1
|
Bodra N, Toh E, Nadeem A, Wai SN, Persson K. MakC and MakD are two proteins associated with a tripartite toxin of Vibrio cholerae. Front Microbiol 2024; 15:1457850. [PMID: 39421563 PMCID: PMC11484084 DOI: 10.3389/fmicb.2024.1457850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Pathogenic serotypes of Vibrio cholerae, transmitted through contaminated water and food, are responsible for outbreaks of cholera, an acute diarrheal disease. While the cholera toxin is the primary virulence factor, V. cholerae also expresses other virulence factors, such as the tripartite toxin MakABE that is secreted via the bacterial flagellum. These three proteins are co-expressed with two accessory proteins, MakC and MakD, whose functions remain unknown. Here, we present the crystal structures of MakC and MakD, revealing that they are similar in both sequence and structure but lack other close structural relatives. Our study further investigates the roles of MakC and MakD, focusing on their impact on the expression and secretion of the components of the MakABE tripartite toxin. Through deletion mutant analysis, we found that individual deletions of makC or makD do not significantly affect MakA expression or secretion. However, the deletion of both makC and makD impairs the expression of MakB, which is directly downstream, and decreases the expression of MakE, which is separated from makCD by two genes. Conversely, MakA, encoded by the makA gene located between makB and makE, is expressed normally but its secretion is impaired. Additionally, our findings indicate that MakC, in contrast to MakD, exhibits strong interactions with other proteins. Furthermore, both MakC and MakD were observed to be localized within the cytosol of the bacterial cell. This study provides new insights into the regulatory mechanisms affecting the Mak protein family in V. cholerae and highlights the complex interplay between gene proximity and protein expression.
Collapse
Affiliation(s)
- Nandita Bodra
- Department of Chemistry, Umeå University, Umeå, Sweden
- Umeå Center for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Eric Toh
- Umeå Center for Microbial Research (UCMR), Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Aftab Nadeem
- Umeå Center for Microbial Research (UCMR), Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Sun Nyunt Wai
- Umeå Center for Microbial Research (UCMR), Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Karina Persson
- Department of Chemistry, Umeå University, Umeå, Sweden
- Umeå Center for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| |
Collapse
|
2
|
Roberts CS, Shannon AB, Korotkov KV, Sandkvist M. Differential processing of VesB by two rhomboid proteases in Vibrio cholerae. mBio 2024; 15:e0127024. [PMID: 39136457 PMCID: PMC11389362 DOI: 10.1128/mbio.01270-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/08/2024] [Indexed: 08/21/2024] Open
Abstract
Rhomboid proteases are universally conserved and facilitate the proteolysis of peptide bonds within or adjacent to cell membranes. While eukaryotic rhomboid proteases have been demonstrated to harbor unique cellular roles, prokaryotic members have been far less characterized. For the first time, we demonstrate that Vibrio cholerae expresses two active rhomboid proteases that cleave a shared substrate at distinct sites, resulting in differential localization of the processed protein. The rhomboid protease rhombosortase (RssP) was previously found to process a novel C-terminal domain called GlyGly-CTERM, as demonstrated by its effect on the extracellular serine protease VesB during its transport through the V. cholerae cell envelope. Here, we characterize the substrate specificity of RssP and GlpG, the universally conserved bacterial rhomboid proteases. We show that RssP has distinct cleavage specificity from GlpG, and specific residues within the GlyGly-CTERM of VesB target it to RssP over GlpG, allowing for efficient proteolysis. RssP cleaves VesB within its transmembrane domain, whereas GlpG cleaves outside the membrane in a disordered loop that precedes the GlyGly-CTERM. Cleavage of VesB by RssP initially targets VesB to the bacterial cell surface and, subsequently, to outer membrane vesicles, while GlpG cleavage results in secreted, fully soluble VesB. Collectively, this work builds on the molecular understanding of rhomboid proteolysis and provides the basis for additional rhomboid substrate recognition while also demonstrating a unique role of RssP in the maturation of proteins containing a GlyGly-CTERM. IMPORTANCE Despite a great deal of insight into the eukaryotic homologs, bacterial rhomboid proteases have been relatively understudied. Our research aims to understand the function of two rhomboid proteases in Vibrio cholerae. This work is significant because it will help us better understand the catalytic mechanism of rhomboid proteases as a whole and assign a specific role to a unique subfamily whose function is to process a subset of effector molecules secreted by V. cholerae and other pathogenic bacteria.
Collapse
Affiliation(s)
- Cameron S Roberts
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Austin B Shannon
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Konstantin V Korotkov
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Maria Sandkvist
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Kawase T, Debnath A, Mizuno T, Miyake Y. Investigation of the Expression of Serine Protease in <i>Vibrio vulnificus</i>. Biol Pharm Bull 2022; 45:1596-1601. [DOI: 10.1248/bpb.b22-00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tomoka Kawase
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Anusuya Debnath
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Tamaki Mizuno
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Yui Miyake
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| |
Collapse
|
4
|
Miyoshi SI, Toko N, Dodo T, Nanko A, Mizuno T. Second extracellular protease mediating maturation of Vibrio mimicus hemolysin. World J Microbiol Biotechnol 2022; 38:241. [PMID: 36271946 DOI: 10.1007/s11274-022-03436-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/07/2022] [Indexed: 11/25/2022]
Abstract
Vibrio mimicus is a bacterium that causes gastroenteritis in humans. This pathogen produces an enterotoxic hemolysin called V. mimicus hemolysin (VMH), which is secreted extracellularly as an inactive 80-kDa protoxin and converted to a 66-kDa mature toxin through cleavage between Arg151 and Ser152. The 56-kDa serine protease termed V. mimicus trypsin-like protease (VmtA) is known to mediate this maturating process. However, some strains including strain ES-20 does not possess the vmtA gene. In the present study, the vmtA-negative strains were found to have a replaced gene that encodes a 43-kDa (403 aa) precursor of a serine protease designated by VmtX (V. mimicus trypsin-like protease X). To examine whether VmtX is also involved in the maturation of VMH, VmtX was isolated from the culture supernatant of V. mimicus strain NRE-20, a metalloprotease-negative mutant constructed from strain ES-20. Concretely, the culture supernatant was fractionated with 70% saturated ammonium sulfate and subjected to affinity column chromatography using a HiTrap Benzamidine FF column. The analysis of the N-terminal amino acid sequences of the proteins in the obtained VmtX preparation indicated that the 39-kDa protein was active VmtX consisting of 371 aa (Ile33-Ser403). The VmtX preparation was found to activate pro-VMH through generation of the 66-kDa protein. Additionally, treatment of the VmtX preparation with serine protease inhibitors, such as leupeptin and phenylmethylsulfonyl fluoride, significantly suppressed the activities to hydrolyze the specific peptide substrate and to synthesize the 66-kDa toxin. These findings indicate that VmtX is the second protease that mediats the maturation of VMH.
Collapse
Affiliation(s)
- Shin-Ichi Miyoshi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushima-Naka, Kita-Ku, Okayama, Okayama, 700-8530, Japan.
| | - Norie Toko
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushima-Naka, Kita-Ku, Okayama, Okayama, 700-8530, Japan
| | - Tetsuya Dodo
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushima-Naka, Kita-Ku, Okayama, Okayama, 700-8530, Japan
| | - Ayako Nanko
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushima-Naka, Kita-Ku, Okayama, Okayama, 700-8530, Japan
| | - Tamaki Mizuno
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushima-Naka, Kita-Ku, Okayama, Okayama, 700-8530, Japan
| |
Collapse
|
5
|
In Silico Approach Gives Insights into Ig-like Fold Containing Proteins in Vibrio parahaemolyticus: A Focus on the Fibrillar Adhesins. Toxins (Basel) 2022; 14:toxins14020133. [PMID: 35202160 PMCID: PMC8877628 DOI: 10.3390/toxins14020133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 12/10/2022] Open
Abstract
Immunoglobulin-like (Ig-like) fold domains are abundant on the surface of bacteria, where they are required for cell-to-cell recognition, adhesion, biofilm formation, and conjugative transfer. Fibrillar adhesins are proteins with Ig-like fold(s) that have filamentous structures at the cell surface, being thinner and more flexible than pili. While the roles of fibrillar adhesins have been proposed in bacteria overall, their characterization in Vibrio parahaemolyticus has not been established and, therefore, understanding about fibrillar adhesins remain limited in V. parahaemolyticus. This in silico analysis can aid in the systematic identification of Ig-like-folded and fibrillar adhesin-like proteins in V. parahaemolyticus, opening new avenues for disease prevention by interfering in microbial interaction between V. parahaemolyticus and the host.
Collapse
|
6
|
Mathieu-Denoncourt A, Duperthuy M. Secretome analysis reveals a role of subinhibitory concentrations of polymyxin B in the survival of Vibrio cholerae mediated by the type VI secretion system. Environ Microbiol 2021; 24:1133-1149. [PMID: 34490971 DOI: 10.1111/1462-2920.15762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/04/2021] [Indexed: 11/30/2022]
Abstract
Antimicrobials are commonly used in prevention of infections including in aquaculture, agriculture and medicine. Subinhibitory concentrations of antimicrobial peptides can modulate resistance, virulence and persistence effectors in Gram-negative pathogens. In this study, we investigated the effect of subinhibitory concentrations of polymyxin B (PmB) on the secretome of Vibrio cholerae, a natural inhabitant of aquatic environments and the pathogen responsible for the cholera disease. Our proteomic approach revealed that the abundance of many extracellular proteins is affected by PmB and some of them are detected only either in the presence or in the absence of PmB. The type VI secretion system (T6SS) secreted hemolysin-coregulated protein (Hcp) displayed an increased abundance in the presence of PmB. Hcp is also more abundant in the bacterial cells in the presence of PmB and hcp expression is upregulated upon PmB supplementation. No effect of the T6SS on antimicrobial resistance was observed. Conversely, PmB increases the T6SS-dependent cytotoxicity of V. cholerae towards the amoeba Dictyostelium discoideum and its ability to compete with Escherichia coli.
Collapse
Affiliation(s)
- Annabelle Mathieu-Denoncourt
- Department de Microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montreal, Montreal, Quebec, H3T 1J4, Canada
| | - Marylise Duperthuy
- Department de Microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montreal, Montreal, Quebec, H3T 1J4, Canada
| |
Collapse
|
7
|
Suppressor Mutations in Type II Secretion Mutants of Vibrio cholerae: Inactivation of the VesC Protease. mSphere 2020; 5:5/6/e01125-20. [PMID: 33328352 PMCID: PMC7771236 DOI: 10.1128/msphere.01125-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Genome-wide transposon mutagenesis has identified the genes encoding the T2SS in Vibrio cholerae as essential for viability, but the reason for this is unclear. Mutants with deletions or insertions in these genes can be isolated, suggesting that they have acquired secondary mutations that suppress their growth defect. The type II secretion system (T2SS) is a conserved transport pathway responsible for the secretion of a range of virulence factors by many pathogens, including Vibrio cholerae. Disruption of the T2SS genes in V. cholerae results in loss of secretion, changes in cell envelope function, and growth defects. While T2SS mutants are viable, high-throughput genomic analyses have listed these genes among essential genes. To investigate whether secondary mutations arise as a consequence of T2SS inactivation, we sequenced the genomes of six V. cholerae T2SS mutants with deletions or insertions in either the epsG, epsL, or epsM genes and identified secondary mutations in all mutants. Two of the six T2SS mutants contain distinct mutations in the gene encoding the T2SS-secreted protease VesC. Other mutations were found in genes coding for V. cholerae cell envelope proteins. Subsequent sequence analysis of the vesC gene in 92 additional T2SS mutant isolates identified another 19 unique mutations including insertions or deletions, sequence duplications, and single-nucleotide changes resulting in amino acid substitutions in the VesC protein. Analysis of VesC variants and the X-ray crystallographic structure of wild-type VesC suggested that all mutations lead to loss of VesC production and/or function. One possible mechanism by which V. cholerae T2SS mutagenesis can be tolerated is through selection of vesC-inactivating mutations, which may, in part, suppress cell envelope damage, establishing permissive conditions for the disruption of the T2SS. Other mutations may have been acquired in genes encoding essential cell envelope proteins to prevent proteolysis by VesC. IMPORTANCE Genome-wide transposon mutagenesis has identified the genes encoding the T2SS in Vibrio cholerae as essential for viability, but the reason for this is unclear. Mutants with deletions or insertions in these genes can be isolated, suggesting that they have acquired secondary mutations that suppress their growth defect. Through whole-genome sequencing and phenotypic analysis of T2SS mutants, we show that one means by which the growth defect can be suppressed is through mutations in the gene encoding the T2SS substrate VesC. VesC homologues are present in other Vibrio species and close relatives, and this may be why inactivation of the T2SS in species such as Vibrio vulnificus, Vibrio sp. strain 60, and Aeromonas hydrophila also results in a pleiotropic effect on their outer membrane assembly and integrity.
Collapse
|
8
|
Denesyuk AI, Johnson MS, Salo-Ahen OMH, Uversky VN, Denessiouk K. NBCZone: Universal three-dimensional construction of eleven amino acids near the catalytic nucleophile and base in the superfamily of (chymo)trypsin-like serine fold proteases. Int J Biol Macromol 2020; 153:399-411. [PMID: 32151723 PMCID: PMC7124590 DOI: 10.1016/j.ijbiomac.2020.03.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 10/25/2022]
Abstract
(Chymo)trypsin-like serine fold proteases belong to the serine/cysteine proteases found in eukaryotes, prokaryotes, and viruses. Their catalytic activity is carried out using a triad of amino acids, a nucleophile, a base, and an acid. For this superfamily of proteases, we propose the existence of a universal 3D structure comprising 11 amino acids near the catalytic nucleophile and base - Nucleophile-Base Catalytic Zone (NBCZone). The comparison of NBCZones among 169 eukaryotic, prokaryotic, and viral (chymo)trypsin-like proteases suggested the existence of 15 distinct groups determined by the combination of amino acids located at two "key" structure-functional positions 54T and 55T near the catalytic base His57T. Most eukaryotic and prokaryotic proteases fell into two major groups, [ST]A and TN. Usually, proteases of [ST]A group contain a disulfide bond between cysteines Cys42T and Cys58T of the NBCZone. In contrast, viral proteases were distributed among seven groups, and lack this disulfide bond. Furthermore, only the [ST]A group of eukaryotic proteases contains glycine at position 43T, which is instrumental for activation of these enzymes. In contrast, due to the side chains of residues at position 43T prokaryotic and viral proteases do not have the ability to carry out the structural transition of the eukaryotic zymogen-zyme type.
Collapse
Affiliation(s)
- Alexander I Denesyuk
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Russia; Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland.
| | - Mark S Johnson
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Outi M H Salo-Ahen
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland; Pharmaceutical Sciences Laboratory, Pharmacy, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Vladimir N Uversky
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Konstantin Denessiouk
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland; Pharmaceutical Sciences Laboratory, Pharmacy, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| |
Collapse
|
9
|
Abstract
The type II secretion system (T2SS) delivers toxins and a range of hydrolytic enzymes, including proteases, lipases, and carbohydrate-active enzymes, to the cell surface or extracellular space of Gram-negative bacteria. Its contribution to survival of both extracellular and intracellular pathogens as well as environmental species of proteobacteria is evident. This dynamic, multicomponent machinery spans the entire cell envelope and consists of a cytoplasmic ATPase, several inner membrane proteins, a periplasmic pseudopilus, and a secretin pore embedded in the outer membrane. Despite the trans-envelope configuration of the T2S nanomachine, proteins to be secreted engage with the system first once they enter the periplasmic compartment via the Sec or TAT export system. Thus, the T2SS is specifically dedicated to their outer membrane translocation. The many sequence and structural similarities between the T2SS and type IV pili suggest a common origin and argue for a pilus-mediated mechanism of secretion. This minireview describes the structures, functions, and interactions of the individual T2SS components and the general architecture of the assembled T2SS machinery and briefly summarizes the transport and function of a growing list of T2SS exoproteins. Recent advances in cryo-electron microscopy, which have led to an increased understanding of the structure-function relationship of the secretin channel and the pseudopilus, are emphasized.
Collapse
|
10
|
Terceti MS, Vences A, Matanza XM, Barca AV, Noia M, Lisboa J, dos Santos NMS, do Vale A, Osorio CR. The RstAB System Impacts Virulence, Motility, Cell Morphology, Penicillin Tolerance and Production of Type II Secretion System-Dependent Factors in the Fish and Human Pathogen Photobacterium damselae subsp. damselae. Front Microbiol 2019; 10:897. [PMID: 31105680 PMCID: PMC6491958 DOI: 10.3389/fmicb.2019.00897] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/08/2019] [Indexed: 01/04/2023] Open
Abstract
The RstB histidine kinase of the two component system RstAB positively regulates the expression of damselysin (Dly), phobalysin P (PhlyP) and phobalysin C (PhlyC) cytotoxins in the fish and human pathogen Photobacterium damselae subsp. damselae, a marine bacterium of the family Vibrionaceae. However, the function of the predicted cognate response regulator RstA has not been studied so far, and the role of the RstAB system in other cell functions and phenotypes remain uninvestigated. Here, we analyzed the effect of rstA and rstB mutations in cell fitness and in diverse virulence-related features. Both rstA and rstB mutants were severely impaired in virulence for sea bream and sea bass fish. Mutants in rstA and rstB genes were impaired in hemolysis and in Dly-dependent phospholipase activity but had intact PlpV-dependent phospholipase and ColP-dependent gelatinase activities. rstA and rstB mutants grown at 0.5% NaCl exhibited impaired swimming motility, enlarged cell size and impaired ability to separate after cell division, whereas at 1% NaCl the mutants exhibited normal phenotypes. Mutation of any of the two genes also impacted tolerance to benzylpenicillin. Notably, rstA and rstB mutants showed impaired secretion of a number of type II secretion system (T2SS)-dependent proteins, which included the three major cytotoxins Dly, PhlyP and PhlyC, as well as a putative delta-endotoxin and three additional uncharacterized proteins which might constitute novel virulence factors of this pathogenic bacterium. The analysis of the T2SS-dependent secretome of P. damselae subsp. damselae also led to the identification of RstAB-independent potential virulence factors as lipoproteins, sialidases and proteases. The RstAB regulon included plasmid, chromosome I and chromosome II-encoded genes that showed a differential distribution among isolates of this subspecies. This study establishes RstAB as a major regulator of virulence and diverse cellular functions in P. damselae subsp. damselae.
Collapse
Affiliation(s)
- Mateus S. Terceti
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela – USC, Santiago de Compostela, Spain
| | - Ana Vences
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela – USC, Santiago de Compostela, Spain
| | - Xosé M. Matanza
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela – USC, Santiago de Compostela, Spain
| | - Alba V. Barca
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela – USC, Santiago de Compostela, Spain
| | - Manuel Noia
- Departamento de Bioloxía Funcional, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela – USC, Santiago de Compostela, Spain
| | - Johnny Lisboa
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Nuno M. S. dos Santos
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ana do Vale
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Carlos R. Osorio
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela – USC, Santiago de Compostela, Spain
| |
Collapse
|
11
|
Gadwal S, Johnson TL, Remmer H, Sandkvist M. C-terminal processing of GlyGly-CTERM containing proteins by rhombosortase in Vibrio cholerae. PLoS Pathog 2018; 14:e1007341. [PMID: 30352106 PMCID: PMC6219818 DOI: 10.1371/journal.ppat.1007341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 11/06/2018] [Accepted: 09/17/2018] [Indexed: 11/18/2022] Open
Abstract
Vibrio cholerae and a subset of other Gram-negative bacteria, including Acinetobacter baumannii, express proteins with a C-terminal tripartite domain called GlyGly-CTERM, which consists of a motif rich in glycines and serines, followed by a hydrophobic region and positively charged residues. Here we show that VesB, a V. cholerae serine protease, requires the GlyGly-CTERM domain, the intramembrane rhomboid-like protease rhombosortase, and the type II secretion system (T2SS) for localization at the cell surface. VesB is cleaved by rhombosortase to expose the second glycine residue of the GlyGly-CTERM motif, which is then conjugated to a glycerophosphoethanolamine-containing moiety prior to engagement with the T2SS and outer membrane translocation. In support of this, VesB accumulates intracellularly in the absence of the T2SS, and surface-associated VesB activity is no longer detected when the rhombosortase gene is inactivated. In turn, when VesB is expressed without an intact GlyGly-CTERM domain, VesB is released to the extracellular milieu by the T2SS and does not accumulate on the cell surface. Collectively, our findings suggest that the posttranslational modification of the GlyGly-CTERM domain is essential for cell surface localization of VesB and other proteins expressed with this tripartite extension.
Collapse
Affiliation(s)
- Shilpa Gadwal
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Tanya L. Johnson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States of America
- Department of Chemistry, Eastern Michigan University, Ypsilanti, MI, United States of America
| | - Henriette Remmer
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Maria Sandkvist
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States of America
- * E-mail:
| |
Collapse
|
12
|
Sato K, Kakuda S, Yukitake H, Kondo Y, Shoji M, Takebe K, Narita Y, Naito M, Nakane D, Abiko Y, Hiratsuka K, Suzuki M, Nakayama K. Immunoglobulin‐like domains of the cargo proteins are essential for protein stability during secretion by the type IX secretion system. Mol Microbiol 2018; 110:64-81. [DOI: 10.1111/mmi.14083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Keiko Sato
- Department of Microbiology and Oral Infection Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| | - Shinji Kakuda
- Institute for Protein Research Osaka University Yamadaoka, Suita Osaka 565‐0871Japan
| | - Hideharu Yukitake
- Department of Microbiology and Oral Infection Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| | - Yoshio Kondo
- Department of Pediatric Dentistry Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| | - Mikio Shoji
- Department of Microbiology and Oral Infection Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| | - Katsuki Takebe
- Institute for Protein Research Osaka University Yamadaoka, Suita Osaka 565‐0871Japan
| | - Yuka Narita
- Department of Functional Bioscience, Infection Biology Fukuoka Dental College Matsudo, Tamura, Sawara, Fukuoka 814‐0913Japan
| | - Mariko Naito
- Department of Microbiology and Oral Infection Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| | - Daisuke Nakane
- Department of Physics, Faculty of Science Gakushuin University Toshima‐ku, Tokyo 171‐8588Japan
| | - Yoshimitsu Abiko
- Department of Biochemistry and Molecular Biology Nihon University School of Dentistry at Matsudo Matsudo Chiba 271‐8587Japan
| | - Koichi Hiratsuka
- Department of Biochemistry and Molecular Biology Nihon University School of Dentistry at Matsudo Matsudo Chiba 271‐8587Japan
| | - Mamoru Suzuki
- Institute for Protein Research Osaka University Yamadaoka, Suita Osaka 565‐0871Japan
| | - Koji Nakayama
- Department of Microbiology and Oral Infection Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| |
Collapse
|
13
|
Gallegos DA, Saurí J, Cohen RD, Wan X, Videau P, Vallota-Eastman AO, Shaala LA, Youssef DTA, Williamson RT, Martin GE, Philmus B, Sikora AE, Ishmael JE, McPhail KL. Jizanpeptins, Cyanobacterial Protease Inhibitors from a Symploca sp. Cyanobacterium Collected in the Red Sea. JOURNAL OF NATURAL PRODUCTS 2018; 81:1417-1425. [PMID: 29808677 PMCID: PMC7847313 DOI: 10.1021/acs.jnatprod.8b00117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Jizanpeptins A-E (1-5) are micropeptin depsipeptides isolated from a Red Sea specimen of a Symploca sp. cyanobacterium. The planar structures of the jizanpeptins were established using NMR spectroscopy and mass spectrometry and contain 3-amino-6-hydroxy-2-piperidone (Ahp) as one of eight residues in a typical micropeptin motif, as well as a side chain terminal glyceric acid sulfate moiety. The absolute configurations of the jizanpeptins were assigned using a combination of Marfey's methodology and chiral-phase HPLC analysis of hydrolysis products compared to commercial and synthesized standards. Jizanpeptins A-E showed specific inhibition of the serine protease trypsin (IC50 = 72 nM to 1 μM) compared to chymotrypsin (IC50 = 1.4 to >10 μM) in vitro and were not overtly cytotoxic to HeLa cervical or NCI-H460 lung cancer cell lines at micromolar concentrations.
Collapse
Affiliation(s)
- David A. Gallegos
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Josep Saurí
- Structure Elucidation Group, Process and Analytical Research and Development, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Ryan D. Cohen
- Structure Elucidation Group, Process and Analytical Research and Development, Merck & Co., Inc.,126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Xuemei Wan
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Patrick Videau
- Department of Biology, College of Arts and Sciences, Dakota State University, Madison, SD 57042
| | - Alec O. Vallota-Eastman
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Lamiaa A. Shaala
- Suez Canal University Hospital, Suez Canal University, Ismailia 41522, Egypt
| | - Diaa T. A. Youssef
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - R. Thomas Williamson
- Structure Elucidation Group, Process and Analytical Research and Development, Merck & Co., Inc.,126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Gary E. Martin
- Structure Elucidation Group, Process and Analytical Research and Development, Merck & Co., Inc.,126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Benjamin Philmus
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Aleksandra E. Sikora
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Jane E. Ishmael
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Kerry L. McPhail
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
14
|
Sikora AE, Tehan R, McPhail K. Utilization of Vibrio cholerae as a Model Organism to Screen Natural Product Libraries for Identification of New Antibiotics. Methods Mol Biol 2018; 1839:135-146. [PMID: 30047060 DOI: 10.1007/978-1-4939-8685-9_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The development of antibiotic-resistant bacteria requires increasing research efforts in drug discovery. Vibrio cholerae can be utilized as a model gram-negative enteric pathogen in high- and medium-throughput screening campaigns to identify antimicrobials with different modes of action. In this chapter, we describe methods for the optimal growth of V. cholerae in 384-well plates, preparation of suitable microtiter natural product sample libraries, as well as their screening using measurements of bacterial density and activity of type II secretion-dependent protease as readouts. Concomitant LC-MS/MS profiling and spectral data networking of assay sample libraries facilitate dereplication of putative known and/or nuisance compounds and efficient prioritization of samples containing putative new natural products for further investigation.
Collapse
Affiliation(s)
- Aleksandra E Sikora
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA.
| | - Richard Tehan
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Kerry McPhail
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
15
|
Stenotrophomonas maltophilia Serine Protease StmPr1 Induces Matrilysis, Anoikis, and Protease-Activated Receptor 2 Activation in Human Lung Epithelial Cells. Infect Immun 2017; 85:IAI.00544-17. [PMID: 28893914 DOI: 10.1128/iai.00544-17] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/03/2017] [Indexed: 12/20/2022] Open
Abstract
Stenotrophomonas maltophilia is an emerging, opportunistic nosocomial pathogen that can cause severe disease in immunocompromised individuals. We recently identified the StmPr1 and StmPr2 serine proteases to be the substrates of the Xps type II secretion system in S. maltophilia strain K279a. Here, we report that a third serine protease, StmPr3, is also secreted in an Xps-dependent manner. By constructing a panel of protease mutants in strain K279a, we were able to determine that StmPr3 contributes to the previously described Xps-mediated rounding and detachment of cells of the A549 human lung epithelial cell line as well as the Xps-mediated degradation of fibronectin, fibrinogen, and the cytokine interleukin-8 (IL-8). We also determined that StmPr1, StmPr2, and StmPr3 account for all Xps-mediated effects toward A549 cells and that StmPr1 contributes the most to Xps-mediated activities. Thus, we purified StmPr1 from the S. maltophilia strain K279a culture supernatant and evaluated the protease's activity toward A549 cells. Our analyses revealed that purified StmPr1 behaves more similarly to subtilisin than to trypsin. We also determined that purified StmPr1 likely induces cell rounding and detachment of A549 cells by targeting cell integrin-extracellular matrix connections (matrilysis) as well as adherence and tight junction proteins for degradation. In this study, we also identified anoikis as the mechanism by which StmPr1 induces the death of A549 cells and found that StmPr1 induces A549 IL-8 secretion via activation of protease-activated receptor 2. Altogether, these results suggest that the degradative and cytotoxic activities exhibited by StmPr1 may contribute to S. maltophilia pathogenesis in the lung by inducing tissue damage and inflammation.
Collapse
|
16
|
Abstract
Type II secretion (T2S) is one means by which Gram-negative pathogens secrete proteins into the extracellular milieu and/or host organisms. Based upon recent genome sequencing, it is clear that T2S is largely restricted to the Proteobacteria, occurring in many, but not all, genera in the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria classes. Prominent human and/or animal pathogens that express a T2S system(s) include Acinetobacter baumannii, Burkholderia pseudomallei, Chlamydia trachomatis, Escherichia coli, Klebsiella pneumoniae, Legionella pneumophila, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Vibrio cholerae, and Yersinia enterocolitica T2S-expressing plant pathogens include Dickeya dadantii, Erwinia amylovora, Pectobacterium carotovorum, Ralstonia solanacearum, Xanthomonas campestris, Xanthomonas oryzae, and Xylella fastidiosa T2S also occurs in nonpathogenic bacteria, facilitating symbioses, among other things. The output of a T2S system can range from only one to dozens of secreted proteins, encompassing a diverse array of toxins, degradative enzymes, and other effectors, including novel proteins. Pathogenic processes mediated by T2S include the death of host cells, degradation of tissue, suppression of innate immunity, adherence to host surfaces, biofilm formation, invasion into and growth within host cells, nutrient assimilation, and alterations in host ion flux. The reach of T2S is perhaps best illustrated by those bacteria that clearly use it for both environmental survival and virulence; e.g., L. pneumophila employs T2S for infection of amoebae, growth within lung cells, dampening of cytokines, and tissue destruction. This minireview provides an update on the types of bacteria that have T2S, the kinds of proteins that are secreted via T2S, and how T2S substrates promote infection.
Collapse
|
17
|
Karlsen C, Hjerde E, Klemetsen T, Willassen NP. Pan genome and CRISPR analyses of the bacterial fish pathogen Moritella viscosa. BMC Genomics 2017; 18:313. [PMID: 28427330 PMCID: PMC5399434 DOI: 10.1186/s12864-017-3693-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/06/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Winter-ulcer Moritella viscosa infections continue to be a significant burden in Atlantic salmon (Salmo salar L.) farming. M. viscosa comprises two main clusters that differ in genetic variation and phenotypes including virulence. Horizontal gene transfer through acquisition and loss of mobile genetic elements (MGEs) is a major driving force of bacterial diversification. To gain insight into genomic traits that could affect sublineage evolution within this bacterium we examined the genome sequences of twelve M. viscosa strains. Matches between M. viscosa clustered, regularly interspaced, short palindromic, repeats and associated cas genes (CRISPR-Cas) were analysed to correlate CRISPR-Cas with adaptive immunity against MGEs. RESULTS The comparative genomic analysis of M. viscosa isolates from across the North Atlantic region and from different fish species support delineation of M. viscosa into four phylogenetic lineages. The results showed that M. viscosa carries two distinct variants of the CRISPR-Cas subtype I-F systems and that CRISPR features follow the phylogenetic lineages. A subset of the spacer content match prophage and plasmid genes dispersed among the M. viscosa strains. Further analysis revealed that prophage and plasmid-like element distribution were reflected in the content of the CRISPR-spacer profiles. CONCLUSIONS Our data suggests that CRISPR-Cas mediated interactions with MGEs impact genome properties among M. viscosa, and that patterns in spacer and MGE distributions are linked to strain relationships.
Collapse
Affiliation(s)
- Christian Karlsen
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences (NMBU), Pb 8146 Dep., 0033, Oslo, Norway. .,Present address: Nofima AS, Division of Aquaculture, PO Box 210, Ås, N-1431, Norway.
| | - Erik Hjerde
- Department of Chemistry, Faculty of Science and Technology, University of Tromsø, N-9037, Tromsø, Norway
| | - Terje Klemetsen
- Department of Chemistry, Faculty of Science and Technology, University of Tromsø, N-9037, Tromsø, Norway
| | - Nils Peder Willassen
- Department of Chemistry, Faculty of Science and Technology, University of Tromsø, N-9037, Tromsø, Norway.,The Norwegian Structural Biology Centre, University of Tromsø, N-9037, Tromsø, Norway
| |
Collapse
|
18
|
Chloroform-free permeabilization for improved detection of β-galactosidase activity in Vibrio cholerae. J Microbiol Methods 2017; 137:1-2. [PMID: 28336461 DOI: 10.1016/j.mimet.2017.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/20/2017] [Accepted: 03/20/2017] [Indexed: 10/19/2022]
Abstract
LacZ (β-galactosidase) is used to monitor the transcription of genes in reporter strains carrying the lacZ gene under the control of a promotor of interest. This protocol for LacZ activity determinations in Vibrio cholerae following detergent lysis results in 2.5-fold increase of LacZ activities compared to lysis with chloroform.
Collapse
|
19
|
Hatzios SK, Abel S, Martell J, Hubbard T, Sasabe J, Munera D, Clark L, Bachovchin DA, Qadri F, Ryan ET, Davis BM, Weerapana E, Waldor MK. Chemoproteomic profiling of host and pathogen enzymes active in cholera. Nat Chem Biol 2016; 12:268-274. [PMID: 26900865 PMCID: PMC4765928 DOI: 10.1038/nchembio.2025] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 12/31/2015] [Indexed: 12/15/2022]
Abstract
Activity-based protein profiling (ABPP) is a chemoproteomic tool for detecting active enzymes in complex biological systems. We used ABPP to identify secreted bacterial and host serine hydrolases that are active in animals infected with the cholera pathogen Vibrio cholerae. Four V. cholerae proteases were consistently active in infected rabbits, and one, VC0157 (renamed IvaP), was also active in human choleric stool. Inactivation of IvaP influenced the activity of other secreted V. cholerae and rabbit enzymes in vivo, and genetic disruption of all four proteases increased the abundance of intelectin, an intestinal lectin, and its binding to V. cholerae in infected rabbits. Intelectin also bound to other enteric bacterial pathogens, suggesting that it may constitute a previously unrecognized mechanism of bacterial surveillance in the intestine that is inhibited by pathogen-secreted proteases. Our work demonstrates the power of activity-based proteomics to reveal host-pathogen enzymatic dialog in an animal model of infection.
Collapse
Affiliation(s)
- Stavroula K. Hatzios
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Sören Abel
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
- Department of Pharmacy, University of Tromsø (UiT), The Arctic University of Norway, Tromsø, Norway
| | | | - Troy Hubbard
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Jumpei Sasabe
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Diana Munera
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Lars Clark
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | | | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Brigid M. Davis
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | | | - Matthew K. Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| |
Collapse
|
20
|
East A, Mechaly A, Huysmans G, Bernarde C, Tello-Manigne D, Nadeau N, Pugsley A, Buschiazzo A, Alzari P, Bond P, Francetic O. Structural Basis of Pullulanase Membrane Binding and Secretion Revealed by X-Ray Crystallography, Molecular Dynamics and Biochemical Analysis. Structure 2016; 24:92-104. [DOI: 10.1016/j.str.2015.10.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 10/22/2022]
|
21
|
Type II Secretion-Dependent Degradative and Cytotoxic Activities Mediated by Stenotrophomonas maltophilia Serine Proteases StmPr1 and StmPr2. Infect Immun 2015; 83:3825-37. [PMID: 26169274 DOI: 10.1128/iai.00672-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/09/2015] [Indexed: 02/07/2023] Open
Abstract
Stenotrophomonas maltophilia is an emerging opportunistic pathogen that primarily causes pneumonia and bacteremia in immunocompromised individuals. We recently reported that S. maltophilia strain K279a encodes the Xps type II secretion system and that Xps promotes rounding, actin rearrangement, detachment, and death in the human lung epithelial cell line A549. Here, we show that Xps-dependent cell rounding and detachment occur with multiple human and murine cell lines and that serine protease inhibitors block Xps-mediated rounding and detachment of A549 cells. Using genetic analysis, we determined that the serine proteases StmPr1 and StmPr2, which were confirmed to be Xps substrates, are predominantly responsible for secreted proteolytic activities exhibited by strain K279a, as well as the morphological and cytotoxic effects on A549 cells. Supernatants from strain K279a also promoted the degradation of type I collagen, fibrinogen, and fibronectin in a predominantly Xps- and protease-dependent manner, although some Xps-independent degradation of fibrinogen was observed. Finally, Xps, and predominantly StmPr1, degraded interleukin 8 (IL-8) secreted by A549 cells during coculture with strain K279a. Our findings indicate that while StmPr1 and StmPr2 are predominantly responsible for A549 cell rounding, extracellular matrix protein degradation, and IL-8 degradation, additional Xps substrates also contribute to these activities. Altogether, our data provide new insight into the virulence potential of the S. maltophilia Xps type II secretion system and its StmPr1 and StmPr2 substrates.
Collapse
|
22
|
Salamone M, Nicosia A, Bennici C, Quatrini P, Catania V, Mazzola S, Ghersi G, Cuttitta A. Comprehensive Analysis of a Vibrio parahaemolyticus Strain Extracellular Serine Protease VpSP37. PLoS One 2015; 10:e0126349. [PMID: 26162075 PMCID: PMC4498684 DOI: 10.1371/journal.pone.0126349] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 04/01/2015] [Indexed: 02/04/2023] Open
Abstract
Proteases play an important role in the field of tissue dissociation combined with regenerative medicine. During the years new sources of proteolytic enzymes have been studied including proteases from different marine organisms both eukaryotic and prokaryotic. Herein we have purified a secreted component of an isolate of Vibrio parahaemolyticus, with electrophoretic mobilities corresponding to 36 kDa, belonging to the serine proteases family. Sequencing of the N-terminus enabled the in silico identification of the whole primary structure consisting of 345 amino acid residues with a calculated molecular mass of 37.4 KDa. The purified enzyme, named VpSP37, contains a Serine protease domain between residues 35 and 276 and a canonical Trypsin/Chimotrypsin 3D structure. Functional assays were performed to evaluate protease activity of purified enzyme. Additionally the performance of VpSP37 was evaluated in tissue dissociations experiments and the use of such enzyme as a component of enzyme blend for tissue dissociation procedures is strongly recommended.
Collapse
Affiliation(s)
- Monica Salamone
- Laboratory of Molecular Ecology and Biotechnology, National Research Council, Institute for Marine and Coastal Environment (IAMC-CNR), Detached Unit of Capo Granitola, Torretta Granitola 91021, Trapani, Sicily, Italy
| | - Aldo Nicosia
- Laboratory of Molecular Ecology and Biotechnology, National Research Council, Institute for Marine and Coastal Environment (IAMC-CNR), Detached Unit of Capo Granitola, Torretta Granitola 91021, Trapani, Sicily, Italy
| | - Carmelo Bennici
- Laboratory of Molecular Ecology and Biotechnology, National Research Council, Institute for Marine and Coastal Environment (IAMC-CNR), Detached Unit of Capo Granitola, Torretta Granitola 91021, Trapani, Sicily, Italy
| | - Paola Quatrini
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF),Università di Palermo, Viale delle Scienze, edificio 16, Palermo, Sicily, Italy
| | - Valentina Catania
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF),Università di Palermo, Viale delle Scienze, edificio 16, Palermo, Sicily, Italy
| | - Salvatore Mazzola
- National Research Council, Institute for Marine and Coastal Environment (IAMC-CNR), Calata porta di Massa, 80133, Napoli, Italy
| | - Giulio Ghersi
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF),Università di Palermo, Viale delle Scienze, edificio 16, Palermo, Sicily, Italy
- National Research Council, Institute for Marine and Coastal Environment (IAMC-CNR), Calata porta di Massa, 80133, Napoli, Italy
- ABIEL S.r.l., Via del Mare 3, Torretta Granitola 91021, Trapani, Sicily, Italy
| | - Angela Cuttitta
- Laboratory of Molecular Ecology and Biotechnology, National Research Council, Institute for Marine and Coastal Environment (IAMC-CNR), Detached Unit of Capo Granitola, Torretta Granitola 91021, Trapani, Sicily, Italy
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF),Università di Palermo, Viale delle Scienze, edificio 16, Palermo, Sicily, Italy
- National Research Council, Institute for Marine and Coastal Environment (IAMC-CNR), Calata porta di Massa, 80133, Napoli, Italy
- ABIEL S.r.l., Via del Mare 3, Torretta Granitola 91021, Trapani, Sicily, Italy
- * E-mail:
| |
Collapse
|