1
|
Pitolli M, Cela M, Kapps D, Chicher J, Despons L, Frugier M. Comparative proteomics uncovers low asparagine content in Plasmodium tRip-KO proteins. IUBMB Life 2024. [PMID: 38963319 DOI: 10.1002/iub.2891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/17/2024] [Indexed: 07/05/2024]
Abstract
tRNAs are not only essential for decoding the genetic code, but their abundance also has a strong impact on the rate of protein production, folding, and on the stability of the translated messenger RNAs. Plasmodium expresses a unique surface protein called tRip, involved in the import of exogenous tRNAs into the parasite. Comparative proteomic analysis of the blood stage of wild-type and tRip-KO variant of P. berghei parasites revealed that downregulated proteins in the mutant parasite are distinguished by a bias in their asparagine content. Furthermore, the demonstration of the possibility of charging host tRNAs with Plasmodium aminoacyl-tRNA synthetases led us to propose that imported host tRNAs participate in parasite protein synthesis. These results also suggest a novel mechanism of translational control in which import of host tRNAs emerge as regulators of gene expression in the Plasmodium developmental cycle and pathogenesis, by enabling the synthesis of asparagine-rich regulatory proteins that efficiently and selectively control the parasite infectivity.
Collapse
Affiliation(s)
- Martina Pitolli
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, Strasbourg, France
| | - Marta Cela
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, Strasbourg, France
| | - Delphine Kapps
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, Strasbourg, France
| | - Johana Chicher
- Strasbourg-Esplanade Proteomics Facility, Université de Strasbourg, Strasbourg, France
| | - Laurence Despons
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, Strasbourg, France
| | - Magali Frugier
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, Strasbourg, France
| |
Collapse
|
2
|
Xie SC, Wang Y, Morton CJ, Metcalfe RD, Dogovski C, Pasaje CFA, Dunn E, Luth MR, Kumpornsin K, Istvan ES, Park JS, Fairhurst KJ, Ketprasit N, Yeo T, Yildirim O, Bhebhe MN, Klug DM, Rutledge PJ, Godoy LC, Dey S, De Souza ML, Siqueira-Neto JL, Du Y, Puhalovich T, Amini M, Shami G, Loesbanluechai D, Nie S, Williamson N, Jana GP, Maity BC, Thomson P, Foley T, Tan DS, Niles JC, Han BW, Goldberg DE, Burrows J, Fidock DA, Lee MCS, Winzeler EA, Griffin MDW, Todd MH, Tilley L. Reaction hijacking inhibition of Plasmodium falciparum asparagine tRNA synthetase. Nat Commun 2024; 15:937. [PMID: 38297033 PMCID: PMC10831071 DOI: 10.1038/s41467-024-45224-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024] Open
Abstract
Malaria poses an enormous threat to human health. With ever increasing resistance to currently deployed drugs, breakthrough compounds with novel mechanisms of action are urgently needed. Here, we explore pyrimidine-based sulfonamides as a new low molecular weight inhibitor class with drug-like physical parameters and a synthetically accessible scaffold. We show that the exemplar, OSM-S-106, has potent activity against parasite cultures, low mammalian cell toxicity and low propensity for resistance development. In vitro evolution of resistance using a slow ramp-up approach pointed to the Plasmodium falciparum cytoplasmic asparaginyl-tRNA synthetase (PfAsnRS) as the target, consistent with our finding that OSM-S-106 inhibits protein translation and activates the amino acid starvation response. Targeted mass spectrometry confirms that OSM-S-106 is a pro-inhibitor and that inhibition of PfAsnRS occurs via enzyme-mediated production of an Asn-OSM-S-106 adduct. Human AsnRS is much less susceptible to this reaction hijacking mechanism. X-ray crystallographic studies of human AsnRS in complex with inhibitor adducts and docking of pro-inhibitors into a model of Asn-tRNA-bound PfAsnRS provide insights into the structure-activity relationship and the selectivity mechanism.
Collapse
Affiliation(s)
- Stanley C Xie
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Yinuo Wang
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Craig J Morton
- Biomedical Manufacturing Program, CSIRO, Clayton South, VIC, Australia
| | - Riley D Metcalfe
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Con Dogovski
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Charisse Flerida A Pasaje
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Elyse Dunn
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Madeline R Luth
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Krittikorn Kumpornsin
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Calibr, Division of the Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Eva S Istvan
- Division of Infectious Diseases, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Joon Sung Park
- Research Institute of Pharmaceutical Sciences and Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kate J Fairhurst
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, NY, 10032, USA
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Nutpakal Ketprasit
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Tomas Yeo
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, NY, 10032, USA
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Okan Yildirim
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | | | - Dana M Klug
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Peter J Rutledge
- School of Chemistry, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Luiz C Godoy
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sumanta Dey
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Mariana Laureano De Souza
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jair L Siqueira-Neto
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Yawei Du
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Tanya Puhalovich
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Mona Amini
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Gerry Shami
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | | | - Shuai Nie
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Nicholas Williamson
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Gouranga P Jana
- TCG Lifesciences Private Limited, Salt-Lake Electronics Complex, Kolkata, India
| | - Bikash C Maity
- TCG Lifesciences Private Limited, Salt-Lake Electronics Complex, Kolkata, India
| | - Patrick Thomson
- School of Chemistry, The University of Edinburgh, Edinburgh, EH9 3JJ, UK
| | - Thomas Foley
- School of Chemistry, The University of Edinburgh, Edinburgh, EH9 3JJ, UK
| | - Derek S Tan
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Byung Woo Han
- Research Institute of Pharmaceutical Sciences and Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Daniel E Goldberg
- Division of Infectious Diseases, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Jeremy Burrows
- Medicines for Malaria Venture, 20, Route de Pré-Bois, 1215, Geneva 15, Switzerland
| | - David A Fidock
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, NY, 10032, USA
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Marcus C S Lee
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Wellcome Centre for Anti-Infectives Research, Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 4HN, UK
| | - Elizabeth A Winzeler
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Michael D W Griffin
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Matthew H Todd
- School of Pharmacy, University College London, London, WC1N 1AX, UK.
- Structural Genomics Consortium, University College London, London, WC1N 1AX, UK.
| | - Leann Tilley
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
3
|
Xie SC, Wang Y, Morton CJ, Metcalfe RD, Dogovski C, Pasaje CFA, Dunn E, Luth MR, Kumpornsin K, Istvan ES, Park JS, Fairhurst KJ, Ketprasit N, Yeo T, Yildirim O, Bhebhe MN, Klug DM, Rutledge PJ, Godoy LC, Dey S, De Souza ML, Siqueira-Neto JL, Du Y, Puhalovich T, Amini M, Shami G, Loesbanluechai D, Nie S, Williamson N, Jana GP, Maity BC, Thomson P, Foley T, Tan DS, Niles JC, Han BW, Goldberg DE, Burrows J, Fidock DA, Lee MC, Winzeler EA, Griffin MDW, Todd MH, Tilley L. Reaction hijacking inhibition of Plasmodium falciparum asparagine tRNA synthetase. RESEARCH SQUARE 2023:rs.3.rs-3198291. [PMID: 37546892 PMCID: PMC10402266 DOI: 10.21203/rs.3.rs-3198291/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Malaria poses an enormous threat to human health. With ever increasing resistance to currently deployed drugs, breakthrough compounds with novel mechanisms of action are urgently needed. Here, we explore pyrimidine-based sulfonamides as a new low molecular weight inhibitor class with drug-like physical parameters and a synthetically accessible scaffold. We show that the exemplar, OSM-S-106, has potent activity against parasite cultures, low mammalian cell toxicity and low propensity for resistance development. In vitro evolution of resistance using a slow ramp-up approach pointed to the Plasmodium falciparum cytoplasmic asparaginyl tRNA synthetase (PfAsnRS) as the target, consistent with our finding that OSM-S-106 inhibits protein translation and activates the amino acid starvation response. Targeted mass spectrometry confirms that OSM-S-106 is a pro-inhibitor and that inhibition of PfAsnRS occurs via enzyme-mediated production of an Asn-OSM-S-106 adduct. Human AsnRS is much less susceptible to this reaction hijacking mechanism. X-ray crystallographic studies of human AsnRS in complex with inhibitor adducts and docking of pro-inhibitors into a model of Asn-tRNA-bound PfAsnRS provide insights into the structure activity relationship and the selectivity mechanism.
Collapse
Affiliation(s)
- Stanley C. Xie
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Yinuo Wang
- School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
| | - Craig J. Morton
- Biomedical Manufacturing Program, CSIRO, Clayton South, Australia
| | - Riley D. Metcalfe
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Con Dogovski
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | | | - Elyse Dunn
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Madeline R Luth
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Krittikorn Kumpornsin
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom
- Calibr, Division of the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Eva S Istvan
- Division of Infectious Diseases, Department of Medicine, Washington University in St. Louis, USA
| | - Joon Sung Park
- Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Kate J. Fairhurst
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, NY 10032, USA
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Nutpakal Ketprasit
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Tomas Yeo
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, NY 10032, USA
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Okan Yildirim
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Dana M. Klug
- School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
| | - Peter J. Rutledge
- School of Chemistry, University of Sydney, Camperdown, NSW 2006, Australia
| | - Luiz C. Godoy
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sumanta Dey
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mariana Laureano De Souza
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Jair L. Siqueira-Neto
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Yawei Du
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Tanya Puhalovich
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Mona Amini
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Gerry Shami
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | | | - Shuai Nie
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Nicholas Williamson
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Gouranga P. Jana
- TCG Lifesciences Private Limited, Salt-lake Electronics Complex, Kolkata, India
| | - Bikash C. Maity
- TCG Lifesciences Private Limited, Salt-lake Electronics Complex, Kolkata, India
| | - Patrick Thomson
- School of Chemistry, The University of Edinburgh, Edinburgh EH9 3JJ, United Kingdom
| | - Thomas Foley
- School of Chemistry, The University of Edinburgh, Edinburgh EH9 3JJ, United Kingdom
| | - Derek S. Tan
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Byung Woo Han
- Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Daniel E Goldberg
- Division of Infectious Diseases, Department of Medicine, Washington University in St. Louis, USA
| | - Jeremy Burrows
- Medicines for Malaria Venture, 20, Route de Pré-Bois 1215, Geneva 15, Switzerland
| | - David A. Fidock
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, NY 10032, USA
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Marcus C.S. Lee
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom
- Wellcome Centre for Anti-Infectives Research, Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 4HN, United Kingdom
| | - Elizabeth A. Winzeler
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Michael D. W. Griffin
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Matthew H. Todd
- School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
- Structural Genomics Consortium, University College London, London WC1N 1AX, United Kingdom
| | - Leann Tilley
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
4
|
Giegé R, Eriani G. The tRNA identity landscape for aminoacylation and beyond. Nucleic Acids Res 2023; 51:1528-1570. [PMID: 36744444 PMCID: PMC9976931 DOI: 10.1093/nar/gkad007] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 02/07/2023] Open
Abstract
tRNAs are key partners in ribosome-dependent protein synthesis. This process is highly dependent on the fidelity of tRNA aminoacylation by aminoacyl-tRNA synthetases and relies primarily on sets of identities within tRNA molecules composed of determinants and antideterminants preventing mischarging by non-cognate synthetases. Such identity sets were discovered in the tRNAs of a few model organisms, and their properties were generalized as universal identity rules. Since then, the panel of identity elements governing the accuracy of tRNA aminoacylation has expanded considerably, but the increasing number of reported functional idiosyncrasies has led to some confusion. In parallel, the description of other processes involving tRNAs, often well beyond aminoacylation, has progressed considerably, greatly expanding their interactome and uncovering multiple novel identities on the same tRNA molecule. This review highlights key findings on the mechanistics and evolution of tRNA and tRNA-like identities. In addition, new methods and their results for searching sets of multiple identities on a single tRNA are discussed. Taken together, this knowledge shows that a comprehensive understanding of the functional role of individual and collective nucleotide identity sets in tRNA molecules is needed for medical, biotechnological and other applications.
Collapse
Affiliation(s)
- Richard Giegé
- Correspondence may also be addressed to Richard Giegé.
| | | |
Collapse
|
5
|
Sharma VK, Gupta S, Chhibber-Goel J, Yogavel M, Sharma A. A single amino acid substitution alters activity and specificity in Plasmodium falciparum aspartyl & asparaginyl-tRNA synthetases. Mol Biochem Parasitol 2022; 250:111488. [DOI: 10.1016/j.molbiopara.2022.111488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 05/10/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
|
6
|
Cela M, Théobald-Dietrich A, Rudinger-Thirion J, Wolff P, Geslain R, Frugier M. Identification of host tRNAs preferentially recognized by the Plasmodium surface protein tRip. Nucleic Acids Res 2021; 49:10618-10629. [PMID: 34530443 PMCID: PMC8501954 DOI: 10.1093/nar/gkab769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/17/2021] [Accepted: 08/26/2021] [Indexed: 12/19/2022] Open
Abstract
Malaria is a life-threatening and devastating parasitic disease. Our previous work showed that parasite development requires the import of exogenous transfer RNAs (tRNAs), which represents a novel and unique form of host-pathogen interaction, as well as a potentially druggable target. This import is mediated by tRip (tRNA import protein), a membrane protein located on the parasite surface. tRip displays an extracellular domain homologous to the well-characterized OB-fold tRNA-binding domain, a structural motif known to indiscriminately interact with tRNAs. We used MIST (Microarray Identification of Shifted tRNAs), a previously established in vitro approach, to systematically assess the specificity of complexes between native Homo sapiens tRNAs and recombinant Plasmodium falciparum tRip. We demonstrate that tRip unexpectedly binds to host tRNAs with a wide range of affinities, suggesting that only a small subset of human tRNAs is preferentially imported into the parasite. In particular, we show with in vitro transcribed constructs that tRip does not bind specific tRNAs solely based on their primary sequence, hinting that post-transcriptional modifications modulate the formation of our host/parasite molecular complex. Finally, we discuss the potential utilization of the most efficient tRip ligands for the translation of the parasite's genetic information.
Collapse
Affiliation(s)
- Marta Cela
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, F-67000Strasbourg, France
| | - Anne Théobald-Dietrich
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, F-67000Strasbourg, France
| | - Joëlle Rudinger-Thirion
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, F-67000Strasbourg, France
| | - Philippe Wolff
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, F-67000Strasbourg, France
| | - Renaud Geslain
- Laboratory of tRNA Biology, Department of Biology, College of Charleston, Charleston, SC, USA
| | - Magali Frugier
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, F-67000Strasbourg, France
| |
Collapse
|
7
|
Cappannini A, Forcelloni S, Giansanti A. Evolutionary pressures and codon bias in low complexity regions of plasmodia. Genetica 2021; 149:217-237. [PMID: 34254217 DOI: 10.1007/s10709-021-00126-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 06/30/2021] [Indexed: 11/25/2022]
Abstract
The biological meaning of low complexity regions in the proteins of Plasmodium species is a topic of discussion in evolutionary biology. There is a debate between selectionists and neutralists, who either attribute or do not attribute an effect of low-complexity regions on the fitness of these parasites, respectively. In this work, we comparatively study 22 Plasmodium species to understand whether their low complexity regions undergo a neutral or, rather, a selective and species-dependent evolution. The focus is on the connection between the codon repertoire of the genetic coding sequences and the occurrence of low complexity regions in the corresponding proteins. The first part of the work concerns the correlation between the length of plasmodial proteins and their propensity at embedding low complexity regions. Relative synonymous codon usage, entropy, and other indicators reveal that the incidence of low complexity regions and their codon bias is species-specific and subject to selective evolutionary pressure. We also observed that protein length, a relaxed selective pressure, and a broad repertoire of codons in proteins, are strongly correlated with the occurrence of low complexity regions. Overall, it seems plausible that the codon bias of low-complexity regions contributes to functional innovation and codon bias enhancement of proteins on which Plasmodium species rest as successful evolutionary parasites.
Collapse
Affiliation(s)
- Andrea Cappannini
- Department of Physics, Sapienza, University of Rome, P.le A. Moro 5, 00185, Roma, Italy.
| | - Sergio Forcelloni
- Max Planck Institute of Biochemistry, 82152, Martinsried, Germany.,Department of Chemistry, Technical University of Munich, 85748, Garching, Germany
| | - Andrea Giansanti
- Department of Physics, Sapienza, University of Rome, P.le A. Moro 5, 00185, Roma, Italy.,Istituto Nazionale di Fisica Nucleare, INFN, Roma1 section. 00185, Roma, Italy
| |
Collapse
|
8
|
Inhibition of PfMYST Histone Acetyltransferase Activity Blocks Plasmodium falciparum Growth and Survival. Antimicrob Agents Chemother 2020; 65:AAC.00953-20. [PMID: 33046499 DOI: 10.1128/aac.00953-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/01/2020] [Indexed: 12/25/2022] Open
Abstract
One of the major barriers in the prevention and control of malaria programs worldwide is the growing emergence of multidrug resistance in Plasmodium parasites, and this necessitates continued efforts to discover and develop effective drug molecules targeting novel proteins essential for parasite survival. In recent years, epigenetic regulators have evolved as an attractive drug target option owing to their crucial role in survival and development of Plasmodium at different stages of its life cycle. PfMYST, a histone acetyltransferase protein, is known to regulate key cellular processes, such as cell cycle progression, DNA damage repair, and antigenic variation, that facilitate parasite growth, adaptation, and survival inside its host. With the aim of assessing the therapeutic potential of PfMYST as a novel drug target, we examined the effect of NU9056 (an HsTIP60 inhibitor) on the rate of parasite growth and survival. In the present study, by using a yeast complementation assay, we established that PfMYST is a true homolog of TIP60 and showed that NU9056 can inhibit PfMYST catalytic activity and kill P. falciparum parasites in culture. Inhibiting the catalytic activity of PfMYST arrests the parasite in the trophozoite stage and inhibits its further transition to the schizont stage, eventually leading to its death. Overall, our study provides proof of concept that PfMYST catalytic activity is essential for parasite growth and survival and that PfMYST can be a potential target for antimalarial therapy.
Collapse
|
9
|
Wang Y, Yang HJ, Harrison PM. The relationship between protein domains and homopeptides in the Plasmodium falciparum proteome. PeerJ 2020; 8:e9940. [PMID: 33062426 PMCID: PMC7534687 DOI: 10.7717/peerj.9940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/24/2020] [Indexed: 12/03/2022] Open
Abstract
The proteome of the malaria parasite Plasmodium falciparum is notable for the pervasive occurrence of homopeptides or low-complexity regions (i.e., regions that are made from a small subset of amino-acid residue types). The most prevalent of these are made from residues encoded by adenine/thymidine (AT)-rich codons, in particular asparagine. We examined homopeptide occurrences within protein domains in P. falciparum. Homopeptide enrichments occur for hydrophobic (e.g., valine), or small residues (alanine or glycine) in short spans (<5 residues), but these enrichments disappear for longer lengths. We observe that short asparagine homopeptides (<10 residues long) have a dramatic relative depletion inside protein domains, indicating some selective constraint to keep them from forming. We surmise that this is possibly linked to co-translational protein folding, although there are specific protein domains that are enriched in longer asparagine homopeptides (≥10 residues) indicating a functional linkage for specific poly-asparagine tracts. Top gene ontology functional category enrichments for homopeptides associated with diverse protein domains include “vesicle-mediated transport”, and “DNA-directed 5′-3′ RNA polymerase activity”, with various categories linked to “binding” evidencing significant homopeptide depletions. Also, in general homopeptides are substantially enriched in the parts of protein domains that are near/in IDRs. The implications of these findings are discussed.
Collapse
|
10
|
Florentz C, Giegé R. History of tRNA research in strasbourg. IUBMB Life 2019; 71:1066-1087. [PMID: 31185141 DOI: 10.1002/iub.2079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/06/2019] [Indexed: 01/03/2023]
Abstract
The tRNA molecules, in addition to translating the genetic code into protein and defining the second genetic code via their aminoacylation by aminoacyl-tRNA synthetases, act in many other cellular functions and dysfunctions. This article, illustrated by personal souvenirs, covers the history of ~60 years tRNA research in Strasbourg. Typical examples point up how the work in Strasbourg was a two-way street, influenced by and at the same time influencing investigators outside of France. All along, research in Strasbourg has nurtured the structural and functional diversity of tRNA. It produced massive sequence and crystallographic data on tRNA and its partners, thereby leading to a deeper physicochemical understanding of tRNA architecture, dynamics, and identity. Moreover, it emphasized the role of nucleoside modifications and in the last two decades, highlighted tRNA idiosyncrasies in plants and organelles, together with cellular and health-focused aspects. The tRNA field benefited from a rich local academic heritage and a strong support by both university and CNRS. Its broad interlinks to the worldwide community of tRNA researchers opens to an exciting future. © 2019 IUBMB Life, 2019 © 2019 IUBMB Life, 71(8):1066-1087, 2019.
Collapse
Affiliation(s)
- Catherine Florentz
- Architecture et Réactivité de l'ARN, UPR 9002, Institut de Biologie Moléculaire et Cellulaire, CNRS and Université de Strasbourg, F-67084, 15 rue René Descartes, Strasbourg, France.,Direction de la Recherche et de la Valorisation, Université de Strasbourg, F-67084, 4 rue Blaise Pascal, Strasbourg, France
| | - Richard Giegé
- Architecture et Réactivité de l'ARN, UPR 9002, Institut de Biologie Moléculaire et Cellulaire, CNRS and Université de Strasbourg, F-67084, 15 rue René Descartes, Strasbourg, France
| |
Collapse
|
11
|
Patel SK, Rajora N, Kumar S, Sahu A, Kochar SK, Krishna CM, Srivastava S. Rapid Discrimination of Malaria- and Dengue-Infected Patients Sera Using Raman Spectroscopy. Anal Chem 2019; 91:7054-7062. [PMID: 31033270 DOI: 10.1021/acs.analchem.8b05907] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Malaria and dengue have overlapping clinical symptoms and are prevalent in the same geographic region (tropical and subtropical), hence precise diagnosis is challenging. The high mortality rate associated with both malaria and dengue could be attributed to "false", "delayed", or "missed" diagnosis. The present study thus aims to stratify malaria and dengue using Raman spectroscopy (RS). In total, 130 human sera were analyzed for model development and double-blinded testing. Principal components linear discriminant analysis (PC-LDA) of acquired RS-spectra could classify malaria and dengue with a minor overlap of 16.7%. Receiver operating characteristic (ROC) analysis of test samples showed sensitivity/specificity of 0.9529 for malaria vs healthy controls (HC) and 0.9584 for dengue vs HC. The Raman findings were complemented by mass spectroscopy (MS)-based metabolite analysis of 8 individuals, each from malaria, dengue, and HC. Several of the metabolites, including amino acids, cell-free DNA, creatinine, and bilirubin, assigned for the predominant RS-bands were also identified by MS and showed similar trends. Our data clearly indicates that RS-based serum analysis using a microprobe has immense potential for early, accurate, and automated detection and discrimination of malaria and dengue, and in the future, it could be extrapolated in field-settings combined with hand-held RS. Further, this approach might be extended to diagnose other closely related infections with similar clinical manifestations.
Collapse
Affiliation(s)
- Sandip K Patel
- Department of Biosciences and Bioengineering , Indian Institute of Technology Bombay , Powai , Mumbai 400076 , India
| | - Nishant Rajora
- Department of Biosciences and Bioengineering , Indian Institute of Technology Bombay , Powai , Mumbai 400076 , India
| | - Saurabh Kumar
- Department of Biosciences and Bioengineering , Indian Institute of Technology Bombay , Powai , Mumbai 400076 , India
| | - Aditi Sahu
- Chilakapati Lab, ACTREC , Tata Memorial Center , Kharghar, Navi Mumbai 410210 , India
| | - Sanjay K Kochar
- Department of Medicine, Malaria Research Center , S.P. Medical College , Bikaner 334003 , India
| | - C Murali Krishna
- Chilakapati Lab, ACTREC , Tata Memorial Center , Kharghar, Navi Mumbai 410210 , India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering , Indian Institute of Technology Bombay , Powai , Mumbai 400076 , India
| |
Collapse
|
12
|
Nyamai DW, Tastan Bishop Ö. Aminoacyl tRNA synthetases as malarial drug targets: a comparative bioinformatics study. Malar J 2019; 18:34. [PMID: 30728021 PMCID: PMC6366043 DOI: 10.1186/s12936-019-2665-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/27/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Treatment of parasitic diseases has been challenging due to evolution of drug resistant parasites, and thus there is need to identify new class of drugs and drug targets. Protein translation is important for survival of malarial parasite, Plasmodium, and the pathway is present in all of its life cycle stages. Aminoacyl tRNA synthetases are primary enzymes in protein translation as they catalyse amino acid addition to the cognate tRNA. This study sought to understand differences between Plasmodium and human aminoacyl tRNA synthetases through bioinformatics analysis. METHODS Plasmodium berghei, Plasmodium falciparum, Plasmodium fragile, Plasmodium knowlesi, Plasmodium malariae, Plasmodium ovale, Plasmodium vivax, Plasmodium yoelii and human aminoacyl tRNA synthetase sequences were retrieved from UniProt database and grouped into 20 families based on amino acid specificity. These families were further divided into two classes. Both families and classes were analysed. Motif discovery was carried out using the MEME software, sequence identity calculation was done using an in-house Python script, multiple sequence alignments were performed using PROMALS3D and TCOFFEE tools, and phylogenetic tree calculations were performed using MEGA vs 7.0 tool. Possible alternative binding sites were predicted using FTMap webserver and SiteMap tool. RESULTS Motif discovery revealed Plasmodium-specific motifs while phylogenetic tree calculations showed that Plasmodium proteins have different evolutionary history to the human homologues. Human aaRSs sequences showed low sequence identity (below 40%) compared to Plasmodium sequences. Prediction of alternative binding sites revealed potential druggable sites in PfArgRS, PfMetRS and PfProRS at regions that are weakly conserved when compared to the human homologues. Multiple sequence analysis, motif discovery, pairwise sequence identity calculations and phylogenetic tree analysis showed significant differences between parasite and human aaRSs proteins despite functional and structural conservation. These differences may provide a basis for further exploration of Plasmodium aminoacyl tRNA synthetases as potential drug targets. CONCLUSION This study showed that, despite, functional and structural conservation, Plasmodium aaRSs have key differences from the human homologues. These differences in Plasmodium aaRSs can be targeted to develop anti-malarial drugs with less toxicity to the host.
Collapse
Affiliation(s)
- Dorothy Wavinya Nyamai
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.
| |
Collapse
|
13
|
Soupene E, Kuypers FA. ACBD6 protein controls acyl chain availability and specificity of the N-myristoylation modification of proteins. J Lipid Res 2019; 60:624-635. [PMID: 30642881 DOI: 10.1194/jlr.m091397] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/10/2019] [Indexed: 11/20/2022] Open
Abstract
Members of the human acyl-CoA binding domain-containing (ACBD) family regulate processes as diverse as viral replication, stem-cell self-renewal, organelle organization, and protein acylation. These functions are defined by nonconserved motifs present downstream of the ACBD. The human ankyrin-repeat-containing ACBD6 protein supports the reaction catalyzed by the human and Plasmodium N-myristoyltransferase (NMT) enzymes. Likewise, the newly identified Plasmodium ACBD6 homologue regulates the activity of the NMT enzymes. The relatively low abundance of myristoyl-CoA in the cell limits myristoylation. Binding of myristoyl-CoA to NMT is competed by more abundant acyl-CoA species such as palmitoyl-CoA. ACBD6 also protects the Plasmodium NMT enzyme from lauryl-CoA and forces the utilization of the myristoyl-CoA substrate. The phosphorylation of two serine residues of the acyl-CoA binding domain of human ACBD6 improves ligand binding capacity, prevents competition by unbound acyl-CoAs, and further enhances the activity of NMT. Thus, ACBD6 proteins promote N-myristoylation in mammalian cells and in one of their intracellular parasites under unfavorable substrate-limiting conditions.
Collapse
Affiliation(s)
- Eric Soupene
- Children's Hospital Oakland Research Institute, Oakland, CA
| | | |
Collapse
|
14
|
Davies HM, Nofal SD, McLaughlin EJ, Osborne AR. Repetitive sequences in malaria parasite proteins. FEMS Microbiol Rev 2018; 41:923-940. [PMID: 29077880 DOI: 10.1093/femsre/fux046] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/13/2017] [Indexed: 12/13/2022] Open
Abstract
Five species of parasite cause malaria in humans with the most severe disease caused by Plasmodium falciparum. Many of the proteins encoded in the P. falciparum genome are unusually enriched in repetitive low-complexity sequences containing a limited repertoire of amino acids. These repetitive sequences expand and contract dynamically and are among the most rapidly changing sequences in the genome. The simplest repetitive sequences consist of single amino acid repeats such as poly-asparagine tracts that are found in approximately 25% of P. falciparum proteins. More complex repeats of two or more amino acids are also common in diverse parasite protein families. There is no universal explanation for the occurrence of repetitive sequences and it is possible that many confer no function to the encoded protein and no selective advantage or disadvantage to the parasite. However, there are increasing numbers of examples where repetitive sequences are important for parasite protein function. We discuss the diverse roles of low-complexity repetitive sequences throughout the parasite life cycle, from mediating protein-protein interactions to enabling the parasite to evade the host immune system.
Collapse
Affiliation(s)
- Heledd M Davies
- The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Stephanie D Nofal
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Emilia J McLaughlin
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Andrew R Osborne
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom.,Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, Malet Street, London, WC1E 7HX, United Kingdom
| |
Collapse
|
15
|
Gajbhiye S, Patra P, Yadav MK. New insights into the factors affecting synonymous codon usage in human infecting Plasmodium species. Acta Trop 2017; 176:29-33. [PMID: 28751162 DOI: 10.1016/j.actatropica.2017.07.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/18/2017] [Accepted: 07/21/2017] [Indexed: 02/07/2023]
Abstract
Codon usage bias is due to the non-random usage of synonymous codons for coding amino acids. The synonymous sites are under weak selection, and codon usage bias is maintained by the equilibrium in mutational bias, genetic drift and selection pressure. The differential codon usage choices are also relevant to human infecting Plasmodium species. Recently, P. knowlesi switches its natural host, long-tailed macaques, and starts infecting humans. This review focuses on the comparative analysis of codon usage choices among human infecting P. falciparum and P. vivax along with P. knowlesi species taking their coding sequence data. The variation in GC content, amino acid frequencies, effective number of codons and other factors plays a crucial role in determining synonymous codon choices. Within species codon choices are more similar for P. vivax and P. knowlesi in comparison with P. falciparum species. This study suggests that synonymous codon choice modulates the gene expression level, mRNA stability, ribosome speed, protein folding, translation efficiency and its accuracy in Plasmodium species, and provides a valuable information regarding the codon usage pattern to facilitate gene cloning as well as expression and transfection studies for malaria causing species.
Collapse
|
16
|
Frequent GU wobble pairings reduce translation efficiency in Plasmodium falciparum. Sci Rep 2017; 7:723. [PMID: 28389662 PMCID: PMC5429705 DOI: 10.1038/s41598-017-00801-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/13/2017] [Indexed: 11/08/2022] Open
Abstract
Plasmodium falciparum genome has 81% A+T content. This nucleotide bias leads to extreme codon usage bias and culminates in frequent insertion of asparagine homorepeats in the proteome. Using recodonized GFP sequences, we show that codons decoded via G:U wobble pairing are suboptimal codons that are negatively associated to protein translation efficiency. Despite this, one third of all codons in the genome are GU wobble codons, suggesting that codon usage in P. falciparum has not been driven to maximize translation efficiency, but may have evolved as translational regulatory mechanism. Particularly, asparagine homorepeats are generally encoded by locally clustered GU wobble AAT codons, we demonstrated that this GU wobble-rich codon context is the determining factor that causes reduction of protein level. Moreover, insertion of clustered AAT codons also causes destabilization of the transcripts. Interestingly, more frequent asparagine homorepeats insertion is seen in single-exon genes, suggesting transcripts of these genes may have been programmed for rapid mRNA decay to compensate for the inefficiency of mRNA surveillance regulation on intronless genes. To our knowledge, this is the first study that addresses P. falciparum codon usage in vitro and provides new insights on translational regulation and genome evolution of this parasite.
Collapse
|
17
|
Apicomplexa-specific tRip facilitates import of exogenous tRNAs into malaria parasites. Proc Natl Acad Sci U S A 2016; 113:4717-22. [PMID: 27071116 DOI: 10.1073/pnas.1600476113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The malaria-causing Plasmodium parasites are transmitted to vertebrates by mosquitoes. To support their growth and replication, these intracellular parasites, which belong to the phylum Apicomplexa, have developed mechanisms to exploit their hosts. These mechanisms include expropriation of small metabolites from infected host cells, such as purine nucleotides and amino acids. Heretofore, no evidence suggested that transfer RNAs (tRNAs) could also be exploited. We identified an unusual gene in Apicomplexa with a coding sequence for membrane-docking and structure-specific tRNA binding. This Apicomplexa protein-designated tRip (tRNA import protein)-is anchored to the parasite plasma membrane and directs import of exogenous tRNAs. In the absence of tRip, the fitness of the parasite stage that multiplies in the blood is significantly reduced, indicating that the parasite may need host tRNAs to sustain its own translation and/or as regulatory RNAs. Plasmodium is thus the first example, to our knowledge, of a cell importing exogenous tRNAs, suggesting a remarkable adaptation of this parasite to extend its reach into host cell biology.
Collapse
|
18
|
Asparagine requirement in Plasmodium berghei as a target to prevent malaria transmission and liver infections. Nat Commun 2015; 6:8775. [PMID: 26531182 PMCID: PMC4659947 DOI: 10.1038/ncomms9775] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 09/29/2015] [Indexed: 01/29/2023] Open
Abstract
The proteins of Plasmodium, the malaria parasite, are strikingly rich in asparagine. Plasmodium depends primarily on host haemoglobin degradation for amino acids and has a rudimentary pathway for amino acid biosynthesis, but retains a gene encoding asparagine synthetase (AS). Here we show that deletion of AS in Plasmodium berghei (Pb) delays the asexual- and liver-stage development with substantial reduction in the formation of ookinetes, oocysts and sporozoites in mosquitoes. In the absence of asparagine synthesis, extracellular asparagine supports suboptimal survival of PbAS knockout (KO) parasites. Depletion of blood asparagine levels by treating PbASKO-infected mice with asparaginase completely prevents the development of liver stages, exflagellation of male gametocytes and the subsequent formation of sexual stages. In vivo supplementation of asparagine in mice restores the exflagellation of PbASKO parasites. Thus, the parasite life cycle has an absolute requirement for asparagine, which we propose could be targeted to prevent malaria transmission and liver infections. Malaria parasites obtain amino acids primarily from the host, but possess a gene encoding a putative asparagine synthetase. Here, the authors show that this enzyme is functional and that asparagine is crucial for the development of the parasite's sexual stages in mosquitoes and liver stages in mice.
Collapse
|
19
|
Bhartiya D, Chandramouli B, Kumar N. Co-evolutionary analysis implies auxiliary functions of HSP110 in Plasmodium falciparum. Proteins 2015; 83:1513-25. [DOI: 10.1002/prot.24842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 05/21/2015] [Accepted: 05/27/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Deeksha Bhartiya
- Institute of Cytology and Preventive Oncology (ICMR); Noida 201301 Uttar Pradesh India
| | | | - Niti Kumar
- CSIR-Central Drug Research Institute; Lucknow 226031 Uttar Pradesh India
| |
Collapse
|
20
|
Jain V, Kikuchi H, Oshima Y, Sharma A, Yogavel M. Structural and functional analysis of the anti-malarial drug target prolyl-tRNA synthetase. ACTA ACUST UNITED AC 2014; 15:181-90. [PMID: 25047712 DOI: 10.1007/s10969-014-9186-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/04/2014] [Indexed: 12/21/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) drive protein translation in cells and hence these are essential enzymes across life. Inhibition of these enzymes can halt growth of an organism by stalling protein translation. Therefore, small molecule targeting of aaRS active sites is an attractive avenue from the perspective of developing anti-infectives. Febrifugine and its derivatives like halofuginone (HF) are known to inhibit prolyl-tRNA synthetase of malaria parasite Plasmodium falciparum. Here, we present functional and crystallographic data on P. falciparum prolyl-tRNA synthetase (PfPRS). Using immunofluorescence data, we show that PfPRS is exclusively resident in the parasite cytoplasm within asexual blood stage parasites. The inhibitor HF interacts strongly with PfPRS in a non-competitive binding mode in presence or absence of ATP analog. Intriguingly, the two monomers that constitute dimeric PfPRS display significantly different conformations in their active site regions. The structural analyses presented here provide a framework for development of febrifugine derivatives that can seed development of new anti-malarials.
Collapse
Affiliation(s)
- Vitul Jain
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067, India
| | | | | | | | | |
Collapse
|
21
|
Structural basis of malaria parasite lysyl-tRNA synthetase inhibition by cladosporin. ACTA ACUST UNITED AC 2014; 15:63-71. [PMID: 24935905 DOI: 10.1007/s10969-014-9182-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 05/24/2014] [Indexed: 10/25/2022]
Abstract
Malaria parasites inevitably develop drug resistance to anti-malarials over time. Hence the immediacy for discovering new chemical scaffolds to include in combination malaria drug therapy. The desirable attributes of new chemotherapeutic agents currently include activity against both liver and blood stage malaria parasites. One such recently discovered compound called cladosporin abrogates parasite growth via inhibition of Plasmodium falciparum lysyl-tRNA synthetase (PfKRS), an enzyme central to protein translation. Here, we present crystal structure of ternary PfKRS-lysine-cladosporin (PfKRS-K-C) complex that reveals cladosporin's remarkable ability to mimic the natural substrate adenosine and thereby colonize PfKRS active site. The isocoumarin fragment of cladosporin sandwiches between critical adenine-recognizing residues while its pyran ring fits snugly in the ribose-recognizing cavity. PfKRS-K-C structure highlights ample space within PfKRS active site for further chemical derivatization of cladosporin. Such derivatives may be useful against additional human pathogens that retain high conservation in cladosporin chelating residues within their lysyl-tRNA synthetase.
Collapse
|