1
|
Miyagi M, Nakazawa T. Significance of Histidine Hydrogen-Deuterium Exchange Mass Spectrometry in Protein Structural Biology. BIOLOGY 2024; 13:37. [PMID: 38248468 PMCID: PMC10813008 DOI: 10.3390/biology13010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/23/2024]
Abstract
Histidine residues play crucial roles in shaping the function and structure of proteins due to their unique ability to act as both acids and bases. In other words, they can serve as proton donors and acceptors at physiological pH. This exceptional property is attributed to the side-chain imidazole ring of histidine residues. Consequently, determining the acid-base dissociation constant (Ka) of histidine imidazole rings in proteins often yields valuable insights into protein functions. Significant efforts have been dedicated to measuring the pKa values of histidine residues in various proteins, with nuclear magnetic resonance (NMR) spectroscopy being the most commonly used technique. However, NMR-based methods encounter challenges in assigning signals to individual imidazole rings and require a substantial amount of proteins. To address these issues associated with NMR-based approaches, a mass-spectrometry-based method known as histidine hydrogen-deuterium exchange mass spectrometry (His-HDX-MS) has been developed. This technique not only determines the pKa values of histidine imidazole groups but also quantifies their solvent accessibility. His-HDX-MS has proven effective across diverse proteins, showcasing its utility. This review aims to clarify the fundamental principles of His-HDX-MS, detail the experimental workflow, explain data analysis procedures and provide guidance for interpreting the obtained results.
Collapse
Affiliation(s)
- Masaru Miyagi
- Department of Pharmacology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4988, USA
| | - Takashi Nakazawa
- Department of Chemistry, Nara Women’s University, Nara 630-8506, Japan
| |
Collapse
|
2
|
Šulskis D, Šneiderienė G, Žiaunys M, Smirnovas V. The seeding barrier between human and Syrian hamster prion protein amyloid fibrils is determined by β2-α2 loop sequence elements. Int J Biol Macromol 2023; 238:124038. [PMID: 36921824 DOI: 10.1016/j.ijbiomac.2023.124038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
Transmissive spongiform encephalopathies (TSE) are a group of neurodegenerative diseases caused by infectious protein particles, known as prions. Prions are formed from cellular prion proteins (PrP) and can be transmitted between different mammalian species. Subsequently, the host's PrPs are then converted to prions, followed by the onset of TSE. Interspecies prion infectivity is governed by the amino acid sequence differences of PrPs and prions' inability to replicate in a host is termed a species barrier. Here, we investigated the amino acid sequence determinants of species barrier between recombinant human (rHuPrP) and hamster (rShaPrP) prion protein amyloid fibrils. We discovered that a unidirectional species barrier between rShaPrP and rHuPrP amyloid fibrils exists. This barrier stems from the difference of amino acid sequences in the conserved β2-α2 loop region. Our results revealed that individual amino acids in the β2-α2 loop region are critical for overcoming the barrier between human and hamster prion protein amyloid fibrils in vitro. Furthermore, the barrier was only possible to observe through aggregation kinetics, as the secondary structure rHuPrP fibrils was not affected by the cross-seeding. Overall, we demonstrated the mechanistic pathway behind this interspecies barrier phenomenon, which increases our understanding of prion-related disease development.
Collapse
Affiliation(s)
- Darius Šulskis
- Amyloid Research Sector, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania.
| | - Greta Šneiderienė
- Amyloid Research Sector, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Mantas Žiaunys
- Amyloid Research Sector, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Vytautas Smirnovas
- Amyloid Research Sector, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
3
|
Mahapatra S, Sarbahi A, Madhu P, Swasthi HM, Sharma A, Singh P, Mukhopadhyay S. Sub-stoichiometric Hsp104 regulates the genesis and persistence of self-replicable amyloid seeds of Sup35 prion domain. J Biol Chem 2022; 298:102143. [PMID: 35714774 PMCID: PMC9304785 DOI: 10.1016/j.jbc.2022.102143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 11/21/2022] Open
Abstract
Prion-like self-perpetuating conformational conversion of proteins is involved in both transmissible neurodegenerative diseases in mammals and non-Mendelian inheritance in yeast. The transmissibility of amyloid-like aggregates is dependent on the stoichiometry of chaperones such as heat shock proteins (Hsps), including disaggregases. To provide the mechanistic underpinnings of the formation and persistence of prefibrillar amyloid seeds, we investigated the role of substoichiometric Hsp104 on the in vitro amyloid aggregation of the prion domain (NM-domain) of Saccharomyces cerevisiae Sup35. At low substoichiometric concentrations, we show Hsp104 exhibits a dual role: it considerably accelerates the formation of prefibrillar species by shortening the lag phase but also prolongs their persistence by introducing unusual kinetic halts and delaying their conversion into mature amyloid fibers. Additionally, Hsp104-modulated amyloid species displayed a better seeding capability compared to NM-only amyloids. Using biochemical and biophysical tools coupled with site-specific dynamic readouts, we characterized the distinct structural and dynamical signatures of these amyloids. We reveal that Hsp104-remodeled amyloidogenic species are compositionally diverse in prefibrillar aggregates and are packed in a more ordered fashion compared to NM-only amyloids. Finally, we show these Hsp104-remodeled, conformationally distinct NM aggregates display an enhanced autocatalytic self-templating ability that might be crucial for phenotypic outcomes. Taken together, our results demonstrate that substoichiometric Hsp104 promotes compositional diversity and conformational modulations during amyloid formation, yielding effective prefibrillar seeds that are capable of driving prion-like Sup35 propagation. Our findings underscore the key functional and pathological roles of substoichiometric chaperones in prion-like propagation.
Collapse
Affiliation(s)
- Sayanta Mahapatra
- Centre for Protein Science, Design and Engineering; Department of Biological Sciences
| | - Anusha Sarbahi
- Centre for Protein Science, Design and Engineering; Department of Biological Sciences
| | - Priyanka Madhu
- Centre for Protein Science, Design and Engineering; Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
| | - Hema M Swasthi
- Centre for Protein Science, Design and Engineering; Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
| | - Abhishek Sharma
- CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Priyanka Singh
- CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Samrat Mukhopadhyay
- Centre for Protein Science, Design and Engineering; Department of Biological Sciences; Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India.
| |
Collapse
|
4
|
Ziaunys M, Sakalauskas A, Mikalauskaite K, Smirnovas V. Polymorphism of Alpha-Synuclein Amyloid Fibrils Depends on Ionic Strength and Protein Concentration. Int J Mol Sci 2021; 22:12382. [PMID: 34830264 PMCID: PMC8621411 DOI: 10.3390/ijms222212382] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/20/2022] Open
Abstract
Protein aggregate formation is linked with multiple amyloidoses, including Alzheimer's and Parkinson's diseases. Currently, the understanding of such fibrillar structure formation and propagation is still not sufficient, the outcome of which is a lack of potent, anti-amyloid drugs. The environmental conditions used during in vitro protein aggregation assays play an important role in determining both the aggregation kinetic parameters, as well as resulting fibril structure. In the case of alpha-synuclein, ionic strength has been shown as a crucial factor in its amyloid aggregation. In this work, we examine a large sample size of alpha-synuclein aggregation reactions under thirty different ionic strength and protein concentration combinations and determine the resulting fibril structural variations using their dye-binding properties, secondary structure and morphology. We show that both ionic strength and protein concentration determine the structural variability of alpha-synuclein amyloid fibrils and that sometimes even identical conditions can result in up to four distinct types of aggregates.
Collapse
Affiliation(s)
- Mantas Ziaunys
- Institute of Biotechnology, Life Sciences Centre, Vilnius University, 10257 Vilnius, Lithuania; (A.S.); (K.M.); (V.S.)
| | | | | | | |
Collapse
|
5
|
Wang LQ, Zhao K, Yuan HY, Li XN, Dang HB, Ma Y, Wang Q, Wang C, Sun Y, Chen J, Li D, Zhang D, Yin P, Liu C, Liang Y. Genetic prion disease-related mutation E196K displays a novel amyloid fibril structure revealed by cryo-EM. SCIENCE ADVANCES 2021; 7:eabg9676. [PMID: 34516876 PMCID: PMC8442898 DOI: 10.1126/sciadv.abg9676] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Prion diseases are caused by the conformational conversion of prion protein (PrP). Forty-two different mutations were identified in human PrP, leading to genetic prion diseases with distinct clinical syndromes. Here, we report the cryo–electron microscopy structure of an amyloid fibril formed by full-length human PrP with E196K mutation, a genetic Creutzfeldt-Jakob disease–related mutation. This mutation disrupts key interactions in the wild-type PrP fibril, forming an amyloid fibril with a conformation distinct from the wild-type PrP fibril and hamster brain–derived prion fibril. The E196K fibril consists of two protofibrils. Each subunit forms five β strands stabilized by a disulfide bond and an unusual hydrophilic cavity stabilized by a salt bridge. Four pairs of amino acids from opposing subunits form four salt bridges to stabilize the zigzag interface of the two protofibrils. Our results provide structural evidences of the diverse prion strains and highlight the importance of familial mutations in inducing different strains.
Collapse
Affiliation(s)
- Li-Qiang Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Kun Zhao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han-Ye Yuan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiang-Ning Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hai-Bin Dang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yeyang Ma
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Chen Wang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yunpeng Sun
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Dan Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yi Liang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
6
|
Fridmanis J, Toleikis Z, Sneideris T, Ziaunys M, Bobrovs R, Smirnovas V, Jaudzems K. Aggregation Condition-Structure Relationship of Mouse Prion Protein Fibrils. Int J Mol Sci 2021; 22:9635. [PMID: 34502545 PMCID: PMC8431800 DOI: 10.3390/ijms22179635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
Prion diseases are associated with conformational conversion of cellular prion protein into a misfolded pathogenic form, which resembles many properties of amyloid fibrils. The same prion protein sequence can misfold into different conformations, which are responsible for variations in prion disease phenotypes (prion strains). In this work, we use atomic force microscopy, FTIR spectroscopy and magic-angle spinning NMR to devise structural models of mouse prion protein fibrils prepared in three different denaturing conditions. We find that the fibril core region as well as the structure of its N- and C-terminal parts is almost identical between the three fibrils. In contrast, the central part differs in length of β-strands and the arrangement of charged residues. We propose that the denaturant ionic strength plays a major role in determining the structure of fibrils obtained in a particular condition by stabilizing fibril core interior-facing glutamic acid residues.
Collapse
Affiliation(s)
- Jēkabs Fridmanis
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia; (J.F.); (Z.T.); (R.B.)
| | - Zigmantas Toleikis
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia; (J.F.); (Z.T.); (R.B.)
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania; (T.S.); (M.Z.); (V.S.)
| | - Tomas Sneideris
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania; (T.S.); (M.Z.); (V.S.)
| | - Mantas Ziaunys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania; (T.S.); (M.Z.); (V.S.)
| | - Raitis Bobrovs
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia; (J.F.); (Z.T.); (R.B.)
| | - Vytautas Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania; (T.S.); (M.Z.); (V.S.)
| | - Kristaps Jaudzems
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia; (J.F.); (Z.T.); (R.B.)
| |
Collapse
|
7
|
Serpa JJ, Popov KI, Petrotchenko EV, Dokholyan NV, Borchers CH. Structure of prion β-oligomers as determined by short-distance crosslinking constraint-guided discrete molecular dynamics simulations. Proteomics 2021; 21:e2000298. [PMID: 34482645 PMCID: PMC9285417 DOI: 10.1002/pmic.202000298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/10/2021] [Accepted: 08/27/2021] [Indexed: 11/08/2022]
Abstract
The conversion of the native monomeric cellular prion protein (PrPC ) into an aggregated pathological β-oligomeric form (PrPβ ) and an infectious form (PrPSc ) is the central element in the development of prion diseases. The structure of the aggregates and the molecular mechanisms of the conformational changes involved in the conversion are still unknown. We applied mass spectrometry combined with chemical crosslinking, hydrogen/deuterium exchange, limited proteolysis, and surface modification for the differential characterization of the native and the urea+acid-converted prion β-oligomer structures to obtain insights into the mechanisms of conversion and aggregation. For the determination of the structure of the monomer and the dimer unit of the β-oligomer, we applied a recently-developed approach for de novo protein structure determination which is based on the incorporation of zero-length and short-distance crosslinking data as intra- and inter-protein constraints in discrete molecular dynamics simulations (CL-DMD). Based on all of the structural-proteomics experimental data and the computationally predicted structures of the monomer units, we propose the potential mode of assembly of the β-oligomer. The proposed β-oligomer assembly provides a clue on the β-sheet nucleation site, and how template-based conversion of the native prion molecule occurs, growth of the prion aggregates, and maturation into fibrils may occur.
Collapse
Affiliation(s)
- Jason J Serpa
- University of Victoria -Genome British Columbia Proteomics Centre, Victoria, British Columbia, Canada
| | - Konstantin I Popov
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Evgeniy V Petrotchenko
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada.,Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Nikolay V Dokholyan
- Department of Pharmacology, Department of Biochemistry & Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Christoph H Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada.,Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow, Russia.,Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Temperature-Dependent Structural Variability of Prion Protein Amyloid Fibrils. Int J Mol Sci 2021; 22:ijms22105075. [PMID: 34064883 PMCID: PMC8151363 DOI: 10.3390/ijms22105075] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 12/20/2022] Open
Abstract
Prion protein aggregation into amyloid fibrils is associated with the onset and progression of prion diseases—a group of neurodegenerative amyloidoses. The process of such aggregate formation is still not fully understood, especially regarding their polymorphism, an event where the same type of protein forms multiple, conformationally and morphologically distinct structures. Considering that such structural variations can greatly complicate the search for potential antiamyloid compounds, either by having specific propagation properties or stability, it is important to better understand this aggregation event. We have recently reported the ability of prion protein fibrils to obtain at least two distinct conformations under identical conditions, which raised the question if this occurrence is tied to only certain environmental conditions. In this work, we examined a large sample size of prion protein aggregation reactions under a range of temperatures and analyzed the resulting fibril dye-binding, secondary structure and morphological properties. We show that all temperature conditions lead to the formation of more than one fibril type and that this variability may depend on the state of the initial prion protein molecules.
Collapse
|
9
|
Rahimi Araghi L, Dee DR. Cross-Species and Cross-Polymorph Seeding of Lysozyme Amyloid Reveals a Dominant Polymorph. Front Mol Biosci 2020; 7:206. [PMID: 32923456 PMCID: PMC7456942 DOI: 10.3389/fmolb.2020.00206] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
The ability to self-propagate is one of the most intriguing characteristics of amyloid fibrils, and is a feature of great interest both to stopping unwanted pathological amyloid, and for engineering functional amyloid as a useful nanomaterial. The sequence and structural tolerances for amyloid seeding are not well understood, particularly concerning the propagation of distinct fibril morphologies (polymorphs) across species. This study examined the seeding and cross-seeding reactions between two unique fibril polymorphs, one long and flexible (formed at pH 2) and the other short and rigid (formed at pH 6.3), of human lysozyme and hen egg-white lysozyme. Both polymorphs could cross-seed aggregation across species, but this reaction was markedly reduced under physiological conditions. For both species, the pH 6.3 fibril polymorph was dominant, seeding fibril growth with a faster growth rate constant at pH 2 than the pH 2 polymorph. Based on fibrillation kinetics and fibril morphology, we found that the pH 2 polymorph was not able to faithfully replicate itself at pH 6.3. These results show that two distinct amyloid polymorphs are both capable of heterologous seeding across two species (human and hen) of lysozyme, but that the pH 6.3 polymorph is favored, regardless of the species, likely due to a lower energy barrier, or faster configurational diffusion, to accessing this particular misfolded form. These findings contribute to our better understanding of amyloid strain propagation across species barriers.
Collapse
Affiliation(s)
- Lida Rahimi Araghi
- Department of Food Science and Technology, University of Georgia, Athens, GA, United States
| | - Derek R Dee
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Ziaunys M, Sneideris T, Smirnovas V. Formation of distinct prion protein amyloid fibrils under identical experimental conditions. Sci Rep 2020; 10:4572. [PMID: 32165692 PMCID: PMC7067779 DOI: 10.1038/s41598-020-61663-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/28/2020] [Indexed: 01/01/2023] Open
Abstract
Protein aggregation into amyloid fibrils is linked to multiple neurodegenerative disorders, such as Alzheimer’s, Parkinson’s or Creutzfeldt-Jakob disease. A better understanding of the way these aggregates form is vital for the development of drugs. A large detriment to amyloid research is the ability of amyloidogenic proteins to spontaneously aggregate into multiple structurally distinct fibrils (strains) with different stability and seeding properties. In this work we show that prion proteins are capable of forming more than one type of fibril under the exact same conditions by assessing their Thioflavin T (ThT) binding ability, morphology, secondary structure, stability and seeding potential.
Collapse
Affiliation(s)
- Mantas Ziaunys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Tomas Sneideris
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Vytautas Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania.
| |
Collapse
|
11
|
Babinchak WM, Surewicz WK. Liquid-Liquid Phase Separation and Its Mechanistic Role in Pathological Protein Aggregation. J Mol Biol 2020; 432:1910-1925. [PMID: 32169484 DOI: 10.1016/j.jmb.2020.03.004] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/14/2022]
Abstract
Liquid-liquid phase separation (LLPS) of proteins underlies the formation of membrane-less organelles. While it has been recognized for some time that these organelles are of key importance for normal cellular functions, a growing number of recent observations indicate that LLPS may also play a role in disease. In particular, numerous proteins that form toxic aggregates in neurodegenerative diseases, such as amyotrophic lateral sclerosis, frontotemporal lobar degeneration, and Alzheimer's disease, were found to be highly prone to phase separation, suggesting that there might be a strong link between LLPS and the pathogenic process in these disorders. This review aims to assess the molecular basis of this link through exploration of the intermolecular interactions that underlie LLPS and aggregation and the underlying mechanisms facilitating maturation of liquid droplets into more stable assemblies, including so-called labile fibrils, hydrogels, and pathological amyloids. Recent insights into the structural basis of labile fibrils and potential mechanisms by which these relatively unstable structures could transition into more stable pathogenic amyloids are also discussed. Finally, this review explores how the environment of liquid droplets could modulate protein aggregation by altering kinetics of protein self-association, affecting folding of protein monomers, or changing aggregation pathways.
Collapse
Affiliation(s)
- W Michael Babinchak
- Department of Physiology & Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Witold K Surewicz
- Department of Physiology & Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
12
|
Sakalauskas A, Ziaunys M, Smirnovas V. Concentration-dependent polymorphism of insulin amyloid fibrils. PeerJ 2019; 7:e8208. [PMID: 31844588 PMCID: PMC6910113 DOI: 10.7717/peerj.8208] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/13/2019] [Indexed: 01/28/2023] Open
Abstract
Protein aggregation into highly structured fibrils has long been associated with several neurodegenerative disorders, such as Alzheimer's or Parkinson's disease. Polymorphism of amyloid fibrils increases the complexity of disease mechanisms and may be one of the reasons for the slow progress in drug research. Here we report protein concentration as another factor leading to polymorphism of insulin amyloid fibrils. Moreover, our data suggests that insulin amyloid conformation can self-replicate only via elongation, while seed-induced nucleation will lead to environment-defined conformation of fibrils. As similar observations were already described for a couple of other amyloid proteins, we suggest it to be a generic mechanism for self-replication of different amyloid fibril conformations.
Collapse
Affiliation(s)
- Andrius Sakalauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Mantas Ziaunys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Vytautas Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
13
|
Ziaunys M, Sneideris T, Smirnovas V. Exploring the potential of deep-blue autofluorescence for monitoring amyloid fibril formation and dissociation. PeerJ 2019; 7:e7554. [PMID: 31440437 PMCID: PMC6699583 DOI: 10.7717/peerj.7554] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/25/2019] [Indexed: 02/03/2023] Open
Abstract
Protein aggregation into amyloid fibrils has been linked to multiple neurodegenerative disorders. Determining the kinetics of fibril formation, as well as their structural stability are important for the mechanistic understanding of amyloid aggregation. Tracking both fibril association and dissociation is usually performed by measuring light scattering of the solution or fluorescence of amyloid specific dyes, such as thioflavin-T. A possible addition to these methods is the recently discovered deep-blue autofluorescence (dbAF), which is linked to amyloid formation. In this work we explore the potential of this phenomenon to monitor amyloid fibril formation and dissociation, as well as show its possible relation to fibril size rather than amyloid structure.
Collapse
Affiliation(s)
- Mantas Ziaunys
- Vilnius University, Life Sciences Center, Institute of Biotechnology, Vilnius, Lithuania
| | - Tomas Sneideris
- Vilnius University, Life Sciences Center, Institute of Biotechnology, Vilnius, Lithuania
| | - Vytautas Smirnovas
- Vilnius University, Life Sciences Center, Institute of Biotechnology, Vilnius, Lithuania
| |
Collapse
|
14
|
Sheveleva NN, Markelov DA, Vovk MA, Tarasenko II, Mikhailova ME, Ilyash MY, Neelov IM, Lahderanta E. Stable Deuterium Labeling of Histidine-Rich Lysine-Based Dendrimers. Molecules 2019; 24:E2481. [PMID: 31284551 PMCID: PMC6651089 DOI: 10.3390/molecules24132481] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 01/02/2023] Open
Abstract
Peptide dendrimers, due to their biocompatibility and low toxicity, are highly promising candidates as nanocarriers for drugs and genes. The development of this kind of delivery system requires reliable monitoring of their metabolic and biological pathways. In this respect, hydrogen isotope labeling has tremendous importance, being a safe tool for detection of the labeled nanocarriers. In this work, we have synthesized new histidine-rich lysine-based dendrimers (Lys-2His dendrimer) with two linear histidine (His) residues in every inner segment. The presence of His residues has enabled us to perform controlled deuteration of Lys-2His dendrimers. The high deuteration degree (around 70%) does not practically change after redissolving the samples in H2O and heating them at 40 °C, which indicates the isotopic label stability.
Collapse
Affiliation(s)
- Nadezhda N Sheveleva
- Saint Petersburg State University, 7/9 Universitetskaya nab, 199034 Saint Petersburg, Russia
| | - Denis A Markelov
- Saint Petersburg State University, 7/9 Universitetskaya nab, 199034 Saint Petersburg, Russia.
| | - Mikhail A Vovk
- Saint Petersburg State University, 7/9 Universitetskaya nab, 199034 Saint Petersburg, Russia
| | - Irina I Tarasenko
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi Prospect 31, V.O., 199004 Saint Petersburg, Russia
| | - Mariya E Mikhailova
- Saint Petersburg State University, 7/9 Universitetskaya nab, 199034 Saint Petersburg, Russia
| | - Maxim Yu Ilyash
- Saint Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 Saint Petersburg, Russia
| | - Igor M Neelov
- Saint Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 Saint Petersburg, Russia
| | - Erkki Lahderanta
- Department of Physics, LUT University, Box 20, 53851 Lappeenranta, Finland
| |
Collapse
|
15
|
Bondarev SA, Bondareva OV, Zhouravleva GA, Kajava AV. BetaSerpentine: a bioinformatics tool for reconstruction of amyloid structures. Bioinformatics 2018; 34:599-608. [PMID: 29444233 DOI: 10.1093/bioinformatics/btx629] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 10/03/2017] [Indexed: 11/12/2022] Open
Abstract
Motivation Numerous experimental studies have suggested that polypeptide chains of large amyloidogenic regions zig-zag in β-serpentine arrangements. These β-serpentines are stacked axially and form the superpleated β-structure. Despite this progress in the understanding of amyloid folds, the determination of their 3D structure at the atomic level is still a problem due to the polymorphism of these fibrils and incompleteness of experimental structural data. Today, the way to get insight into the atomic structure of amyloids is a combination of experimental studies with bioinformatics. Results We developed a computer program BetaSerpentine that reconstructs β-serpentine arrangements from individual β-arches predicted by ArchCandy program and ranks them in order of preference. It was shown that the BetaSerpentine program in combination with the experimental data can be used to gain insight into the detailed 3D structure of amyloids. It opens avenues to the structure-based interpretation and design of the experiments. Availability and implementation BetaSerpentine webserver can be accessed through website: http://bioinfo.montp.cnrs.fr/b-serpentine. Source code is available in git.hub repository (github.com/stanislavspbgu/BetaSerpentine). Contact stanislavspbgu@gmail.com or andrey.kajava@crbm.cnrs.fr. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Stanislav A Bondarev
- Laboratory of Amyloid Biology and Department of Genetics and Biotechnology, St. Petersburg State University, Saint Petersburg 199034, Russia
| | - Olga V Bondareva
- Laboratory of Molecular Systematics, Zoological Institute RAS, Saint Petersburg 199034, Russia
| | - Galina A Zhouravleva
- Laboratory of Amyloid Biology and Department of Genetics and Biotechnology, St. Petersburg State University, Saint Petersburg 199034, Russia
| | - Andrey V Kajava
- Structural Bioinformatics and Molecular Modeling, Centre de Recherche en Biologie Cellulaire de Montpellier, CNRS, Université Montpellier, Montpellier 34293, France.,Institut de Biologie Computationnelle, Montpellier 34095, France.,Bioengineering Department, University ITMO, Saint Petersburg, 197101, Russia
| |
Collapse
|
16
|
Establishment of Constraints on Amyloid Formation Imposed by Steric Exclusion of Globular Domains. J Mol Biol 2018; 430:3835-3846. [DOI: 10.1016/j.jmb.2018.05.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/15/2018] [Accepted: 05/27/2018] [Indexed: 11/18/2022]
|
17
|
Li Q, Wang F, Xiao X, Kim C, Bohon J, Kiselar J, Safar JG, Ma J, Surewicz WK. Structural attributes of mammalian prion infectivity: Insights from studies with synthetic prions. J Biol Chem 2018; 293:18494-18503. [PMID: 30275016 DOI: 10.1074/jbc.ra118.005622] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/25/2018] [Indexed: 12/30/2022] Open
Abstract
Prion diseases are neurodegenerative disorders that affect many mammalian species. Mammalian prion proteins (PrPs) can misfold into many different aggregates. However, only a small subpopulation of these structures is infectious. One of the major unresolved questions in prion research is identifying which specific structural features of these misfolded protein aggregates are important for prion infectivity in vivo Previously, two types of proteinase K-resistant, self-propagating aggregates were generated from the recombinant mouse prion protein in the presence of identical cofactors. Although these two aggregates appear biochemically very similar, they have dramatically different biological properties, with one of them being highly infectious and the other one lacking any infectivity. Here, we used several MS-based structural methods, including hydrogen-deuterium exchange and hydroxyl radical footprinting, to gain insight into the nature of structural differences between these two PrP aggregate types. Our experiments revealed a number of specific differences in the structure of infectious and noninfectious aggregates, both at the level of the polypeptide backbone and quaternary packing arrangement. In particular, we observed that a high degree of order and stability of β-sheet structure within the entire region between residues ∼89 and 227 is a primary attribute of infectious PrP aggregates examined in this study. By contrast, noninfectious PrP aggregates are characterized by markedly less ordered structure up to residue ∼167. The structural constraints reported here should facilitate development of experimentally based high-resolution structural models of infectiosus mammalian prions.
Collapse
Affiliation(s)
- Qiuye Li
- From the Departments of Physiology and Biophysics and
| | - Fei Wang
- the Center for Neurodegenerative Sciences, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Xiangzhu Xiao
- From the Departments of Physiology and Biophysics and
| | | | - Jen Bohon
- Centers for Synchrotron Biosciences and.,Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio 44106 and
| | - Janna Kiselar
- Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio 44106 and
| | | | - Jiyan Ma
- the Center for Neurodegenerative Sciences, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | | |
Collapse
|
18
|
Amyloid by Design: Intrinsic Regulation of Microbial Amyloid Assembly. J Mol Biol 2018; 430:3631-3641. [PMID: 30017921 DOI: 10.1016/j.jmb.2018.07.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/01/2018] [Accepted: 07/09/2018] [Indexed: 12/14/2022]
Abstract
The term amyloid has historically been used to describe fibrillar aggregates formed as the result of protein misfolding and that are associated with a range of diseases broadly termed amyloidoses. The discovery of "functional amyloids" expanded the amyloid umbrella to encompass aggregates structurally similar to disease-associated amyloids but that engage in a variety of biologically useful tasks without incurring toxicity. The mechanisms by which functional amyloid systems ensure nontoxic assembly has provided insights into potential therapeutic strategies for treating amyloidoses. Some of the most-studied functional amyloids are ones produced by bacteria. Curli amyloids are extracellular fibers made by enteric bacteria that function to encase and protect bacterial communities during biofilm formation. Here we review recent studies highlighting microbial functional amyloid assembly systems that are tailored to enable the assembly of non-toxic amyloid aggregates.
Collapse
|
19
|
Kim C, Xiao X, Chen S, Haldiman T, Smirnovas V, Kofskey D, Warren M, Surewicz K, Maurer NR, Kong Q, Surewicz W, Safar JG. Artificial strain of human prions created in vitro. Nat Commun 2018; 9:2166. [PMID: 29867164 PMCID: PMC5986862 DOI: 10.1038/s41467-018-04584-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/02/2018] [Indexed: 11/18/2022] Open
Abstract
The molecular mechanism that determines under physiological conditions transmissibility of the most common human prion disease, sporadic Creutzfeldt-Jakob disease (sCJD) is unknown. We report the synthesis of new human prion from the recombinant human prion protein expressed in bacteria in reaction seeded with sCJD MM1 prions and cofactor, ganglioside GM1. These synthetic human prions were infectious to transgenic mice expressing non-glycosylated human prion protein, causing neurologic dysfunction after 459 and 224 days in the first and second passage, respectively. The neuropathology, replication potency, and biophysical profiling suggest that a novel, particularly neurotoxic human prion strain was created. Distinct biological and structural characteristics of our synthetic human prions suggest that subtle changes in the structural organization of critical domains, some linked to posttranslational modifications of the pathogenic prion protein (PrPSc), play a crucial role as a determinant of human prion infectivity, host range, and targetting of specific brain structures in mice models.
Collapse
Affiliation(s)
- Chae Kim
- Department of Pathology, Case Western Reserve University, 2085 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Xiangzhu Xiao
- Departments of Physiology and Biophysics, Case Western Reserve University, 2085 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Shugui Chen
- Departments of Physiology and Biophysics, Case Western Reserve University, 2085 Adelbert Rd, Cleveland, OH, 44106, USA
- GlaxoSmithKline, 709 Swedeland Rd., King of Prussia, PA19406, UK
| | - Tracy Haldiman
- Department of Pathology, Case Western Reserve University, 2085 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Vitautas Smirnovas
- Departments of Physiology and Biophysics, Case Western Reserve University, 2085 Adelbert Rd, Cleveland, OH, 44106, USA
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Graiciuno 8, Vilnius, 02241, Lithuania
| | - Diane Kofskey
- Department of Pathology, Case Western Reserve University, 2085 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Miriam Warren
- Department of Pathology, Case Western Reserve University, 2085 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Krystyna Surewicz
- Departments of Physiology and Biophysics, Case Western Reserve University, 2085 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Nicholas R Maurer
- Department of Pathology, Case Western Reserve University, 2085 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Qingzhong Kong
- Department of Pathology, Case Western Reserve University, 2085 Adelbert Rd, Cleveland, OH, 44106, USA
- Department of Neurology, Case Western Reserve University, 2085 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Witold Surewicz
- Department of Pathology, Case Western Reserve University, 2085 Adelbert Rd, Cleveland, OH, 44106, USA
- Departments of Physiology and Biophysics, Case Western Reserve University, 2085 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Jiri G Safar
- Department of Pathology, Case Western Reserve University, 2085 Adelbert Rd, Cleveland, OH, 44106, USA.
- Department of Neurology, Case Western Reserve University, 2085 Adelbert Rd, Cleveland, OH, 44106, USA.
| |
Collapse
|
20
|
Honda R, Kuwata K. Evidence for a central role of PrP helix 2 in the nucleation of amyloid fibrils. FASEB J 2018; 32:3641-3652. [PMID: 29401635 DOI: 10.1096/fj.201701183rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Amyloid fibrils are filamentous protein aggregates associated with the pathogenesis of a wide variety of human diseases. The formation of such aggregates typically follows nucleation-dependent kinetics, wherein the assembly and structural conversion of amyloidogenic proteins into oligomeric aggregates (nuclei) is the rate-limiting step of the overall reaction. In this study, we sought to gain structural insights into the oligomeric nuclei of the human prion protein (PrP) by preparing a series of deletion mutants lacking 14-44 of the C-terminal 107 residues of PrP and examined the kinetics and thermodynamics of these mutants in amyloid formation. An analysis of the experimental data using the concepts of the Φ-value analysis indicated that the helix 2 region (residues 168-196) acquires an amyloid-like β-sheet during nucleation, whereas the other regions preserves a relatively disordered structure in the nuclei. This finding suggests that the helix 2 region serves as the nucleation site for the assembly of amyloid fibrils.-Honda, R., Kuwata, K. Evidence for a central role of PrP helix 2 in the nucleation of amyloid fibrils.
Collapse
Affiliation(s)
- Ryo Honda
- Department of Molecular Pathobiochemistry, Graduate School of Medicine, Gifu University, Gifu, Japan.,United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Kazuo Kuwata
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan.,Department of Gene and Development, Graduate School of Medicine, Gifu University, Gifu, Japan
| |
Collapse
|
21
|
Igel-Egalon A, Béringue V, Rezaei H, Sibille P. Prion Strains and Transmission Barrier Phenomena. Pathogens 2018; 7:E5. [PMID: 29301257 PMCID: PMC5874731 DOI: 10.3390/pathogens7010005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/25/2017] [Accepted: 12/26/2017] [Indexed: 11/30/2022] Open
Abstract
Several experimental evidences show that prions are non-conventional pathogens, which physical support consists only in proteins. This finding raised questions regarding the observed prion strain-to-strain variations and the species barrier that happened to be crossed with dramatic consequences on human health and veterinary policies during the last 3 decades. This review presents a focus on a few advances in the field of prion structure and prion strains characterization: from the historical approaches that allowed the concept of prion strains to emerge, to the last results demonstrating that a prion strain may in fact be a combination of a few quasi species with subtle biophysical specificities. Then, we will focus on the current knowledge on the factors that impact species barrier strength and species barrier crossing. Finally, we present probable scenarios on how the interaction of strain properties with host characteristics may account for differential selection of new conformer variants and eventually species barrier crossing.
Collapse
Affiliation(s)
- Angélique Igel-Egalon
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, UR892, 78350 Jouy-en-Josas, France.
| | - Vincent Béringue
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, UR892, 78350 Jouy-en-Josas, France.
| | - Human Rezaei
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, UR892, 78350 Jouy-en-Josas, France.
| | - Pierre Sibille
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, UR892, 78350 Jouy-en-Josas, France.
| |
Collapse
|
22
|
Production of Monoclonal Antibodies to Pathologic β-sheet Oligomeric Conformers in Neurodegenerative Diseases. Sci Rep 2017; 7:9881. [PMID: 28852189 PMCID: PMC5575137 DOI: 10.1038/s41598-017-10393-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 08/07/2017] [Indexed: 01/12/2023] Open
Abstract
We describe a novel approach to produce conformational monoclonal antibodies selected to specifically react with the β-sheet secondary structure of pathological oligomeric conformers, characteristic of many neurodegenerative diseases. Contrary to past and current efforts, we utilize a mammalian non-self-antigen as an immunogen. The small, non-self peptide selected was covalently polymerized with glutaraldehyde until it reached a high β-sheet secondary structure content, and species between 10–100kDa that are immunogenic, stable and soluble (p13Bri). Inoculation of p13Bri in mice elicited antibodies to the peptide and the β-sheet secondary structure conformation. Hybridomas were produced and clones selected for their reactivity with at least two different oligomeric conformers from Alzheimer’s, Parkinson and/or Prion diseases. The resulting conformational monoclonals are able to detect pathological oligomeric forms in different human neurodegenerative diseases by ELISA, immunohistochemistry and immunoblots. This technological approach may be useful to develop tools for detection, monitoring and treatment of multiple misfolding disorders.
Collapse
|
23
|
Self-propagating, protease-resistant, recombinant prion protein conformers with or without in vivo pathogenicity. PLoS Pathog 2017; 13:e1006491. [PMID: 28704563 PMCID: PMC5524416 DOI: 10.1371/journal.ppat.1006491] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/24/2017] [Accepted: 06/27/2017] [Indexed: 11/19/2022] Open
Abstract
Prions, characterized by self-propagating protease-resistant prion protein (PrP) conformations, are agents causing prion disease. Recent studies generated several such self-propagating protease-resistant recombinant PrP (rPrP-res) conformers. While some cause prion disease, others fail to induce any pathology. Here we showed that although distinctly different, the pathogenic and non-pathogenic rPrP-res conformers were similarly recognized by a group of conformational antibodies against prions and shared a similar guanidine hydrochloride denaturation profile, suggesting a similar overall architecture. Interestingly, two independently generated non-pathogenic rPrP-res were almost identical, indicating that the particular rPrP-res resulted from cofactor-guided PrP misfolding, rather than stochastic PrP aggregation. Consistent with the notion that cofactors influence rPrP-res conformation, the propagation of all rPrP-res formed with phosphatidylglycerol/RNA was cofactor-dependent, which is different from rPrP-res generated with a single cofactor, phosphatidylethanolamine. Unexpectedly, despite the dramatic difference in disease-causing capability, RT-QuIC assays detected large increases in seeding activity in both pathogenic and non-pathogenic rPrP-res inoculated mice, indicating that the non-pathogenic rPrP-res is not completely inert in vivo. Together, our study supported a role of cofactors in guiding PrP misfolding, indicated that relatively small structural features determine rPrP-res’ pathogenicity, and revealed that the in vivo seeding ability of rPrP-res does not necessarily result in pathogenicity. Many neurodegenerative disorders, including Alzheimer’s disease, Parkinson’s disease and Prion disease, are caused by misfolded proteins that can self-propagate in vivo and in vitro. Misfolded self-replicating recombinant prion protein (PrP) conformers have been generated in vitro with defined cofactors, some of which are highly infectious and cause bona fide prion diseases, while others completely fail to induce any pathology. Here we compare these misfolded recombinant PrP conformers and show that the non-pathogenic misfolded recombinant PrP is not completely inert in vivo. We also found that the pathogenic and non-pathogenic recombinant PrP conformers share a similar overall architecture. Importantly, our study clearly shows that in vivo seeded spread of misfolded conformation does not necessarily lead to pathogenic change or cause disease. These findings not only are important for understanding the molecular basis for prion infectivity, but also may have important implications for the “prion-like” spread of misfolded proteins in other neurodegenerative diseases.
Collapse
|
24
|
Sulatskaya AI, Rodina NP, Povarova OI, Kuznetsova IM, Turoverov KK. Different conditions of fibrillogenesis cause polymorphism of lysozyme amyloid fibrils. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.10.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Shape matters: the complex relationship between aggregation and toxicity in protein-misfolding diseases. Essays Biochem 2017; 60:181-190. [PMID: 27744334 DOI: 10.1042/ebc20160008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/29/2016] [Indexed: 01/07/2023]
Abstract
A particular subgroup of protein-misfolding diseases, comprising Alzheimer's and Parkinson's disease, involves amyloidogenic proteins that can form alternative pathogenic conformations with a high tendency to self-assemble into oligomeric and fibrillar species. Although misfolded proteins have been clearly linked to disease, the exact nature of the toxic species remains highly controversial. Increasing evidence suggests that there is little correlation between the occurrence of macroscopic protein deposits and toxic phenotypes in affected cells and tissues. In this article, we recap amyloid aggregation pathways, describe prion-like propagation, elaborate on detrimental interactions of protein aggregates with the cellular protein quality control system and discuss why some aggregates are toxic, whereas others seem to be beneficial. On the basis of recent studies on prion strains, we reason that the specific aggregate conformation and the resulting individual interaction with the cellular environment might be the major determinant of toxicity.
Collapse
|
26
|
Aguilar-Calvo P, Xiao X, Bett C, Eraña H, Soldau K, Castilla J, Nilsson KPR, Surewicz WK, Sigurdson CJ. Post-translational modifications in PrP expand the conformational diversity of prions in vivo. Sci Rep 2017; 7:43295. [PMID: 28272426 PMCID: PMC5341109 DOI: 10.1038/srep43295] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/23/2017] [Indexed: 12/02/2022] Open
Abstract
Misfolded prion protein aggregates (PrPSc) show remarkable structural diversity and are associated with highly variable disease phenotypes. Similarly, other proteins, including amyloid-β, tau, α-synuclein, and serum amyloid A, misfold into distinct conformers linked to different clinical diseases through poorly understood mechanisms. Here we use mice expressing glycophosphatidylinositol (GPI)-anchorless prion protein, PrPC, together with hydrogen-deuterium exchange coupled with mass spectrometry (HXMS) and a battery of biochemical and biophysical tools to investigate how post-translational modifications impact the aggregated prion protein properties and disease phenotype. Four GPI-anchorless prion strains caused a nearly identical clinical and pathological disease phenotype, yet maintained their structural diversity in the anchorless state. HXMS studies revealed that GPI-anchorless PrPSc is characterized by substantially higher protection against hydrogen/deuterium exchange in the C-terminal region near the N-glycan sites, suggesting this region had become more ordered in the anchorless state. For one strain, passage of GPI-anchorless prions into wild type mice led to the emergence of a novel strain with a unique biochemical and phenotypic signature. For the new strain, histidine hydrogen-deuterium mass spectrometry revealed altered packing arrangements of β-sheets that encompass residues 139 and 186 of PrPSc. These findings show how variation in post-translational modifications may explain the emergence of new protein conformations in vivo and also provide a basis for understanding how the misfolded protein structure impacts the disease.
Collapse
Affiliation(s)
| | - Xiangzhu Xiao
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44116, USA
| | - Cyrus Bett
- Departments of Pathology and Medicine, UC San Diego, La Jolla, CA 92093-0612, USA
| | - Hasier Eraña
- CIC bioGUNE, Parque Tecnológico de Bizkaia, Ed. 800, Derio 48160, Spain
| | - Katrin Soldau
- Departments of Pathology and Medicine, UC San Diego, La Jolla, CA 92093-0612, USA
| | - Joaquin Castilla
- CIC bioGUNE, Parque Tecnológico de Bizkaia, Ed. 800, Derio 48160, Spain.,IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - K Peter R Nilsson
- Department of Physics, Chemistry, and Biology, Linköping University, Linköping 581 83, Sweden
| | - Witold K Surewicz
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44116, USA
| | - Christina J Sigurdson
- Departments of Pathology and Medicine, UC San Diego, La Jolla, CA 92093-0612, USA.,Department of Pathology, Immunology, and Microbiology, UC Davis, Davis, CA 95616, USA
| |
Collapse
|
27
|
Seuring C, Verasdonck J, Ringler P, Cadalbert R, Stahlberg H, Böckmann A, Meier BH, Riek R. Amyloid Fibril Polymorphism: Almost Identical on the Atomic Level, Mesoscopically Very Different. J Phys Chem B 2017; 121:1783-1792. [PMID: 28075583 DOI: 10.1021/acs.jpcb.6b10624] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Amyloid polymorphism of twisted and straight β-endorphin fibrils was studied by negative-stain transmission electron microscopy, scanning transmission electron microscopy, and solid-state nuclear magnetic resonance spectroscopy. Whereas fibrils assembled in the presence of salt formed flat, striated ribbons, in the absence of salt they formed mainly twisted filaments. To get insights into their structural differences at the atomic level, 3D solid-state NMR spectra of both fibril types were acquired, allowing the detection of the differences in chemical shifts of 13C and 15N atoms in both preparations. The spectral fingerprints and therefore the chemical shifts are very similar for both fibril types. This indicates that the monomer structure and the molecular interfaces are almost the same but that these small differences do propagate to produce flat and twisted morphologies at the mesoscopic scale. This finding is in agreement with both experimental and theoretical considerations on the assembly of polymers (including amyloids) under different salt conditions, which attribute the mesoscopic difference of flat versus twisted fibrils to electrostatic intermolecular repulsions.
Collapse
Affiliation(s)
- Carolin Seuring
- Laboratory of Physical Chemistry, ETH Zürich , Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Joeri Verasdonck
- Laboratory of Physical Chemistry, ETH Zürich , Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Philippe Ringler
- Center for Cellular Imaging and Nano Analytics (C-CINA), Biozentrum University of Basel , 4085 Basel, Switzerland
| | - Riccardo Cadalbert
- Laboratory of Physical Chemistry, ETH Zürich , Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Henning Stahlberg
- Center for Cellular Imaging and Nano Analytics (C-CINA), Biozentrum University of Basel , 4085 Basel, Switzerland
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS, Université de Lyon 1 , 7 passage du Vercors, 69367 Lyon, France
| | - Beat H Meier
- Laboratory of Physical Chemistry, ETH Zürich , Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Roland Riek
- Laboratory of Physical Chemistry, ETH Zürich , Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland.,Structural Biology Laboratory, The Salk Institute , 10010 N Torrey Pines Road, 92037 La Jolla, California, United States
| |
Collapse
|
28
|
Korshavn KJ, Satriano C, Lin Y, Zhang R, Dulchavsky M, Bhunia A, Ivanova MI, Lee YH, La Rosa C, Lim MH, Ramamoorthy A. Reduced Lipid Bilayer Thickness Regulates the Aggregation and Cytotoxicity of Amyloid-β. J Biol Chem 2017; 292:4638-4650. [PMID: 28154182 DOI: 10.1074/jbc.m116.764092] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/31/2017] [Indexed: 11/06/2022] Open
Abstract
The aggregation of amyloid-β (Aβ) on lipid bilayers has been implicated as a mechanism by which Aβ exerts its toxicity in Alzheimer's disease (AD). Lipid bilayer thinning has been observed during both oxidative stress and protein aggregation in AD, but whether these pathological modifications of the bilayer correlate with Aβ misfolding is unclear. Here, we studied peptide-lipid interactions in synthetic bilayers of the short-chain lipid dilauroyl phosphatidylcholine (DLPC) as a simplified model for diseased bilayers to determine their impact on Aβ aggregate, protofibril, and fibril formation. Aβ aggregation and fibril formation in membranes composed of dioleoyl phosphatidylcholine (DOPC) or 1- palmitoyl-2-oleoyl phosphatidylcholine mimicking normal bilayers served as controls. Differences in aggregate formation and stability were monitored by a combination of thioflavin-T fluorescence, circular dichroism, atomic force microscopy, transmission electron microscopy, and NMR. Despite the ability of all three lipid bilayers to catalyze aggregation, DLPC accelerates aggregation at much lower concentrations and prevents the fibrillation of Aβ at low micromolar concentrations. DLPC stabilized globular, membrane-associated oligomers, which could disrupt the bilayer integrity. DLPC bilayers also remodeled preformed amyloid fibrils into a pseudo-unfolded, molten globule state, which resembled on-pathway, protofibrillar aggregates. Whereas the stabilized, membrane-associated oligomers were found to be nontoxic, the remodeled species displayed toxicity similar to that of conventionally prepared aggregates. These results provide mechanistic insights into the roles that pathologically thin bilayers may play in Aβ aggregation on neuronal bilayers, and pathological lipid oxidation may contribute to Aβ misfolding.
Collapse
Affiliation(s)
- Kyle J Korshavn
- From the Department of Chemistry.,Program in Biophysics, and
| | - Cristina Satriano
- the Department of Chemical Sciences, University of Catania, Catania 95124, Italy
| | - Yuxi Lin
- the Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | | | - Mark Dulchavsky
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109
| | - Anirban Bhunia
- the Department of Biophysics, Bose Institute, Kolkata 700009, India, and
| | - Magdalena I Ivanova
- Program in Biophysics, and.,Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109
| | - Young-Ho Lee
- the Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Carmelo La Rosa
- the Department of Chemical Sciences, University of Catania, Catania 95124, Italy
| | - Mi Hee Lim
- the Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | | |
Collapse
|
29
|
The role of the unusual threonine string in the conversion of prion protein. Sci Rep 2016; 6:38877. [PMID: 27982059 PMCID: PMC5159806 DOI: 10.1038/srep38877] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/15/2016] [Indexed: 01/24/2023] Open
Abstract
The conversion of normal prion protein (PrP) into pathogenic PrP conformers is central to prion disease, but the mechanism remains unclear. The α-helix 2 of PrP contains a string of four threonines, which is unusual due to the high propensity of threonine to form β-sheets. This structural feature was proposed as the basis for initiating PrP conversion, but experimental results have been conflicting. We studied the role of the threonine string on PrP conversion by analyzing mouse Prnpa and Prnpb polymorphism that contains a polymorphic residue at the beginning of the threonine string, and PrP mutants in which threonine 191 was replaced by valine, alanine, or proline. The PMCA (protein misfolding cyclic amplification) assay was able to recapitulate the in vivo transmission barrier between PrPa and PrPb. Relative to PMCA, the amyloid fibril growth assay is less restrictive, but it did reflect certain properties of in vivo prion transmission. Our results suggest a plausible theory explaining the apparently contradictory results in the role of the threonine string in PrP conversion and provide novel insights into the complicated relationship among PrP stability, seeded conformational change, and prion structure, which is critical for understanding the molecular basis of prion infectivity.
Collapse
|
30
|
Amyloid fibrils from the N-terminal prion protein fragment are infectious. Proc Natl Acad Sci U S A 2016; 113:13851-13856. [PMID: 27849581 DOI: 10.1073/pnas.1610716113] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recombinant C-terminally truncated prion protein PrP23-144 (which corresponds to the Y145Stop PrP variant associated with a Gerstmann-Sträussler-Scheinker-like prion disease) spontaneously forms amyloid fibrils with a parallel in-register β-sheet architecture and β-sheet core mapping to residues ∼112-139. Here we report that mice (both tga20 and wild type) inoculated with a murine (moPrP23-144) version of these fibrils develop clinical prion disease with a 100% attack rate. Remarkably, even though fibrils in the inoculum lack the entire C-terminal domain of PrP, brains of clinically sick mice accumulate longer proteinase K-resistant (PrPres) fragments of ∼17-32 kDa, similar to those observed in classical scrapie strains. Shorter, Gerstmann-Sträussler-Scheinker-like PrPres fragments are also present. The evidence that moPrP23-144 amyloid fibrils generated in the absence of any cofactors are bona fide prions provides a strong support for the protein-only hypothesis of prion diseases in its pure form, arguing against the notion that nonproteinaceous cofactors are obligatory structural components of all infectious prions. Furthermore, our finding that a relatively short β-sheet core of PrP23-144 fibrils (residues ∼112-139) with a parallel in-register organization of β-strands is capable of seeding the conversion of full-length prion protein to the infectious form has important implications for the ongoing debate regarding structural aspects of prion protein conversion and molecular architecture of mammalian prions.
Collapse
|
31
|
Wineman-Fisher V, Miller Y. Structural Insights into the Polymorphism of Self-Assembled Amylin Oligomers. Isr J Chem 2016. [DOI: 10.1002/ijch.201500091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Vered Wineman-Fisher
- Department of Chemistry
- Ilse Katz Institute for Nanoscale Science and Technology; Ben-Gurion University of the Negev; 84105 Beer-Sheva Israel
| | - Yifat Miller
- Department of Chemistry
- Ilse Katz Institute for Nanoscale Science and Technology; Ben-Gurion University of the Negev; 84105 Beer-Sheva Israel
| |
Collapse
|
32
|
Muthu SA, Mothi N, Shiriskar SM, Pissurlenkar RR, Kumar A, Ahmad B. Physical basis for the ofloxacin-induced acceleration of lysozyme aggregation and polymorphism in amyloid fibrils. Arch Biochem Biophys 2016; 592:10-9. [DOI: 10.1016/j.abb.2016.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/25/2015] [Accepted: 01/07/2016] [Indexed: 12/25/2022]
|
33
|
Torrent J, Lange R, Igel-Egalon A, Béringue V, Rezaei H. Getting to the core of prion superstructural variability. Prion 2015; 10:1-8. [PMID: 26636374 PMCID: PMC4981190 DOI: 10.1080/19336896.2015.1122161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The phenomenon of protein superstructural polymorphism has become the subject of increased research activity. Besides the relevance to explain the existence of multiple prion strains, such activity is partly driven by the recent finding that in many age-related neurodegenerative diseases highly ordered self-associated forms of peptides and proteins might be the structural basis of prion-like processes and strains giving rise to different disease phenotypes. Biophysical studies of prion strains have been hindered by a lack of tools to characterize inherently noncrystalline, heterogeneous and insoluble proteins. A description of the pressure response of prion quaternary structures might change this picture. This is because applying pressure induces quaternary structural changes of PrP, such as misfolding and self-assembly. From the thermodynamics of these processes, structural features in terms of associated volume changes can then be deduced. We suggest that conformation-enciphered prion strains can be distinguished in terms of voids in the interfaces of the constituting PrP protomers and thus in their volumetric properties.
Collapse
Affiliation(s)
- Joan Torrent
- a Institut National de la Recherche Agronomique, UR892, Virologie Immunologie Moléculaires , Jouy-en-Josas , France
| | - Reinhard Lange
- b Institut National de la Recherche Agronomique, UMR1208, Ingénierie des Agropolymères et Technologies Emergentes, Université Montpellier , Montpellier , France
| | - Angelique Igel-Egalon
- a Institut National de la Recherche Agronomique, UR892, Virologie Immunologie Moléculaires , Jouy-en-Josas , France
| | - Vincent Béringue
- a Institut National de la Recherche Agronomique, UR892, Virologie Immunologie Moléculaires , Jouy-en-Josas , France
| | - Human Rezaei
- a Institut National de la Recherche Agronomique, UR892, Virologie Immunologie Moléculaires , Jouy-en-Josas , France
| |
Collapse
|
34
|
Abstract
Prions are infective proteins, which can self-assemble into different strain conformations, leading to different disease phenotypes. An increasing number of studies suggest that prion-like self-propagation may be a common feature of amyloid-like structures. Thus it is important to unravel every possible factor leading to the formation of different amyloid strains. Here we report on the formation of two types of insulin amyloid-like fibrils with distinct infrared spectroscopic features grown under slightly different pH conditions. Similar to prion strains, both insulin fibril types are able to self-propagate their conformational template under conditions, favoring spontaneous formation of different type fibrils. The low-pH-induced insulin amyloid strain is structurally very similar to previously reported strains formed either in the presence of 20% ethanol, or by modification of the amino acid sequence of insulin. A deeper analysis of literature data in the context of our current findings suggests a shift of the monomer-dimer equilibrium of insulin as a possible factor controlling the formation of different strains.
Collapse
|
35
|
Sneideris T, Milto K, Smirnovas V. Polymorphism of amyloid-like fibrils can be defined by the concentration of seeds. PeerJ 2015; 3:e1207. [PMID: 26355941 PMCID: PMC4563235 DOI: 10.7717/peerj.1207] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/01/2015] [Indexed: 12/11/2022] Open
Abstract
Prions are infectious proteins where the same protein may express distinct strains. The strains are enciphered by different misfolded conformations. Strain-like phenomena have also been reported in a number of other amyloid-forming proteins. One of the features of amyloid strains is the ability to self-propagate, maintaining a constant set of physical properties despite being propagated under conditions different from those that allowed initial formation of the strain. Here we report a cross-seeding experiment using strains formed under different conditions. Using high concentrations of seeds results in rapid elongation and new fibrils preserve the properties of the seeding fibrils. At low seed concentrations, secondary nucleation plays the major role and new fibrils gain properties predicted by the environment rather than the structure of the seeds. Our findings could explain conformational switching between amyloid strains observed in a wide variety of in vivo and in vitro experiments.
Collapse
Affiliation(s)
- Tomas Sneideris
- Department of Biothermodynamics and Drug Design, Vilnius University, Institute of Biotechnology, Vilnius, Lithuania
| | - Katažyna Milto
- Department of Biothermodynamics and Drug Design, Vilnius University, Institute of Biotechnology, Vilnius, Lithuania
| | - Vytautas Smirnovas
- Department of Biothermodynamics and Drug Design, Vilnius University, Institute of Biotechnology, Vilnius, Lithuania
| |
Collapse
|
36
|
Structural determinants of phenotypic diversity and replication rate of human prions. PLoS Pathog 2015; 11:e1004832. [PMID: 25875953 PMCID: PMC4397081 DOI: 10.1371/journal.ppat.1004832] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/24/2015] [Indexed: 11/19/2022] Open
Abstract
The infectious pathogen responsible for prion diseases is the misfolded, aggregated form of the prion protein, PrPSc. In contrast to recent progress in studies of laboratory rodent-adapted prions, current understanding of the molecular basis of human prion diseases and, especially, their vast phenotypic diversity is very limited. Here, we have purified proteinase resistant PrPSc aggregates from two major phenotypes of sporadic Creutzfeldt-Jakob disease (sCJD), determined their conformational stability and replication tempo in vitro, as well as characterized structural organization using recently emerged approaches based on hydrogen/deuterium (H/D) exchange coupled with mass spectrometry. Our data clearly demonstrate that these phenotypically distant prions differ in a major way with regard to their structural organization, both at the level of the polypeptide backbone (as indicated by backbone amide H/D exchange data) as well as the quaternary packing arrangements (as indicated by H/D exchange kinetics for histidine side chains). Furthermore, these data indicate that, in contrast to previous observations on yeast and some murine prion strains, the replication rate of sCJD prions is primarily determined not by conformational stability but by specific structural features that control the growth rate of prion protein aggregates. Sporadic Creutzfeldt-Jakob disease (sCJD) represents ~90% of all human prion diseases worldwide. This neurodegenerative disease, which is transmissible and invariably fatal, is characterized by variable progression rates and remarkable diversity of clinical and pathological traits. The infectious sCJD prions propagating the pathology mainly in the brain are assemblies of abnormally folded isoform (PrPSc) of a host-encoded prion protein (PrPC). The structure and replication mechanisms of human prions are unknown, and whether the PrPSc subtypes identified by proteolytic fragmentation represent distinct strains of sCJD prions has been debated. Here, we isolated sCJD prions from patients with two very distant phenotypes of the disease, compared their structural organization using recently developed biophysical techniques, and investigated their replication in vitro. Our data indicate that these sCJD prions are characterized by different secondary structure organization and quaternary packing arrangements, and that these structural differences are responsible for distinct prion replication rates and unique phenotypic characteristics of the disease. Furthermore, our analysis reveals that, contrary to previous observations for yeast prions, the replication tempo of sCJD prions is determined not so much by their conformational stability but by specific structural features that control the growth speed of prion particles.
Collapse
|
37
|
Nasica-Labouze J, Nguyen PH, Sterpone F, Berthoumieu O, Buchete NV, Coté S, De Simone A, Doig AJ, Faller P, Garcia A, Laio A, Li MS, Melchionna S, Mousseau N, Mu Y, Paravastu A, Pasquali S, Rosenman DJ, Strodel B, Tarus B, Viles JH, Zhang T, Wang C, Derreumaux P. Amyloid β Protein and Alzheimer's Disease: When Computer Simulations Complement Experimental Studies. Chem Rev 2015; 115:3518-63. [PMID: 25789869 DOI: 10.1021/cr500638n] [Citation(s) in RCA: 478] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jessica Nasica-Labouze
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Phuong H Nguyen
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Fabio Sterpone
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Olivia Berthoumieu
- ‡LCC (Laboratoire de Chimie de Coordination), CNRS, Université de Toulouse, Université Paul Sabatier (UPS), Institut National Polytechnique de Toulouse (INPT), 205 route de Narbonne, BP 44099, Toulouse F-31077 Cedex 4, France
| | | | - Sébastien Coté
- ∥Département de Physique and Groupe de recherche sur les protéines membranaires (GEPROM), Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec H3C 3T5, Canada
| | - Alfonso De Simone
- ⊥Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Andrew J Doig
- #Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Peter Faller
- ‡LCC (Laboratoire de Chimie de Coordination), CNRS, Université de Toulouse, Université Paul Sabatier (UPS), Institut National Polytechnique de Toulouse (INPT), 205 route de Narbonne, BP 44099, Toulouse F-31077 Cedex 4, France
| | | | - Alessandro Laio
- ○The International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | - Mai Suan Li
- ◆Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland.,¶Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Simone Melchionna
- ⬠Instituto Processi Chimico-Fisici, CNR-IPCF, Consiglio Nazionale delle Ricerche, 00185 Roma, Italy
| | | | - Yuguang Mu
- ▲School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Anant Paravastu
- ⊕National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Samuela Pasquali
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | - Birgit Strodel
- △Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Bogdan Tarus
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - John H Viles
- ▼School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Tong Zhang
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France.,▲School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | | | - Philippe Derreumaux
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France.,□Institut Universitaire de France, 75005 Paris, France
| |
Collapse
|
38
|
Mora AK, Murudkar S, Singh PK, Nath S. Effect of fibrillation on the excited state dynamics of tryptophan in serum protein – A time-resolved fluorescence study. J Photochem Photobiol A Chem 2015. [DOI: 10.1016/j.jphotochem.2014.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Yates EA, Legleiter J. Preparation protocols of aβ(1-40) promote the formation of polymorphic aggregates and altered interactions with lipid bilayers. Biochemistry 2014; 53:7038-50. [PMID: 25349919 DOI: 10.1021/bi500792f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The appearance of neuritic amyloid plaques comprised of β-amyloid peptide (Aβ) in the brain is a predominant feature in Alzheimer's disease (AD). In the aggregation process, Aβ samples a variety of potentially toxic aggregate species, ranging from small oligomers to fibrils. Aβ has the ability to form a variety of morphologically distinct and stable amyloid fibrils. Commonly termed polymorphs, such distinct aggregate species may play a role in variations of AD pathology. It has been well documented that polymorphic aggregates of Aβ can be produced by changes in the chemical environment and peptide preparations. As Aβ and several of its aggregated forms are known to interact directly with lipid membranes and this interaction may play a role in a variety of potential toxic mechanisms associated with AD, we determine how different Aβ(1-40) preparation protocols that lead to distinct polymorphic fibril aggregates influence the interaction of Aβ(1-40) with model lipid membranes. Using three distinct protocols for preparing Aβ(1-40), the aggregate species formed in the absence and presence of a lipid bilayers were investigated using a variety of scanning probe microscopy techniques. The three preparations of Aβ(1-40) promoted distinct oligomeric and fibrillar aggregates in the absence of bilayers that formed at different rates. Despite these differences in aggregation properties, all Aβ(1-40) preparations were able to disrupt supported total brain lipid extract bilayers, altering the bilayer's morphological and mechanical properties.
Collapse
Affiliation(s)
- Elizabeth A Yates
- The C. Eugene Bennett Department of Chemistry, West Virginia University , 217 Clark Hall, Morgantown, West Virginia 26506, United States
| | | |
Collapse
|
40
|
Tycko R. Physical and structural basis for polymorphism in amyloid fibrils. Protein Sci 2014; 23:1528-39. [PMID: 25179159 DOI: 10.1002/pro.2544] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 08/28/2014] [Accepted: 08/29/2014] [Indexed: 12/24/2022]
Abstract
As our understanding of the molecular structures of amyloid fibrils has matured over the past 15 years, it has become clear that, while amyloid fibrils do have well-defined molecular structures, their molecular structures are not uniquely determined by the amino acid sequences of their constituent peptides and proteins. Self-propagating molecular-level polymorphism is a common phenomenon. This article reviews current information about amyloid fibril structures, variations in molecular structures that underlie amyloid polymorphism, and physical considerations that explain the development and persistence of amyloid polymorphism. Much of this information has been obtained through solid state nuclear magnetic resonance measurements. The biological significance of amyloid polymorphism is also discussed briefly. Although this article focuses primarily on studies of fibrils formed by amyloid-β peptides, the same principles apply to many amyloid-forming peptides and proteins.
Collapse
Affiliation(s)
- Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892-0520
| |
Collapse
|
41
|
|
42
|
Stein KC, True HL. Extensive diversity of prion strains is defined by differential chaperone interactions and distinct amyloidogenic regions. PLoS Genet 2014; 10:e1004337. [PMID: 24811344 PMCID: PMC4014422 DOI: 10.1371/journal.pgen.1004337] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 03/13/2014] [Indexed: 11/27/2022] Open
Abstract
Amyloidogenic proteins associated with a variety of unrelated diseases are typically capable of forming several distinct self-templating conformers. In prion diseases, these different structures, called prion strains (or variants), confer dramatic variation in disease pathology and transmission. Aggregate stability has been found to be a key determinant of the diverse pathological consequences of different prion strains. Yet, it remains largely unclear what other factors might account for the widespread phenotypic variation seen with aggregation-prone proteins. Here, we examined a set of yeast prion variants of the [RNQ+] prion that differ in their ability to induce the formation of another yeast prion called [PSI+]. Remarkably, we found that the [RNQ+] variants require different, non-contiguous regions of the Rnq1 protein for both prion propagation and [PSI+] induction. This included regions outside of the canonical prion-forming domain of Rnq1. Remarkably, such differences did not result in variation in aggregate stability. Our analysis also revealed a striking difference in the ability of these [RNQ+] variants to interact with the chaperone Sis1. Thus, our work shows that the differential influence of various amyloidogenic regions and interactions with host cofactors are critical determinants of the phenotypic consequences of distinct aggregate structures. This helps reveal the complex interdependent factors that influence how a particular amyloid structure may dictate disease pathology and progression.
Collapse
Affiliation(s)
- Kevin C. Stein
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Heather L. True
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
43
|
Lamour G, Yip CK, Li H, Gsponer J. High intrinsic mechanical flexibility of mouse prion nanofibrils revealed by measurements of axial and radial Young's moduli. ACS NANO 2014; 8:3851-61. [PMID: 24588725 DOI: 10.1021/nn5007013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Self-templated protein aggregation and intracerebral deposition of aggregates, sometimes in the form of amyloid fibrils, is a hallmark of mammalian prion diseases. What distinguishes amyloid fibrils formed by prions from those formed by other proteins is not clear. On the basis of previous studies on yeast prions that correlated high intrinsic fragmentation rates of fibrils with prion propagation efficiency, it has been hypothesized that the nanomechanical properties of prion amyloid such as strength and elastic modulus may be the distinguishing feature. Here, we reveal that fibrils formed by mammalian prions are relatively soft and clearly in a different class of rigidities when compared to nanofibrils formed by nonprions. We found that amyloid fibrils made of both wild-type and mutant mouse recombinant PrP(23-231) have remarkably low axial elastic moduli of 0.1-1.4 GPa. We demonstrate that even the proteinase K resistant core of these fibrils has similarly low intrinsic rigidities. Using a new mode of atomic force microscopy called AM-FM mode, we estimated the radial modulus of PrP fibrils at ∼0.6 GPa, consistent with the axial moduli derived by using an ensemble method. Our results have far-reaching implications for the understanding of protein-based infectivity and the design of amyloid biomaterials.
Collapse
Affiliation(s)
- Guillaume Lamour
- Centre for High-Throughput Biology, University of British Colombia , Vancouver, BC, Canada V6T 1Z4
| | | | | | | |
Collapse
|
44
|
Milto K, Michailova K, Smirnovas V. Elongation of mouse prion protein amyloid-like fibrils: effect of temperature and denaturant concentration. PLoS One 2014; 9:e94469. [PMID: 24747600 PMCID: PMC3991587 DOI: 10.1371/journal.pone.0094469] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 03/17/2014] [Indexed: 01/08/2023] Open
Abstract
Prion protein is known to have the ability to adopt a pathogenic conformation, which seems to be the basis for protein-only infectivity. The infectivity is based on self-replication of this pathogenic prion structure. One of possible mechanisms for such replication is the elongation of amyloid-like fibrils. We measured elongation kinetics and thermodynamics of mouse prion amyloid-like fibrils at different guanidine hydrochloride (GuHCl) concentrations. Our data show that both increases in temperature and GuHCl concentration help unfold monomeric protein and thus accelerate elongation. Once the monomers are unfolded, further increases in temperature raise the rate of elongation, whereas the addition of GuHCl decreases it. We demonstrated a possible way to determine different activation energies of amyloid-like fibril elongation by using folded and unfolded protein molecules. This approach separates thermodynamic data for fibril-assisted monomer unfolding and for refolding and formation of amyloid-like structure.
Collapse
Affiliation(s)
- Katazyna Milto
- Department of Biothermodynamics and Drug Design, Vilnius University Institute of Biotechnology, Vilnius, Lithuania
| | - Ksenija Michailova
- Department of Biothermodynamics and Drug Design, Vilnius University Institute of Biotechnology, Vilnius, Lithuania
| | - Vytautas Smirnovas
- Department of Biothermodynamics and Drug Design, Vilnius University Institute of Biotechnology, Vilnius, Lithuania
- * E-mail:
| |
Collapse
|