1
|
Chhabra S, Mandell ZF, Liu B, Babitzke P, Bechhofer DH. Analysis of mRNA Decay Intermediates in Bacillus subtilis 3' Exoribonuclease and RNA Helicase Mutant Strains. mBio 2022; 13:e0040022. [PMID: 35311531 PMCID: PMC9040804 DOI: 10.1128/mbio.00400-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 02/28/2022] [Indexed: 12/22/2022] Open
Abstract
The Bacillus subtilis genome encodes four 3' exoribonucleases: polynucleotide phosphorylase (PNPase), RNase R, RNase PH, and YhaM. Previous work showed that PNPase, encoded by the pnpA gene, is the major 3' exonuclease involved in mRNA turnover; in a pnpA deletion strain, numerous mRNA decay intermediates accumulate. Whether B. subtilis mRNA decay occurs in the context of a degradosome complex is controversial. In this study, global mapping of mRNA decay intermediate 3' ends within coding sequences was performed in strains that were either deleted for or had an inactivating point mutation in the pnpA gene. The patterns of 3'-end accumulation in these strains were highly similar, which may have implications for the role of a degradosome in mRNA decay. A comparison with mapped 3' ends in a strain lacking CshA, the major RNA helicase, indicated that many mRNAs require both PNPase and CshA for efficient decay. Transcriptome sequencing (RNA-seq) analysis of strains lacking RNase R suggested that this enzyme did not play a major role in mRNA turnover in the wild-type strain. Strains were constructed that contained only one of the four known 3' exoribonucleases. When RNase R was the only 3' exonuclease present, it was able to degrade a model mRNA efficiently, showing processive decay even through a strong stem-loop structure that inhibits PNPase processivity. Strains containing only RNase PH or only YhaM were also insensitive to this RNA secondary structure, suggesting the existence of another, as-yet-unidentified, 3' exoribonuclease. IMPORTANCE The ability to rapidly change bacterial gene expression programs in response to environmental conditions is highly dependent on the efficient turnover of mRNA. While much is known about the regulation of gene expression at the transcriptional and translational levels, much less is known about the intermediate step of mRNA decay. Here, we mapped the 3' ends of mRNA decay intermediates in strains that were missing the major 3' exoribonuclease PNPase or the RNA helicase CshA. We also assessed the roles of three other B. subtilis 3' exonucleases in the mRNA decay process. The data confirm the primary role of PNPase in mRNA turnover and suggest the involvement of one or more unknown RNases.
Collapse
Affiliation(s)
- Shivani Chhabra
- Icahn School of Medicine at Mount Sinai, Department of Pharmacological Sciences, New York, New York, USA
| | - Zachary F. Mandell
- The Pennsylvania State University, Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, University Park, Pennsylvania, USA
| | - Bo Liu
- Icahn School of Medicine at Mount Sinai, Department of Pharmacological Sciences, New York, New York, USA
| | - Paul Babitzke
- The Pennsylvania State University, Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, University Park, Pennsylvania, USA
| | - David H. Bechhofer
- Icahn School of Medicine at Mount Sinai, Department of Pharmacological Sciences, New York, New York, USA
| |
Collapse
|
2
|
Costa SM, Saramago M, Matos RG, Arraiano CM, Viegas SC. How hydrolytic exoribonucleases impact human disease: Two sides of the same story. FEBS Open Bio 2022. [PMID: 35247037 DOI: 10.1002/2211-5463.13392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/16/2022] [Accepted: 03/03/2022] [Indexed: 11/05/2022] Open
Abstract
RNAs are extremely important molecules inside the cell which perform many different functions. For example, messenger RNAs, transfer RNAs, and ribosomal RNAs are involved in protein synthesis, whereas non-coding RNAs have numerous regulatory roles. Ribonucleases are the enzymes responsible for the processing and degradation of all types of RNAs, having multiple roles in every aspect of RNA metabolism. However, the involvement of RNases in disease is still not well understood. This review focuses on the involvement of the RNase II/RNB family of 3'-5' exoribonucleases in human disease. This can be attributed to direct effects, whereby mutations in the eukaryotic enzymes of this family (Dis3 (or Rrp44), Dis3L1 (or Dis3L), and Dis3L2) are associated with a disease, or indirect effects, whereby mutations in the prokaryotic counterparts of RNase II/RNB family (RNase II and/or RNase R) affect the physiology and virulence of several human pathogens. In this review, we will compare the structural and biochemical characteristics of the members of the RNase II/RNB family of enzymes. The outcomes of mutations impacting enzymatic function will be revisited, in terms of both the direct and indirect effects on disease. Furthermore, we also describe the SARS-CoV-2 viral exoribonuclease and its importance to combat COVID-19 pandemic. As a result, RNases may be a good therapeutic target to reduce bacterial and viral pathogenicity. These are the two perspectives on RNase II/RNB family enzymes that will be presented in this review.
Collapse
Affiliation(s)
- Susana M Costa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157, Oeiras, Portugal
| | - Margarida Saramago
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157, Oeiras, Portugal
| | - Rute G Matos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157, Oeiras, Portugal
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157, Oeiras, Portugal
| | - Sandra C Viegas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157, Oeiras, Portugal
| |
Collapse
|
3
|
Mohanty BK, Kushner SR. Regulation of mRNA decay in E. coli. Crit Rev Biochem Mol Biol 2022; 57:48-72. [PMID: 34547957 PMCID: PMC9973670 DOI: 10.1080/10409238.2021.1968784] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/03/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
Detailed studies of the Gram-negative model bacterium, Escherichia coli, have demonstrated that post-transcriptional events exert important and possibly greater control over gene regulation than transcription initiation or effective translation. Thus, over the past 30 years, considerable effort has been invested in understanding the pathways of mRNA turnover in E. coli. Although it is assumed that most of the ribonucleases and accessory proteins involved in mRNA decay have been identified, our understanding of the regulation of mRNA decay is still incomplete. Furthermore, the vast majority of the studies on mRNA decay have been conducted on exponentially growing cells. Thus, the mechanism of mRNA decay as currently outlined may not accurately reflect what happens when cells find themselves under a variety of stress conditions, such as, nutrient starvation, changes in pH and temperature, as well as a host of others. While the cellular machinery for degradation is relatively constant over a wide range of conditions, intracellular levels of specific ribonucleases can vary depending on the growth conditions. Substrate competition will also modulate ribonucleolytic activity. Post-transcriptional modifications of transcripts by polyadenylating enzymes may favor a specific ribonuclease activity. Interactions with small regulatory RNAs and RNA binding proteins add additional complexities to mRNA functionality and stability. Since many of the ribonucleases are found at the inner membrane, the physical location of a transcript may help determine its half-life. Here we discuss the properties and role of the enzymes involved in mRNA decay as well as the multiple factors that may affect mRNA decay under various in vivo conditions.
Collapse
Affiliation(s)
| | - Sidney R. Kushner
- Department of Genetics, University of Georgia, Athens GA 30602
- Department of Microbiology, University of Georgia, Athens GA 30602
| |
Collapse
|
4
|
Hibernation-Promoting Factor Sequesters Staphylococcus aureus Ribosomes to Antagonize RNase R-Mediated Nucleolytic Degradation. mBio 2021; 12:e0033421. [PMID: 34253058 PMCID: PMC8406268 DOI: 10.1128/mbio.00334-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Bacterial and eukaryotic hibernation factors prevent translation by physically blocking the decoding center of ribosomes, a phenomenon called ribosome hibernation that often occurs in response to nutrient deprivation. The human pathogen Staphylococcus aureus lacking the sole hibernation factor HPF undergoes massive ribosome degradation via an unknown pathway. Using genetic and biochemical approaches, we find that inactivating the 3′-to-5′ exonuclease RNase R suppresses ribosome degradation in the Δhpf mutant. In vitro cell-free degradation assays confirm that 30S and 70S ribosomes isolated from the Δhpf mutant are extremely susceptible to RNase R, in stark contrast to nucleolytic resistance of the HPF-bound 70S and 100S complexes isolated from the wild type. In the absence of HPF, specific S. aureus 16S rRNA helices are sensitive to nucleolytic cleavage. These RNase hot spots are distinct from that found in the Escherichia coli ribosomes. S. aureus RNase R is associated with ribosomes, but unlike the E. coli counterpart, it is not regulated by general stressors and acetylation. The results not only highlight key differences between the evolutionarily conserved RNase R homologs but also provide direct evidence that HPF preserves ribosome integrity beyond its role in translational avoidance, thereby poising the hibernating ribosomes for rapid resumption of translation.
Collapse
|
5
|
Abstract
Ribonucleases (RNases) are essential for almost every aspect of RNA metabolism. However, despite their important metabolic roles, RNases can also be destructive enzymes. As a consequence, cells must carefully regulate the amount, the activity, and the localization of RNases to avoid the inappropriate degradation of essential RNA molecules. In addition, bacterial cells often must adjust RNase levels as environmental situations demand, also requiring careful regulation of these critical enzymes. As the need for strict control of RNases has become more evident, multiple mechanisms for this regulation have been identified and studied, and these are described in this review. The major conclusion that emerges is that no common regulatory mechanism applies to all RNases, or even to a family of RNases; rather, a wide variety of processes have evolved that act on these enzymes, and in some cases, multiple regulatory mechanisms can even act on a single RNase. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Murray P Deutscher
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33101, USA;
| |
Collapse
|
6
|
Tejada-Arranz A, Matos RG, Quentin Y, Bouilloux-Lafont M, Galtier E, Briolat V, Kornobis E, Douché T, Matondo M, Arraiano CM, Raynal B, De Reuse H. RNase R is associated in a functional complex with the RhpA DEAD-box RNA helicase in Helicobacter pylori. Nucleic Acids Res 2021; 49:5249-5264. [PMID: 33893809 PMCID: PMC8136821 DOI: 10.1093/nar/gkab283] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023] Open
Abstract
Ribonucleases are central players in post-transcriptional regulation, a major level of gene expression regulation in all cells. Here, we characterized the 3'-5' exoribonuclease RNase R from the bacterial pathogen Helicobacter pylori. The 'prototypical' Escherichia coli RNase R displays both exoribonuclease and helicase activities, but whether this latter RNA unwinding function is a general feature of bacterial RNase R had not been addressed. We observed that H. pylori HpRNase R protein does not carry the domains responsible for helicase activity and accordingly the purified protein is unable to degrade in vitro RNA molecules with secondary structures. The lack of RNase R helicase domains is widespread among the Campylobacterota, which include Helicobacter and Campylobacter genera, and this loss occurred gradually during their evolution. An in vivo interaction between HpRNase R and RhpA, the sole DEAD-box RNA helicase of H. pylori was discovered. Purified RhpA facilitates the degradation of double stranded RNA by HpRNase R, showing that this complex is functional. HpRNase R has a minor role in 5S rRNA maturation and few targets in H. pylori, all included in the RhpA regulon. We concluded that during evolution, HpRNase R has co-opted the RhpA helicase to compensate for its lack of helicase activity.
Collapse
Affiliation(s)
- Alejandro Tejada-Arranz
- Unité Pathogenèse de Helicobacter, CNRS UMR 2001, Département de Microbiologie, Institut Pasteur, 75724 Paris Cedex 15, France
- Université de Paris, Sorbonne Paris Cité, 75006 Paris, France
| | - Rute G Matos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Yves Quentin
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, UMR CNRS 5100, 31062 TOULOUSE Cedex 9, France
| | - Maxime Bouilloux-Lafont
- Unité Pathogenèse de Helicobacter, CNRS UMR 2001, Département de Microbiologie, Institut Pasteur, 75724 Paris Cedex 15, France
| | - Eloïse Galtier
- Unité Pathogenèse de Helicobacter, CNRS UMR 2001, Département de Microbiologie, Institut Pasteur, 75724 Paris Cedex 15, France
| | - Valérie Briolat
- Biomics, C2RT, Institut Pasteur, 75724 Paris Cedex 15, France
| | - Etienne Kornobis
- Biomics, C2RT, Institut Pasteur, 75724 Paris Cedex 15, France
- Hub Bioinformatique et Biostatistique, Département de Biologie Computationelle, USR CNRS 3756, Institut Pasteur, 75724 Paris Cedex 15, France
| | - Thibaut Douché
- Plateforme Protéomique, Unité de Spectrométrie de Masse pour la Biologie, C2RT, USR CNRS 2000, Institut Pasteur, 75724 Paris Cedex 15, France
| | - Mariette Matondo
- Plateforme Protéomique, Unité de Spectrométrie de Masse pour la Biologie, C2RT, USR CNRS 2000, Institut Pasteur, 75724 Paris Cedex 15, France
| | - Cecilia M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Bertrand Raynal
- Plateforme de biophysique moléculaire, UMR CNRS 3528, Département de Biologie structurale et chimie, Institut Pasteur, 75724 Paris Cedex 15, France
| | - Hilde De Reuse
- Unité Pathogenèse de Helicobacter, CNRS UMR 2001, Département de Microbiologie, Institut Pasteur, 75724 Paris Cedex 15, France
| |
Collapse
|
7
|
Lee J, Lee M, Lee K. Trans-acting regulators of ribonuclease activity. J Microbiol 2021; 59:341-359. [PMID: 33779951 DOI: 10.1007/s12275-021-0650-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 12/16/2022]
Abstract
RNA metabolism needs to be tightly regulated in response to changes in cellular physiology. Ribonucleases (RNases) play an essential role in almost all aspects of RNA metabolism, including processing, degradation, and recycling of RNA molecules. Thus, living systems have evolved to regulate RNase activity at multiple levels, including transcription, post-transcription, post-translation, and cellular localization. In addition, various trans-acting regulators of RNase activity have been discovered in recent years. This review focuses on the physiological roles and underlying mechanisms of trans-acting regulators of RNase activity.
Collapse
Affiliation(s)
- Jaejin Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Minho Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
8
|
Lee J, Lee M, Lee K. Trans-acting regulators of ribonuclease activity. J Microbiol 2021:10.1007/s12275-021-0650-3. [PMID: 33565052 DOI: 10.1007/s12275-021-0650-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 11/29/2022]
Abstract
RNA metabolism needs to be tightly regulated in response to changes in cellular physiology. Ribonucleases (RNases) play an essential role in almost all aspects of RNA metabolism, including processing, degradation, and recycling of RNA molecules. Thus, living systems have evolved to regulate RNase activity at multiple levels, including transcription, post-transcription, post-translation, and cellular localization. In addition, various trans-acting regulators of RNase activity have been discovered in recent years. This review focuses on the physiological roles and underlying mechanisms of trans-acting regulators of RNase activity.
Collapse
Affiliation(s)
- Jaejin Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Minho Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
9
|
Abstract
RNA quality control pathways are critical for cell survival. Here, we describe a new surveillance process involved in the degradation of highly structured and stable ribosomal RNAs. The results demonstrated that the RNA chaperone Hfq and the 3'-5' exoribonuclease R mediate the elimination of detrimental rRNA fragments and are required for the correct processing of rRNA precursors. Escherichia coli cells lacking both Hfq and RNase R accumulate a high level of 16S- and 23S-derived rRNA fragments. Hfq and RNase R were also shown to participate in the maturation of 16S and 23S rRNA precursors. This correlates with the fact that in the absence of Hfq and RNase R, there are severe ribosome assembly defects and a sharp reduction in 70S ribosome levels. Hfq and RNase R may act independently or in a complex, as protein interaction studies revealed that these RNA-binding proteins can associate. This is the first demonstration that the well-conserved Hfq and RNase R proteins act on common regulatory pathways, unraveling previously unknown mechanisms of rRNA surveillance with important consequences for translation and cell survival.IMPORTANCE Quality control pathways that oversee the quality of stable RNA molecules are critical for the cell. In this work, we demonstrate, for the first time, a functional link between Hfq and RNase R in the processing and degradation of the highly structured rRNAs. These RNA-binding proteins are required for the maturation of 16S and 23S rRNAs and correct ribosome assembly. Furthermore, they participate in the degradation of rRNAs and clearance of toxic rRNA fragments from the cell. Our studies have also shown that Hfq and RNase R can form a complex. In summary, the cooperation between Hfq and RNase R in metabolic pathways of stable RNAs may represent a broader mechanism of RNA quality control, given the high conservation of these RNA-binding proteins throughout evolution.
Collapse
|
10
|
Vargas-Blanco DA, Shell SS. Regulation of mRNA Stability During Bacterial Stress Responses. Front Microbiol 2020; 11:2111. [PMID: 33013770 PMCID: PMC7509114 DOI: 10.3389/fmicb.2020.02111] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Bacteria have a remarkable ability to sense environmental changes, swiftly regulating their transcriptional and posttranscriptional machinery as a response. Under conditions that cause growth to slow or stop, bacteria typically stabilize their transcriptomes in what has been shown to be a conserved stress response. In recent years, diverse studies have elucidated many of the mechanisms underlying mRNA degradation, yet an understanding of the regulation of mRNA degradation under stress conditions remains elusive. In this review we discuss the diverse mechanisms that have been shown to affect mRNA stability in bacteria. While many of these mechanisms are transcript-specific, they provide insight into possible mechanisms of global mRNA stabilization. To that end, we have compiled information on how mRNA fate is affected by RNA secondary structures; interaction with ribosomes, RNA binding proteins, and small RNAs; RNA base modifications; the chemical nature of 5' ends; activity and concentration of RNases and other degradation proteins; mRNA and RNase localization; and the stringent response. We also provide an analysis of reported relationships between mRNA abundance and mRNA stability, and discuss the importance of stress-associated mRNA stabilization as a potential target for therapeutic development.
Collapse
Affiliation(s)
- Diego A Vargas-Blanco
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Scarlet S Shell
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States.,Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|
11
|
Defining the impact of exoribonucleases in the shift between exponential and stationary phases. Sci Rep 2019; 9:16271. [PMID: 31700028 PMCID: PMC6838162 DOI: 10.1038/s41598-019-52453-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 10/12/2019] [Indexed: 01/26/2023] Open
Abstract
The transition between exponential and stationary phase is a natural phenomenon for all bacteria and requires a massive readjustment of the bacterial transcriptome. Exoribonucleases are key enzymes in the transition between the two growth phases. PNPase, RNase R and RNase II are the major degradative exoribonucleases in Escherichia coli. We analysed the whole transcriptome of exponential and stationary phases from the WT and mutants lacking these exoribonucleases (Δpnp, Δrnr, Δrnb, and ΔrnbΔrnr). When comparing the cells from exponential phase with the cells from stationary phase more than 1000 transcripts were differentially expressed, but only 491 core transcripts were common to all strains. There were some differences in the number and transcripts affected depending on the strain, suggesting that exoribonucleases influence the transition between these two growth phases differently. Interestingly, we found that the double mutant RNase II/RNase R is similar to the RNase R single mutant in exponential phase while in stationary phase it seems to be closer to the RNase II single mutant. This is the first global transcriptomic work comparing the roles of exoribonucleases in the transition between exponential and stationary phase.
Collapse
|
12
|
Bechhofer DH, Deutscher MP. Bacterial ribonucleases and their roles in RNA metabolism. Crit Rev Biochem Mol Biol 2019; 54:242-300. [PMID: 31464530 PMCID: PMC6776250 DOI: 10.1080/10409238.2019.1651816] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/22/2019] [Accepted: 07/31/2019] [Indexed: 12/16/2022]
Abstract
Ribonucleases (RNases) are mediators in most reactions of RNA metabolism. In recent years, there has been a surge of new information about RNases and the roles they play in cell physiology. In this review, a detailed description of bacterial RNases is presented, focusing primarily on those from Escherichia coli and Bacillus subtilis, the model Gram-negative and Gram-positive organisms, from which most of our current knowledge has been derived. Information from other organisms is also included, where relevant. In an extensive catalog of the known bacterial RNases, their structure, mechanism of action, physiological roles, genetics, and possible regulation are described. The RNase complement of E. coli and B. subtilis is compared, emphasizing the similarities, but especially the differences, between the two. Included are figures showing the three major RNA metabolic pathways in E. coli and B. subtilis and highlighting specific steps in each of the pathways catalyzed by the different RNases. This compilation of the currently available knowledge about bacterial RNases will be a useful tool for workers in the RNA field and for others interested in learning about this area.
Collapse
Affiliation(s)
- David H. Bechhofer
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Murray P. Deutscher
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
13
|
Das R, Liang Z, Li G, Mai B, An T. Genome sequence of a spore-laccase forming, BPA-degrading Bacillus sp. GZB isolated from an electronic-waste recycling site reveals insights into BPA degradation pathways. Arch Microbiol 2019; 201:623-638. [PMID: 30747263 DOI: 10.1007/s00203-019-01622-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 02/06/2023]
Abstract
Bisphenol A (BPA) is a synthetic chemical with known deleterious effects on biota. A genome sequencing project is an important starting point for designing a suitable BPA bioremediation process, because it provides valuable genomic information about the physiological, metabolic, and genetic potential of the microbes used for the treatment. This study explored genomic insights provided by the BPA-degrading strain Bacillus sp. GZB, previously isolated from electronic-waste-dismantling site. The GZB genome is a circular chromosome, comprised of a total of 4,077,007 bp with G+C content comprising 46.2%. Genome contained 23 contigs encoded by 3881 protein-coding genes with nine rRNA and 53 tRNA genes. A comparative study demonstrated that strain GZB bloomed with some potential features as compared to other Bacillus species. In addition, strain GZB developed spore cells and displayed laccase activity while growing at elevated stress levels. Most importantly, strain GZB contained many protein-coding genes associated with BPA degradation, as well as the degradation of several other compounds. The protein-coding genes in the genome revealed the genetic mechanisms associated with the BPA degradation by strain GZB. This study predicts four possible degradation pathways for BPA, contributing to the possible use of strain GZB to remediate different polluted environments in the future.
Collapse
Affiliation(s)
- Ranjit Das
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.,Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhishu Liang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.,Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guiying Li
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Taicheng An
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
14
|
Bárria C, Domingues S, Arraiano CM. Pneumococcal RNase R globally impacts protein synthesis by regulating the amount of actively translating ribosomes. RNA Biol 2019; 16:211-219. [PMID: 30608212 DOI: 10.1080/15476286.2018.1564616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ribosomes are macromolecular machines that carry out protein synthesis. After each round of translation, ribosome recycling is essential for reinitiating protein synthesis. Ribosome recycling factor (RRF), together with elongation factor G (EF-G), catalyse the transient split of the 70S ribosome into subunits. This splitting is then stabilized by initiation factor 3 (IF3), which functions as an anti-association factor. The correct amount of these factors ensures the precise level of 70S ribosomes in the cell. RNase R is a highly conserved exoribonuclease involved in the 3' to 5' degradation of RNAs. In this work we show that pneumococcal RNase R directly controls the expression levels of frr, fusA and infC mRNAs, the corresponding transcripts of RRF, EF-G and IF3, respectively. We present evidences showing that accumulation of these factors leads to a decreased amount of 70S active particles, as demonstrated by the altered sucrose gradient ribosomal pattern in the RNase R mutant strain. Furthermore, the single deletion of RNase R is shown to have a global impact on protein synthesis and cell viability, leading to a ~50% reduction in bacterial CFU/ml. We believe that the fine-tuned regulation of these transcripts by RNase R is essential for maintaining the precise amount of active ribosomal complexes required for proper mRNA translation and thus we propose RNase R as a new auxiliary factor in ribosome reassociation. Considering the overall impact of RNase R on protein synthesis, one of the main targets of antibiotics, this enzyme may be a promising target for antimicrobial treatment.
Collapse
Affiliation(s)
- Cátia Bárria
- a Instituto de Tecnologia Química e Biológica , Universidade Nova de Lisboa , Oeiras , Portugal
| | - Susana Domingues
- a Instituto de Tecnologia Química e Biológica , Universidade Nova de Lisboa , Oeiras , Portugal
| | - Cecília Maria Arraiano
- a Instituto de Tecnologia Química e Biológica , Universidade Nova de Lisboa , Oeiras , Portugal
| |
Collapse
|
15
|
Dressaire C, Pobre V, Laguerre S, Girbal L, Arraiano CM, Cocaign-Bousquet M. PNPase is involved in the coordination of mRNA degradation and expression in stationary phase cells of Escherichia coli. BMC Genomics 2018; 19:848. [PMID: 30486791 PMCID: PMC6264599 DOI: 10.1186/s12864-018-5259-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 11/16/2018] [Indexed: 12/02/2022] Open
Abstract
Background Exoribonucleases are crucial for RNA degradation in Escherichia coli but the roles of RNase R and PNPase and their potential overlap in stationary phase are not well characterized. Here, we used a genome-wide approach to determine how RNase R and PNPase affect the mRNA half-lives in the stationary phase. The genome-wide mRNA half-lives were determined by a dynamic analysis of transcriptomes after transcription arrest. We have combined the analysis of mRNA half-lives with the steady-state concentrations (transcriptome) to provide an integrated overview of the in vivo activity of these exoribonucleases at the genome-scale. Results The values of mRNA half-lives demonstrated that the mRNAs are very stable in the stationary phase and that the deletion of RNase R or PNPase caused only a limited mRNA stabilization. Intriguingly the absence of PNPase provoked also the destabilization of many mRNAs. These changes in mRNA half-lives in the PNPase deletion strain were associated with a massive reorganization of mRNA levels and also variation in several ncRNA concentrations. Finally, the in vivo activity of the degradation machinery was found frequently saturated by mRNAs in the PNPase mutant unlike in the RNase R mutant, suggesting that the degradation activity is limited by the deletion of PNPase but not by the deletion of RNase R. Conclusions This work had identified PNPase as a central player associated with mRNA degradation in stationary phase. Electronic supplementary material The online version of this article (10.1186/s12864-018-5259-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Clémentine Dressaire
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Vânia Pobre
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | | | - Laurence Girbal
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France.
| | - Cecilia Maria Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.
| | | |
Collapse
|
16
|
Li C, Lu Q, Ye J, Qin H, Long Y, Wang L, Ou H. Metabolic and proteomic mechanism of bisphenol A degradation by Bacillus thuringiensis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:714-725. [PMID: 29879660 DOI: 10.1016/j.scitotenv.2018.05.352] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 05/10/2018] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
Bisphenol A (BPA) is a worldwide, widespread pollutant with estrogen mimicking and hormone-like properties. To date, some target biomolecules associated with BPA toxicity have been confirmed. The limited information has not clarified the related metabolism at the pathway and network levels. To this end, metabolic and proteomic approaches were performed to reveal the synthesis of phospholipids and proteins and the metabolic network during the BPA degradation process. The results showed that the degradation efficiency of 1 μM of BPA by 1 g L-1 of Bacillus thuringiensis was up to 85% after 24 h. During this process, BPA significantly changed the membrane permeability; altered sporulation, amino acid and protein expression, and carbon, purine, pyrimidine and fatty acid metabolism; enhanced C14:0, C16:1ω7, C18:2ω6, C18:1ω9t and C18:0 synthesis; and increased the trans/cis ratio of C18:1ω9t/C18:1ω9c. It also depressed the spore DNA stability of B. thuringiensis. Among the 14 upregulated and 7 down-regulated proteins, SasP-1 could be a biomarker to reflect BPA-triggered spore DNA impairment. TpiA, RpoA, GlnA and InfA could be phosphorylated at the active sites of serine and tyrosine. The findings presented novel insights into the interaction among BPA stress, BPA degradation, phospholipid synthesis and protein expression at the network and phylogenetic levels.
Collapse
Affiliation(s)
- Chongshu Li
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China
| | - Qiying Lu
- College of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, Guangdong, China
| | - Jinshao Ye
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China.
| | - Huaming Qin
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China
| | - Yan Long
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China
| | - Lili Wang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China
| | - Huase Ou
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China
| |
Collapse
|
17
|
Pobre V, Arraiano CM. Characterizing the Role of Exoribonucleases in the Control of Microbial Gene Expression: Differential RNA-Seq. Methods Enzymol 2018; 612:1-24. [PMID: 30502937 DOI: 10.1016/bs.mie.2018.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Differential RNA-Seq is a next-generation technology method to determine the significant transcriptomic differences between two and more samples. With this method it is possible to analyze the total RNA content of different samples making it the best global analysis method currently available to study the roles of exoribonucleases in the cell. These enzymes are responsible for the RNA processing and degradation in the cells and therefore affect the total RNA pool in ways not yet fully understood. In Escherichia coli there are three main degradative exoribonucleases RNase II, RNase R, and PNPase that degrade the RNA from the 3' to the 5'-end. These enzymes have several roles in the cell and even though they are degradative enzymes RNase II and PNPase can also protect some RNAs from degradation and PNPase can also act as an RNA polymerase under some conditions. The multiplicity of roles of these exoribonucleases leads to a very high number of transcripts that are affected by their absence in the cell. With the differential RNA-Seq it is possible to obtain a much deeper understanding of how these enzymes work and regulate the bacterial gene expression. In this chapter we have described a differential RNA-Seq data analysis protocol applied to the study of exoribonucleases. We also included the protocol for experimental validation of the RNA-Seq data using qPCR and motility assays. Although the methods described in this chapter were applied to the study of the exoribonucleases, they can also be used for other differential RNA-Seq studies.
Collapse
Affiliation(s)
- Vânia Pobre
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
18
|
Dos Santos RF, Quendera AP, Boavida S, Seixas AF, Arraiano CM, Andrade JM. Major 3'-5' Exoribonucleases in the Metabolism of Coding and Non-coding RNA. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 159:101-155. [PMID: 30340785 DOI: 10.1016/bs.pmbts.2018.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
3'-5' exoribonucleases are key enzymes in the degradation of superfluous or aberrant RNAs and in the maturation of precursor RNAs into their functional forms. The major bacterial 3'-5' exoribonucleases responsible for both these activities are PNPase, RNase II and RNase R. These enzymes are of ancient nature with widespread distribution. In eukaryotes, PNPase and RNase II/RNase R enzymes can be found in the cytosol and in mitochondria and chloroplasts; RNase II/RNase R-like enzymes are also found in the nucleus. Humans express one PNPase (PNPT1) and three RNase II/RNase R family members (Dis3, Dis3L and Dis3L2). These enzymes take part in a multitude of RNA surveillance mechanisms that are critical for translation accuracy. Although active against a wide range of both coding and non-coding RNAs, the different 3'-5' exoribonucleases exhibit distinct substrate affinities. The latest studies on these RNA degradative enzymes have contributed to the identification of additional homologue proteins, the uncovering of novel RNA degradation pathways, and to a better comprehension of several disease-related processes and response to stress, amongst many other exciting findings. Here, we provide a comprehensive and up-to-date overview on the function, structure, regulation and substrate preference of the key 3'-5' exoribonucleases involved in RNA metabolism.
Collapse
Affiliation(s)
- Ricardo F Dos Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana P Quendera
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sofia Boavida
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - André F Seixas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - José M Andrade
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
19
|
Xie J, Chen Z, Zhang X, Chen H, Guan W. Identification of an RNase that preferentially cleaves A/G nucleotides. Sci Rep 2017; 7:45207. [PMID: 28322335 PMCID: PMC5359670 DOI: 10.1038/srep45207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/20/2017] [Indexed: 02/02/2023] Open
Abstract
Ribonucleases play an important role in the RNA metabolism which is critical for the localization, stability and function of mature RNA transcripts. More and more ribonucleases were discovered in recent years with the progress of technology. In the present study, we found that the uncharacterized C19orf43, a novel interacting protein of human telomerase RNA (hTR), digested T7 transcribed RNA, total cellular RNA and RNA oligos but not DNA. Thus we named this new RNase as hTRIR (human telomerase RNA interacting RNase). Genetic analysis showed that hTRIR is conserved among eukaryotic species and widely expressed in different cell lines. The RNase activity of hTRIR works in a broad temperature and pH range while divalent cations are not required. The conserved C-terminus of C19orf43 is necessary for its activity. Finally, we found that hTRIR cleaves all four unpaired RNA nucleotides from 5′ end or 3′ end with higher efficiency for purine bases, which suggested that hTRIR is an exoribonuclease. Taken together, our study showed the first evidence of the novel function of hTRIR in vitro, which provides clue to study the regulatory mechanism of hTR homeostasis in vivo.
Collapse
Affiliation(s)
- Jumin Xie
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
| | - Zhen Chen
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
| | - Xueyan Zhang
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
| | - Honghe Chen
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
| | - Wuxiang Guan
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
| |
Collapse
|
20
|
Identification of YbeY-Protein Interactions Involved in 16S rRNA Maturation and Stress Regulation in Escherichia coli. mBio 2016; 7:mBio.01785-16. [PMID: 27834201 PMCID: PMC5101352 DOI: 10.1128/mbio.01785-16] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
YbeY is part of a core set of RNases in Escherichia coli and other bacteria. This highly conserved endoribonuclease has been implicated in several important processes such as 16S rRNA 3' end maturation, 70S ribosome quality control, and regulation of mRNAs and small noncoding RNAs, thereby affecting cellular viability, stress tolerance, and pathogenic and symbiotic behavior of bacteria. Thus, YbeY likely interacts with numerous protein or RNA partners that are involved in various aspects of cellular physiology. Using a bacterial two-hybrid system, we identified several proteins that interact with YbeY, including ribosomal protein S11, the ribosome-associated GTPases Era and Der, YbeZ, and SpoT. In particular, the interaction of YbeY with S11 and Era provides insight into YbeY's involvement in the 16S rRNA maturation process. The three-way association between YbeY, S11, and Era suggests that YbeY is recruited to the ribosome where it could cleave the 17S rRNA precursor endonucleolytically at or near the 3' end maturation site. Analysis of YbeY missense mutants shows that a highly conserved beta-sheet in YbeY-and not amino acids known to be important for YbeY's RNase activity-functions as the interface between YbeY and S11. This protein-interacting interface of YbeY is needed for correct rRNA maturation and stress regulation, as missense mutants show significant phenotypic defects. Additionally, structure-based in silico prediction of putative interactions between YbeY and the Era-30S complex through protein docking agrees well with the in vivo results. IMPORTANCE Ribosomes are ribonucleoprotein complexes responsible for a key cellular function, protein synthesis. Their assembly is a highly coordinated process of RNA cleavage, RNA posttranscriptional modification, RNA conformational changes, and protein-binding events. Many open questions remain after almost 5 decades of study, including which RNase is responsible for final processing of the 16S rRNA 3' end. The highly conserved RNase YbeY, belonging to a core set of RNases essential in many bacteria, was previously shown to participate in 16S rRNA processing and ribosome quality control. However, detailed mechanistic insight into YbeY's ribosome-associated function has remained elusive. This work provides the first evidence that YbeY is recruited to the ribosome through interaction with proteins involved in ribosome biogenesis (i.e., ribosomal protein S11, Era). In addition, we identified key residues of YbeY involved in the interaction with S11 and propose a possible binding mode of YbeY to the ribosome using in silico docking.
Collapse
|
21
|
Song L, Wang G, Malhotra A, Deutscher MP, Liang W. Reversible acetylation on Lys501 regulates the activity of RNase II. Nucleic Acids Res 2016; 44:1979-88. [PMID: 26847092 PMCID: PMC4797298 DOI: 10.1093/nar/gkw053] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 11/17/2022] Open
Abstract
RNase II, a 3' to 5' processive exoribonuclease, is the major hydrolytic enzyme in Escherichia coli accounting for ∼90% of the total activity. Despite its importance, little is actually known about regulation of this enzyme. We show here that one residue, Lys501, is acetylated in RNase II. This modification, reversibly controlled by the acetyltransferase Pka, and the deacetylase CobB, affects binding of the substrate and thus decreases the catalytic activity of RNase II. As a consequence, the steady-state level of target RNAs of RNase II may be altered in the cells. We also find that under conditions of slowed growth, the acetylation level of RNase II is elevated and the activity of RNase II decreases, emphasizing the importance of this regulatory process. These findings indicate that acetylation can regulate the activity of a bacterial ribonuclease.
Collapse
Affiliation(s)
- Limin Song
- The Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao 266109, China
| | - Guangyuan Wang
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Arun Malhotra
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
| | - Murray P Deutscher
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
| | - Wenxing Liang
- The Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
22
|
Abstract
Repetitive Extragenic Palindromic (REP) sequences are highly conserved, structured, 35- to 40-nt elements located at ∼500 positions around the Escherichia coli chromosome. They are found in intergenic regions and are transcribed together with their upstream genes. Although their stable stem-loop structures protect messages against exoribonuclease digestion, their primary function has remained unknown. Recently, we found that about half of all REP sequences have the potential to stall ribosomes immediately upstream of the termination codon, leading to endonucleolytic cleavage of the mRNA, and induction of the trans-translation process. As a consequence, the mRNA and almost completed protein are degraded, and protein production from the affected gene is down-regulated. The process is critically dependent on the location of the REP element, with an effect only if it is within 15 nt of the termination codon. Using nrdAB as a model, we found that its down-regulation is affected by RNA helicases. Elimination of 6 helicases lowered NrdA production further, whereas overexpression of any RNA helicase partially reversed the downregulation. UV stress completely reversed down-regulation of NrdA production. Analysis of genes containing a REP sequence within 15 nt of the termination codon revealed that most, if not all, are up-regulated by environmental stress, as are RNA helicases. Based on these findings, we propose that REP-dependent downregulation serves as a mechanism to allow a rapid response to environmental stresses whereby RNA helicases partially open the REP elements enabling ribosomes to complete translation immediately increasing protein production from the affected genes.
Collapse
Affiliation(s)
- Wenxing Liang
- a The Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Agronomy and Plant Protection, Qingdao Agricultural University , Qingdao , China
| | - Murray P Deutscher
- b Department of Biochemistry and Molecular Biology , Miller School of Medicine, University of Miami , Miami , Florida , USA
| |
Collapse
|
23
|
Liang W, Rudd KE, Deutscher MP. A role for REP sequences in regulating translation. Mol Cell 2015; 58:431-9. [PMID: 25891074 DOI: 10.1016/j.molcel.2015.03.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/21/2015] [Accepted: 03/12/2015] [Indexed: 01/07/2023]
Abstract
Repetitive extragenic palindromic (REP) sequences are highly structured elements found downstream of ∼500 genes in Escherichia coli that result in extensive stem-loop structures in their mRNAs. However, their physiological role has remained elusive. Here, we show that REP sequences can downregulate translation, but only if they are within 15 nt of a termination codon; a spacing of 16 nt has no effect, suggesting that the REP element acts to stall ribosome movement. Ribosome stalling leads to cleavage of the mRNA and induction of the trans-translation process. Using nrdAB as a model, we find that its regulation can be partially reversed by overexpression of RNA helicases and can be fully overcome upon UV stress, emphasizing the importance of this regulatory process. Since 50% of REP-associated genes have these elements within the critical 15 nt, these findings identify a regulatory mechanism with the potential to affect translation from a large number of genes.
Collapse
Affiliation(s)
- Wenxing Liang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA; The Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao 266109, China
| | - Kenneth E Rudd
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
| | - Murray P Deutscher
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA.
| |
Collapse
|
24
|
Deutscher MP. How bacterial cells keep ribonucleases under control. FEMS Microbiol Rev 2015; 39:350-61. [PMID: 25878039 DOI: 10.1093/femsre/fuv012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2015] [Indexed: 11/13/2022] Open
Abstract
Ribonucleases (RNases) play an essential role in essentially every aspect of RNA metabolism, but they also can be destructive enzymes that need to be regulated to avoid unwanted degradation of RNA molecules. As a consequence, cells have evolved multiple strategies to protect RNAs against RNase action. They also utilize a variety of mechanisms to regulate the RNases themselves. These include post-transcriptional regulation, post-translational modification, trans-acting inhibitors, cellular localization, as well as others that are less well studied. In this review, I will briefly discuss how RNA molecules are protected and then examine in detail our current understanding of the mechanisms known to regulate individual RNases.
Collapse
Affiliation(s)
- Murray P Deutscher
- Biochemistry & Molecular Biology, University of Miami, Miami, FL 33136-6129, USA
| |
Collapse
|
25
|
Competition between Decapping Complex Formation and Ubiquitin-Mediated Proteasomal Degradation Controls Human Dcp2 Decapping Activity. Mol Cell Biol 2015; 35:2144-53. [PMID: 25870104 DOI: 10.1128/mcb.01517-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 04/02/2015] [Indexed: 12/28/2022] Open
Abstract
mRNA decapping is a central step in eukaryotic mRNA decay that simultaneously shuts down translation initiation and activates mRNA degradation. A major complex responsible for decapping consists of the decapping enzyme Dcp2 in association with decapping enhancers. An important question is how the activity and accumulation of Dcp2 are regulated at the cellular level to ensure the specificity and fidelity of the Dcp2 decapping complex. Here, we show that human Dcp2 levels and activity are controlled by a competition between decapping complex assembly and Dcp2 degradation. This is mediated by a regulatory domain in the Dcp2 C terminus, which, on the one hand, promotes Dcp2 activation via decapping complex formation mediated by the decapping enhancer Hedls and, on the other hand, targets Dcp2 for ubiquitin-mediated proteasomal degradation in the absence of Hedls association. This competition between Dcp2 activation and degradation restricts the accumulation and activity of uncomplexed Dcp2, which may be important for preventing uncontrolled decapping or for regulating Dcp2 levels and activity according to cellular needs.
Collapse
|
26
|
Next generation sequencing analysis reveals that the ribonucleases RNase II, RNase R and PNPase affect bacterial motility and biofilm formation in E. coli. BMC Genomics 2015; 16:72. [PMID: 25757888 PMCID: PMC4335698 DOI: 10.1186/s12864-015-1237-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 01/12/2015] [Indexed: 11/10/2022] Open
Abstract
Background The RNA steady-state levels in the cell are a balance between synthesis and degradation rates. Although transcription is important, RNA processing and turnover are also key factors in the regulation of gene expression. In Escherichia coli there are three main exoribonucleases (RNase II, RNase R and PNPase) involved in RNA degradation. Although there are many studies about these exoribonucleases not much is known about their global effect in the transcriptome. Results In order to study the effects of the exoribonucleases on the transcriptome, we sequenced the total RNA (RNA-Seq) from wild-type cells and from mutants for each of the exoribonucleases (∆rnb, ∆rnr and ∆pnp). We compared each of the mutant transcriptome with the wild-type to determine the global effects of the deletion of each exoribonucleases in exponential phase. We determined that the deletion of RNase II significantly affected 187 transcripts, while deletion of RNase R affects 202 transcripts and deletion of PNPase affected 226 transcripts. Surprisingly, many of the transcripts are actually down-regulated in the exoribonuclease mutants when compared to the wild-type control. The results obtained from the transcriptomic analysis pointed to the fact that these enzymes were changing the expression of genes related with flagellum assembly, motility and biofilm formation. The three exoribonucleases affected some stable RNAs, but PNPase was the main exoribonuclease affecting this class of RNAs. We confirmed by qPCR some fold-change values obtained from the RNA-Seq data, we also observed that all the exoribonuclease mutants were significantly less motile than the wild-type cells. Additionally, RNase II and RNase R mutants were shown to produce more biofilm than the wild-type control while the PNPase mutant did not form biofilms. Conclusions In this work we demonstrate how deep sequencing can be used to discover new and relevant functions of the exoribonucleases. We were able to obtain valuable information about the transcripts affected by each of the exoribonucleases and compare the roles of the three enzymes. Our results show that the three exoribonucleases affect cell motility and biofilm formation that are two very important factors for cell survival, especially for pathogenic cells. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1237-6) contains supplementary material, which is available to authorized users.
Collapse
|
27
|
Kehrein K, Schilling R, Möller-Hergt BV, Wurm CA, Jakobs S, Lamkemeyer T, Langer T, Ott M. Organization of Mitochondrial Gene Expression in Two Distinct Ribosome-Containing Assemblies. Cell Rep 2015; 10:843-853. [PMID: 25683707 DOI: 10.1016/j.celrep.2015.01.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/17/2014] [Accepted: 12/31/2014] [Indexed: 12/27/2022] Open
Abstract
Mitochondria contain their own genetic system that provides subunits of the complexes driving oxidative phosphorylation. A quarter of the mitochondrial proteome participates in gene expression, but how all these factors are orchestrated and spatially organized is currently unknown. Here, we established a method to purify and analyze native and intact complexes of mitochondrial ribosomes. Quantitative mass spectrometry revealed extensive interactions of ribosomes with factors involved in all the steps of posttranscriptional gene expression. These interactions result in large expressosome-like assemblies that we termed mitochondrial organization of gene expression (MIOREX) complexes. Superresolution microscopy revealed that most MIOREX complexes are evenly distributed throughout the mitochondrial network, whereas a subset is present as nucleoid-MIOREX complexes that unite the whole spectrum of organellar gene expression. Our work therefore provides a conceptual framework for the spatial organization of mitochondrial protein synthesis that likely developed to facilitate gene expression in the organelle.
Collapse
Affiliation(s)
- Kirsten Kehrein
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Ramon Schilling
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Braulio Vargas Möller-Hergt
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Christian A Wurm
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37070 Göttingen, Germany
| | - Stefan Jakobs
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37070 Göttingen, Germany; Department of Neurology, University of Göttingen Medical School, 37073 Göttingen, Germany; Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37073 Göttingen, Germany
| | - Tobias Lamkemeyer
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Thomas Langer
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, 50931 Cologne, Germany; Max-Planck-Institute for Biology of Aging, 50931 Cologne, Germany
| | - Martin Ott
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden.
| |
Collapse
|
28
|
Domingues S, Moreira RN, Andrade JM, Dos Santos RF, Bárria C, Viegas SC, Arraiano CM. The role of RNase R in trans-translation and ribosomal quality control. Biochimie 2014; 114:113-8. [PMID: 25542646 DOI: 10.1016/j.biochi.2014.12.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/18/2014] [Indexed: 01/11/2023]
Abstract
Gene expression not only depends on the rate of transcription but is also largely controlled at the post-transcriptional level. Translation rate and mRNA decay greatly influence the final protein levels. Surveillance mechanisms are essential to ensure the quality of the RNA and proteins produced. Trans-translation is one of the most important systems in the quality control of bacterial translation. This process guarantees the destruction of abnormal proteins and also leads to degradation of the respective defective RNAs through the action of Ribonuclease R (RNase R). This exoribonuclease hydrolyzes RNAs starting from their 3' end. Besides its involvement in trans-translation, RNase R also participates in the quality control of rRNA molecules involved in ribosomal biogenesis. RNase R is thus emerging as a key factor in ensuring translation accuracy. This review focuses on issues related to the quality control of translation, with special emphasis on the role of RNase R.
Collapse
Affiliation(s)
- Susana Domingues
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ricardo N Moreira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - José M Andrade
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ricardo F Dos Santos
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Cátia Bárria
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Sandra C Viegas
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
29
|
Vercruysse M, Köhrer C, Davies BW, Arnold MFF, Mekalanos JJ, RajBhandary UL, Walker GC. The highly conserved bacterial RNase YbeY is essential in Vibrio cholerae, playing a critical role in virulence, stress regulation, and RNA processing. PLoS Pathog 2014; 10:e1004175. [PMID: 24901994 PMCID: PMC4047096 DOI: 10.1371/journal.ppat.1004175] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/24/2014] [Indexed: 11/18/2022] Open
Abstract
YbeY, a highly conserved protein, is an RNase in E. coli and plays key roles in both processing of the critical 3′ end of 16 S rRNA and in 70 S ribosome quality control under stress. These central roles account for YbeY's inclusion in the postulated minimal bacterial genome. However, YbeY is not essential in E. coli although loss of ybeY severely sensitizes it to multiple physiological stresses. Here, we show that YbeY is an essential endoribonuclease in Vibrio cholerae and is crucial for virulence, stress regulation, RNA processing and ribosome quality control, and is part of a core set of RNases essential in most representative pathogens. To understand its function, we analyzed the rRNA and ribosome profiles of a V. cholerae strain partially depleted for YbeY and other RNase mutants associated with 16 S rRNA processing; our results demonstrate that YbeY is also crucial for 16 S rRNA 3′ end maturation in V. cholerae and that its depletion impedes subunit assembly into 70 S ribosomes. YbeY's importance to V. cholerae pathogenesis was demonstrated by the complete loss of mice colonization and biofilm formation, reduced cholera toxin production, and altered expression levels of virulence-associated small RNAs of a V. cholerae strain partially depleted for YbeY. Notably, the ybeY genes of several distantly related pathogens can fully complement an E. coli ΔybeY strain under various stress conditions, demonstrating the high conservation of YbeY's activity in stress regulation. Taken together, this work provides the first comprehensive exploration of YbeY's physiological role in a human pathogen, showing its conserved function across species in essential cellular processes. Bacteria adapt and survive unfavorable environments by quickly changing their gene expression and physiology, for example as pathogens do during infection of host cells. Gene expression is often determined by RNA turnover, a balance between transcription and RNA decay carried out by multiple RNases. The recently identified RNase YbeY was shown in E. coli to participate in rRNA maturation and 70 S ribosome quality control, however YbeY's roles in other organisms and the extent of functional conservation is unknown. Here, we show that YbeY is an essential RNase in the pathogen Vibrio cholerae, critical for cell fitness and general stress tolerance. We demonstrate that YbeY is crucial for 16 S rRNA 3′ end maturation, assembly of functional 70 S ribosomes and ribosome quality control. Moreover, YbeY regulates virulence-associated small RNAs and its depletion leads to an overall reduction in pathogenesis, exemplified by significantly decreased biofilm formation, mouse colonization and cholera toxin production. We also show that YbeY belongs to a minimal core set of RNases essential in most representative pathogens. The multifaceted roles of YbeY in several essential cellular processes and its highly conserved function across bacterial species, suggest that YbeY could be an attractive new antimicrobial target.
Collapse
Affiliation(s)
- Maarten Vercruysse
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Caroline Köhrer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Bryan W. Davies
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Markus F. F. Arnold
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - John J. Mekalanos
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachussets, United States of America
| | - Uttam L. RajBhandary
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Graham C. Walker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
30
|
Matos RG, Bárria C, Moreira RN, Barahona S, Domingues S, Arraiano CM. The importance of proteins of the RNase II/RNB-family in pathogenic bacteria. Front Cell Infect Microbiol 2014; 4:68. [PMID: 24918089 PMCID: PMC4042491 DOI: 10.3389/fcimb.2014.00068] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/09/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rute G Matos
- Control of Gene Expression Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa Oeiras, Portugal
| | - Cátia Bárria
- Control of Gene Expression Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa Oeiras, Portugal
| | - Ricardo N Moreira
- Control of Gene Expression Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa Oeiras, Portugal
| | - Susana Barahona
- Control of Gene Expression Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa Oeiras, Portugal
| | - Susana Domingues
- Control of Gene Expression Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa Oeiras, Portugal
| | - Cecília M Arraiano
- Control of Gene Expression Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa Oeiras, Portugal
| |
Collapse
|
31
|
Suzuki H, Tsukahara T. A view of pre-mRNA splicing from RNase R resistant RNAs. Int J Mol Sci 2014; 15:9331-42. [PMID: 24865493 PMCID: PMC4100097 DOI: 10.3390/ijms15069331] [Citation(s) in RCA: 338] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/08/2014] [Accepted: 05/16/2014] [Indexed: 01/05/2023] Open
Abstract
During pre-mRNA splicing, exons in the primary transcript are precisely connected to generate an mRNA. Intron lariat RNAs are formed as by-products of this process. In addition, some exonic circular RNAs (circRNAs) may also result from exon skipping as by-products. Lariat RNAs and circRNAs are both RNase R resistant RNAs. RNase R is a strong 3' to 5' exoribonuclease, which efficiently degrades linear RNAs, such as mRNAs and rRNAs; therefore, the circular parts of lariat RNAs and the circRNAs can be segregated from eukaryotic total RNAs by their RNase R resistance. Thus, RNase R resistant RNAs could provide unexplored splicing information not available from mRNAs. Analyses of these RNAs identified repeating splicing phenomena, such as re-splicing of mature mRNAs and nested splicing. Moreover, circRNA might function as microRNA sponges. There is an enormous variety of endogenous circRNAs, which are generally synthesized in cells and tissues.
Collapse
Affiliation(s)
- Hitoshi Suzuki
- Center for Nano Materials and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| | - Toshifumi Tsukahara
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| |
Collapse
|
32
|
Supramolecular membrane-associated assemblies of RNA metabolic proteins in Escherichia coli. Biochem J 2014; 458:e1-3. [PMID: 24438330 DOI: 10.1042/bj20131676] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Controlled RNA degradation is known to be achieved via the exosome in Eukarya and Archaea, and the RNA degradosome in Bacteria. In this issue of the Biochemical Journal, Taghbalout et al. demonstrate in Escherichia coli that many additional proteins of the RNA degradation and processing network co-localize with the RNA degradosome in supramolecular structures. The latter appear as extended cytoplasmic membrane-associated assemblies that coil around the periphery of the cell when visualized by immunofluorescence microscopy. The co-localizing ensemble of RNA metabolic proteins includes RNaseE, PNPase (polynucleotide phosphorylase), the DEAD-box RNA helicase RhlB, the oligo-RNase Orn, RNases II and III, PAP I [poly(A) polymerase I], RppH (RNA pyrophosphohydrolase), proteins RraA and RraB that are negative regulators of RNaseE, and the RNA chaperone Hfq. Not all cellular RNA-binding proteins associate with these structures, as shown for EF-Tu (elongation factor Tu) and Rho helicase. Formation of the supramolecular architecture was shown to not be dependent on two other known cytoskeletal systems or on RNA de novo synthesis or nucleoid positioning within the cell. This novel dimension of compartmentalization in bacteria that lack classic cell compartments opens new perspectives on how RNA homoeostasis is achieved, organized and regulated in bacteria such as E. coli.
Collapse
|
33
|
Giudice E, Macé K, Gillet R. Trans-translation exposed: understanding the structures and functions of tmRNA-SmpB. Front Microbiol 2014; 5:113. [PMID: 24711807 PMCID: PMC3968760 DOI: 10.3389/fmicb.2014.00113] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/05/2014] [Indexed: 11/13/2022] Open
Abstract
Ribosome stalling is a serious issue for cell survival. In bacteria, the primary rescue system is trans-translation, performed by tmRNA and its protein partner small protein B (SmpB). Since its discovery almost 20 years ago, biochemical, genetic, and structural studies have paved the way to a better understanding of how this sophisticated process takes place at the cellular and molecular levels. Here we describe the molecular details of trans-translation, with special mention of recent cryo-electron microscopy and crystal structures that have helped explain how the huge tmRNA-SmpB complex targets and delivers stalled ribosomes without interfering with canonical translation.
Collapse
Affiliation(s)
- Emmanuel Giudice
- Translation and Folding Team, Université de Rennes 1, CNRS UMR 6290 IGDR Rennes, France
| | - Kevin Macé
- Translation and Folding Team, Université de Rennes 1, CNRS UMR 6290 IGDR Rennes, France
| | - Reynald Gillet
- Translation and Folding Team, Université de Rennes 1, CNRS UMR 6290 IGDR Rennes, France ; Institut Universitaire de France France
| |
Collapse
|
34
|
Malecki M, Bárria C, Arraiano CM. Characterization of the RNase R association with ribosomes. BMC Microbiol 2014; 14:34. [PMID: 24517631 PMCID: PMC3942186 DOI: 10.1186/1471-2180-14-34] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 02/03/2014] [Indexed: 11/10/2022] Open
Abstract
Background In this study we employed the TAP tag purification method coupled with mass spectrometry analysis to identify proteins that co-purify with Escherichia coli RNase R during exponential growth and after temperature downshift. Results Our initial results suggested that RNase R can interact with bacterial ribosomes. We subsequently confirmed this result using sucrose gradient ribosome profiling joined with western blot analysis. We found that RNase R co-migrates with the single 30S ribosomal subunits. Independent data involving RNase R in the rRNA quality control process allowed us to hypothesize that the RNase R connection with ribosomes has an important physiological role. Conclusions This study leads us to conclude that RNase R can interact with ribosomal proteins and that this interaction may be a result of this enzyme involvement in the ribosome quality control.
Collapse
|