN. Glucose-6-phosphate dehydrogenase a novel hope on a blood-based diagnosis of Alzheimer's disease. Acta Neurol Belg 2017; 117:229-234. [PMID: 27378307 DOI: 10.1007/s13760-016-0666-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 06/24/2016] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is a multi-factorial neurodegenerative disorder that numerous factors have key properties in the development of this proteopathy. Glucose-6-phosphate dehydrogenase (G6PD) is the most common form of enzymopathy. We have examined G6PD enzyme activity levels in the serum of newly diagnosed AD patients compared with control subjects without dementia from the both sexes. Serum G6PD levels were found to be significantly higher (approximately two times) in AD patients compared to control geriatric subjects in both sexes. We have concluded that G6PD seems to play an integral role in the progress and/or prevention of AD.
Collapse
Affiliation(s)
- Ahmet Evlice
- Department of Neurology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Nuriye Nuray Ulusu
- Department of Biochemistry, School of Medicine, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, Turkey.
| |
Collapse
|
31
|
Jiang T, Sun Q, Chen S. Oxidative stress: A major pathogenesis and potential therapeutic target of antioxidative agents in Parkinson's disease and Alzheimer's disease. Prog Neurobiol 2016; 147:1-19. [PMID: 27769868 DOI: 10.1016/j.pneurobio.2016.07.005] [Citation(s) in RCA: 438] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/19/2016] [Accepted: 07/11/2016] [Indexed: 12/14/2022]
Abstract
Oxidative stress reflects an imbalance between the overproduction and incorporation of free radicals and the dynamic ability of a biosystem to detoxify reactive intermediates. Free radicals produced by oxidative stress are one of the common features in several experimental models of diseases. Free radicals affect both the structure and function of neural cells, and contribute to a wide range of neurodegenerative diseases, including Parkinson's disease and Alzheimer's disease. Although the precise mechanisms that result in the degeneration of neurons and the relevant pathological changes remain unclear, the crucial role of oxidative stress in the pathogenesis of neurodegenerative diseases is associated with several proteins (such as α-synuclein, DJ-1, Amyloid β and tau protein) and some signaling pathways (such as extracellular regulated protein kinases, phosphoinositide 3-kinase/Protein Kinase B pathway and extracellular signal-regulated kinases 1/2) that are tightly associated with the neural damage. In this review, we present evidence, gathered over the last decade, concerning a variety of pathogenic proteins, their important signaling pathways and pathogenic mechanisms associated with oxidative stress in Parkinson's disease and Alzheimer's disease. Proper control and regulation of these proteins' functions and the related signaling pathways may be a promising therapeutic approach to the patients. We also emphasizes antioxidative options, including some new neuroprotective agents that eliminate excess reactive oxygen species efficiently and have a certain therapeutic effect; however, controversy surrounds some of them in terms of the dose and length of therapy. These agents require further investigation by clinical application in patients suffering Parkinson's disease and Alzheimer's disease.
Collapse
Affiliation(s)
- Tianfang Jiang
- Department of Neurology, Institute of Neurology and the Collaborative Innovation Center for Brain Science, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qian Sun
- Department of Neurology, Institute of Neurology and the Collaborative Innovation Center for Brain Science, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shengdi Chen
- Department of Neurology, Institute of Neurology and the Collaborative Innovation Center for Brain Science, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Laboratory of Neurodegenerative Diseases, Institute of Health Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Science & Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
32
|
Mirats A, Alí-Torres J, Rodríguez-Santiago L, Sodupe M, La Penna G. Dioxygen activation in the Cu-amyloid β complex. Phys Chem Chem Phys 2016; 17:27270-4. [PMID: 26427541 DOI: 10.1039/c5cp04025f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We investigate, by means of density-functional theory, the binding of dioxygen to Cu(I)-amyloid β (Aβ), one of the first steps in the oxidation of ascorbate by dioxygen. Cu, Aβ, ascorbate and dioxygen are all present in the synapse during neurodegeneration, when the above species can trigger an irreversible oxidative stress inducing the eventual death of neurons. The binding of dioxygen to Cu(I) is possible and its role in dioxygen activation of Cu ligands and of residues in the first coordination sphere is described in atomic detail. Dioxygen is activated when a micro-environment suitable for a square-planar Cu(2+) coordination is present and a negatively charged group like Asp 1 carboxylate takes part in the Cu coordination anti to O2.
Collapse
Affiliation(s)
- Andrea Mirats
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
33
|
Stability of transient Cu+Aβ (1–16) species and influence of coordination and peptide configuration on superoxide formation. Theor Chem Acc 2016. [DOI: 10.1007/s00214-016-1836-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
34
|
On the generation of OH(·) radical species from H2O2 by Cu(I) amyloid beta peptide model complexes: a DFT investigation. J Biol Inorg Chem 2015; 21:197-212. [PMID: 26711660 DOI: 10.1007/s00775-015-1322-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/08/2015] [Indexed: 12/27/2022]
Abstract
According to different studies, the interaction between amyloid β-peptide (Aβ) and copper ions could yield radical oxygen species production, in particular the highly toxic hydroxyl radical OH(·) that is suspected to contribute to Alzheimer's disease pathogenesis. Despite intensive experimental and computational studies, the nature of the interaction between copper and Aβ peptide, as well as the redox reactivity of the system, are still matter of debate. It was proposed that in Cu(II) → Cu(I) reduction the complex Cu(II)-Aβ could follow a multi-step conformational change with redox active intermediates that may be responsible for OH(·) radical production from H2O2 through a Fenton-like process. The purpose of this work is to evaluate, using ab initio Density Functional Theory computations, the reactivity of different Cu(I)-Aβ coordination modes proposed in the literature, in terms of OH(·) production. For each coordination model, we considered the corresponding H2O2 adduct and performed a potential energy surface scan along the reaction coordinate of O-O bond dissociation of the peroxide, resulting in the production of OH(·) radical, obtaining reaction profiles for the evaluation of the energetic of the process. This procedure allowed us to confirm the hypothesis according to which the most populated Cu(I)-Aβ two-histidine coordination is not able to perform efficiently H2O2 reduction, while a less populated three-coordinated form would be responsible for the OH(·) production. We show that coordination modes featuring a third nitrogen containing electron-donor ligand (an imidazole ring of an histidine residue is slightly favored over the N-terminal amine group) are more active towards H2O2 reduction.
Collapse
|
35
|
Korshavn KJ, Jang M, Kwak YJ, Kochi A, Vertuani S, Bhunia A, Manfredini S, Ramamoorthy A, Lim MH. Reactivity of Metal-Free and Metal-Associated Amyloid-β with Glycosylated Polyphenols and Their Esterified Derivatives. Sci Rep 2015; 5:17842. [PMID: 26657338 PMCID: PMC4674742 DOI: 10.1038/srep17842] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 11/05/2015] [Indexed: 12/19/2022] Open
Abstract
Both amyloid-β (Aβ) and transition metal ions are shown to be involved in the pathogenesis of Alzheimer's disease (AD), though the importance of their interactions remains unclear. Multifunctional molecules, which can target metal-free and metal-bound Aβ and modulate their reactivity (e.g., Aβ aggregation), have been developed as chemical tools to investigate their function in AD pathology; however, these compounds generally lack specificity or have undesirable chemical and biological properties, reducing their functionality. We have evaluated whether multiple polyphenolic glycosides and their esterified derivatives can serve as specific, multifunctional probes to better understand AD. The ability of these compounds to interact with metal ions and metal-free/-associated Aβ, and further control both metal-free and metal-induced Aβ aggregation was investigated through gel electrophoresis with Western blotting, transmission electron microscopy, UV-Vis spectroscopy, fluorescence spectroscopy, and NMR spectroscopy. We also examined the cytotoxicity of the compounds and their ability to mitigate the toxicity induced by both metal-free and metal-bound Aβ. Of the polyphenols investigated, the natural product (Verbascoside) and its esterified derivative (VPP) regulate the aggregation and cytotoxicity of metal-free and/or metal-associated Aβ to different extents. Our studies indicate Verbascoside represents a promising structure for further multifunctional tool development against both metal-free Aβ and metal-Aβ.
Collapse
Affiliation(s)
- Kyle J. Korshavn
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Milim Jang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Yeon Ju Kwak
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Akiko Kochi
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Silvia Vertuani
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara, Italy
| | - Anirban Bhunia
- Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII(M), Kolkata 700054, India
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara, Italy
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
- Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Mi Hee Lim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| |
Collapse
|
36
|
Reybier K, Ayala S, Alies B, Rodrigues JV, Bustos Rodriguez S, La Penna G, Collin F, Gomes CM, Hureau C, Faller P. Free Superoxide is an Intermediate in the Production of H2O2 by Copper(I)-Aβ Peptide and O2. Angew Chem Int Ed Engl 2015; 55:1085-9. [PMID: 26629876 DOI: 10.1002/anie.201508597] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Indexed: 11/06/2022]
Abstract
Oxidative stress is considered as an important factor and an early event in the etiology of Alzheimer's disease (AD). Cu bound to the peptide amyloid-β (Aβ) is found in AD brains, and Cu-Aβ could contribute to this oxidative stress, as it is able to produce in vitro H2O2 and HO˙ in the presence of oxygen and biological reducing agents such as ascorbate. The mechanism of Cu-Aβ-catalyzed H2O2 production is however not known, although it was proposed that H2O2 is directly formed from O2 via a 2-electron process. Here, we implement an electrochemical setup and use the specificity of superoxide dismutase-1 (SOD1) to show, for the first time, that H2O2 production by Cu-Aβ in the presence of ascorbate occurs mainly via a free O2˙(-) intermediate. This finding radically changes the view on the catalytic mechanism of H2O2 production by Cu-Aβ, and opens the possibility that Cu-Aβ-catalyzed O2˙(-) contributes to oxidative stress in AD, and hence may be of interest.
Collapse
Affiliation(s)
- Karine Reybier
- University of Toulouse, UPS; UMR 152 PHARMA-DEV, 118 route de Narbonne, 31062, Toulouse cedex 9, France. .,IRD, UMR 152, 31062, Toulouse cedex 9, France.
| | - Sara Ayala
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, 31077, Toulouse Cedex 4, France.,University of Toulouse, UPS, INPT, 31077, Toulouse Cedex 4, France
| | - Bruno Alies
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, 31077, Toulouse Cedex 4, France.,University of Toulouse, UPS, INPT, 31077, Toulouse Cedex 4, France
| | - João V Rodrigues
- Instituto Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal.,Harvard University, Department of Chemistry and Chemical Biology, Cambridge, MA, USA
| | - Susana Bustos Rodriguez
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, 31077, Toulouse Cedex 4, France.,University of Toulouse, UPS, INPT, 31077, Toulouse Cedex 4, France
| | - Giovanni La Penna
- CNR - National Research Council of Italy, ICCOM - Institute for Chemistry of Organo-Metallic Compounds, via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy
| | - Fabrice Collin
- University of Toulouse, UPS; UMR 152 PHARMA-DEV, 118 route de Narbonne, 31062, Toulouse cedex 9, France.,IRD, UMR 152, 31062, Toulouse cedex 9, France.,CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, 31077, Toulouse Cedex 4, France.,University of Toulouse, UPS, INPT, 31077, Toulouse Cedex 4, France
| | - Cláudio M Gomes
- Instituto Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal.,Faculdade de Ciências, Biosystems and Integrative Sciences Institute, Department of Chemistry and Biochemistry, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Christelle Hureau
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, 31077, Toulouse Cedex 4, France.,University of Toulouse, UPS, INPT, 31077, Toulouse Cedex 4, France
| | - Peter Faller
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, 31077, Toulouse Cedex 4, France. .,University of Toulouse, UPS, INPT, 31077, Toulouse Cedex 4, France. .,Institute de Chimie (UMR 7177), 4 rue B. Pascal, 67081, Strasbourg, France.
| |
Collapse
|
37
|
Reybier K, Ayala S, Alies B, Rodrigues JV, Bustos Rodriguez S, La Penna G, Collin F, Gomes CM, Hureau C, Faller P. Free Superoxide is an Intermediate in the Production of H
2
O
2
by Copper(I)‐Aβ Peptide and O
2. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201508597] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Karine Reybier
- University of Toulouse, UPS; UMR 152 PHARMA-DEV 118 route de Narbonne 31062 Toulouse cedex 9 France
- IRD, UMR 152 31062 Toulouse cedex 9 France
| | - Sara Ayala
- CNRS, LCC (Laboratoire de Chimie de Coordination) 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4 France
- University of Toulouse, UPS, INPT 31077 Toulouse Cedex 4 France
| | - Bruno Alies
- CNRS, LCC (Laboratoire de Chimie de Coordination) 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4 France
- University of Toulouse, UPS, INPT 31077 Toulouse Cedex 4 France
| | - João V. Rodrigues
- Instituto Tecnologia Química e Biológica Universidade Nova de Lisboa Oeiras Portugal
- Harvard University Department of Chemistry and Chemical Biology Cambridge MA USA
| | - Susana Bustos Rodriguez
- CNRS, LCC (Laboratoire de Chimie de Coordination) 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4 France
- University of Toulouse, UPS, INPT 31077 Toulouse Cedex 4 France
| | - Giovanni La Penna
- CNR – National Research Council of Italy ICCOM – Institute for Chemistry of Organo-Metallic Compounds via Madonna del Piano 10 50019 Sesto Fiorentino Firenze Italy
| | - Fabrice Collin
- University of Toulouse, UPS; UMR 152 PHARMA-DEV 118 route de Narbonne 31062 Toulouse cedex 9 France
- IRD, UMR 152 31062 Toulouse cedex 9 France
- CNRS, LCC (Laboratoire de Chimie de Coordination) 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4 France
- University of Toulouse, UPS, INPT 31077 Toulouse Cedex 4 France
| | - Cláudio M. Gomes
- Instituto Tecnologia Química e Biológica Universidade Nova de Lisboa Oeiras Portugal
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute Department of Chemistry and Biochemistry Universidade de Lisboa, Campo Grande Lisboa Portugal
| | - Christelle Hureau
- CNRS, LCC (Laboratoire de Chimie de Coordination) 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4 France
- University of Toulouse, UPS, INPT 31077 Toulouse Cedex 4 France
| | - Peter Faller
- CNRS, LCC (Laboratoire de Chimie de Coordination) 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4 France
- University of Toulouse, UPS, INPT 31077 Toulouse Cedex 4 France
- Institute de Chimie (UMR 7177) 4 rue B. Pascal 67081 Strasbourg France
| |
Collapse
|
38
|
Evidence of two oxidation states of copper during aggregation of hen egg white lysozyme (HEWL). Int J Biol Macromol 2015; 76:1-9. [DOI: 10.1016/j.ijbiomac.2015.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 02/13/2015] [Accepted: 02/13/2015] [Indexed: 11/18/2022]
|
39
|
Jaroniec CP. Structural studies of proteins by paramagnetic solid-state NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 253:50-9. [PMID: 25797004 PMCID: PMC4371136 DOI: 10.1016/j.jmr.2014.12.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 12/17/2014] [Indexed: 05/03/2023]
Abstract
Paramagnetism-based nuclear pseudocontact shifts and spin relaxation enhancements contain a wealth of information in solid-state NMR spectra about electron-nucleus distances on the ∼20 Å length scale, far beyond that normally probed through measurements of nuclear dipolar couplings. Such data are especially vital in the context of structural studies of proteins and other biological molecules that suffer from a sparse number of experimentally-accessible atomic distances constraining their three-dimensional fold or intermolecular interactions. This perspective provides a brief overview of the recent developments and applications of paramagnetic magic-angle spinning NMR to biological systems, with primary focus on the investigations of metalloproteins and natively diamagnetic proteins modified with covalent paramagnetic tags.
Collapse
Affiliation(s)
- Christopher P Jaroniec
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
40
|
Rajasekhar K, Chakrabarti M, Govindaraju T. Function and toxicity of amyloid beta and recent therapeutic interventions targeting amyloid beta in Alzheimer's disease. Chem Commun (Camb) 2015; 51:13434-50. [DOI: 10.1039/c5cc05264e] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Our Feature Article details the physiological role of amyloid beta (Aβ), elaborates its toxic effects and outlines therapeutic molecules designed in the last two years targeting different aspects of Aβ for preventing AD.
Collapse
Affiliation(s)
- K. Rajasekhar
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| | - Malabika Chakrabarti
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| | - T. Govindaraju
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| |
Collapse
|
41
|
Ryan TM, Kirby N, Mertens HDT, Roberts B, Barnham KJ, Cappai R, Pham CLL, Masters CL, Curtain CC. Small angle X-ray scattering analysis of Cu2+-induced oligomers of the Alzheimer's amyloid β peptide. Metallomics 2015; 7:536-43. [DOI: 10.1039/c4mt00323c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Research into causes of Alzheimer's disease and its treatment has produced a tantalising array of hypotheses about the role of transition metal dyshomeostasis, many of them on the interaction of these metals with the neurotoxic amyloid-β peptide (Aβ).
Collapse
Affiliation(s)
- Timothy M. Ryan
- University of Melbourne
- Florey Institute of Neuroscience and Mental Health
- Victoria 3010, Australia
| | - Nigel Kirby
- SAXS/WAXS Beamline
- The Australian Synchrotron
- Clayton, Australia
| | | | - Blaine Roberts
- University of Melbourne
- Florey Institute of Neuroscience and Mental Health
- Victoria 3010, Australia
| | - Kevin J. Barnham
- University of Melbourne
- Florey Institute of Neuroscience and Mental Health
- Victoria 3010, Australia
- Department of Pathology
- Bio21 Molecular Science and Technology Institute
| | - Roberto Cappai
- Department of Pathology
- Bio21 Molecular Science and Technology Institute
- The University of Melbourne
- Victoria, Australia
| | - Chi Le Lan Pham
- Department of Pathology
- Bio21 Molecular Science and Technology Institute
- The University of Melbourne
- Victoria, Australia
| | - Colin L. Masters
- University of Melbourne
- Florey Institute of Neuroscience and Mental Health
- Victoria 3010, Australia
| | - Cyril C. Curtain
- University of Melbourne
- Florey Institute of Neuroscience and Mental Health
- Victoria 3010, Australia
- Department of Pathology
- Bio21 Molecular Science and Technology Institute
| |
Collapse
|
42
|
Méndez-Garrido A, Hernández-Rodríguez M, Zamorano-Ulloa R, Correa-Basurto J, Mendieta-Wejebe JE, Ramírez-Rosales D, Rosales-Hernández MC. In Vitro Effect of H2O2, Some Transition Metals and Hydroxyl Radical Produced Via Fenton and Fenton-Like Reactions, on the Catalytic Activity of AChE and the Hydrolysis of ACh. Neurochem Res 2014; 39:2093-104. [DOI: 10.1007/s11064-014-1400-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 07/21/2014] [Accepted: 07/24/2014] [Indexed: 10/24/2022]
|