1
|
Dinh DT, Bahari GP, Xu Q, Wei CH, Chen DR, Hsieh WC, Lin PH. Investigation of the abasic sites induced by hydrogen peroxide and methyl methanesulfonate in calf thymus DNA and BEAS-2B cells. Toxicol Lett 2024; 401:101-107. [PMID: 39326644 DOI: 10.1016/j.toxlet.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
The primary goals of this study were to investigate the formation of abasic sites (AP sites) induced by methyl methanesulfonate (MMS) and hydrogen peroxide (H2O2), and to characterize specific types of these pro-mutagenic DNA lesions in calf thymus DNA (CT-DNA), and BEAS-2B human lung normal cell line. Furthermore, these profiles were compared with those observed in leukocytes derived from healthy controls (HC), breast cancer patients (BCP) before treatment, and 5-year survivors. Results indicated that both H2O2 and MMS induced the concentration- and time-dependent formation of AP sites in CT-DNA. To characterize the specific types of AP sites induced by H2O2 or MMS, we performed AP site cleavage assay using putrescine, T7 exonuclease (T7 Exo), and exonuclease III (Exo III). Results showed that the AP sites induced by H2O2 in CT-DNA were predominantly 5'-and 3'-nicked AP sites and no intact AP sites were detected. By contrast, the majority of AP sites generated by MMS in CT-DNA are not excisable and are classified as residual and intact AP sites. Similar approaches were performed in human BEAS-2B cells and comparable observations were confirmed in the cell-based model. Further investigation indicated that the profile of the AP sites observed in Taiwanese HC is identical to that of BEAS-2B cells treated with H2O2 whereas the pattern of AP sites detected in BCP is similar to that of CT-DNA exposed to H2O2, suggesting that these AP sites were produced primarily through reactive oxygen species (ROS) generation. More than 70 % of the AP sites in leukocytes derived from BCP were 5'-nicked and residual AP sites. Furthermore, the characteristics of the AP sites detected in 5-year survivors are comparable with the ones in HC by using putrescine cleavage assay. Overall, we speculate that deficiency in the DNA repair cascade may play a role in mediating the formation of specific types of AP sites detected in BCP.
Collapse
Affiliation(s)
- Dat Thanh Dinh
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan; Department of Environmental Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Gilang Putra Bahari
- Department of Environmental Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Qi Xu
- Department of Environmental Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Cheng-Hao Wei
- Department of Environmental Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Dar-Ren Chen
- Comprehensive Breast Cancer Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Wei-Chung Hsieh
- Department of Laboratory Medicine, Da-Chien General Hospital, Miaoli 360, Taiwan
| | - Po-Hsiung Lin
- Department of Environmental Engineering, National Chung Hsing University, Taichung 402, Taiwan; Research Center of Environmental Education and Sustainable Technology, Nantou 540, Taiwan.
| |
Collapse
|
2
|
Wang H, Ye C, Lu Q, Jiang Z, Jiang C, Zhou C, Li N, Zhang C, Zhao G, Yue M, Li Y. Bacterial exonuclease III expands its enzymatic activities on single-stranded DNA. eLife 2024; 13:RP95648. [PMID: 38959062 PMCID: PMC11221836 DOI: 10.7554/elife.95648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
Bacterial exonuclease III (ExoIII), widely acknowledged for specifically targeting double-stranded DNA (dsDNA), has been documented as a DNA repair-associated nuclease with apurinic/apyrimidinic (AP)-endonuclease and 3'→5' exonuclease activities. Due to these enzymatic properties, ExoIII has been broadly applied in molecular biosensors. Here, we demonstrate that ExoIII (Escherichia coli) possesses highly active enzymatic activities on ssDNA. By using a range of ssDNA fluorescence-quenching reporters and fluorophore-labeled probes coupled with mass spectrometry analysis, we found ExoIII cleaved the ssDNA at 5'-bond of phosphodiester from 3' to 5' end by both exonuclease and endonuclease activities. Additional point mutation analysis identified the critical residues for the ssDNase action of ExoIII and suggested the activity shared the same active center with the dsDNA-targeted activities of ExoIII. Notably, ExoIII could also digest the dsDNA structures containing 3'-end ssDNA. Considering most ExoIII-assisted molecular biosensors require the involvement of single-stranded DNA (ssDNA) or nucleic acid aptamer containing ssDNA, the activity will lead to low efficiency or false positive outcome. Our study revealed the multi-enzymatic activity and the underlying molecular mechanism of ExoIII on ssDNA, illuminating novel insights for understanding its biological roles in DNA repair and the rational design of ExoIII-ssDNA involved diagnostics.
Collapse
Affiliation(s)
- Hao Wang
- Department of Veterinary Medicine, Zhejiang University College of Animal SciencesHangzhouChina
| | - Chen Ye
- Department of Veterinary Medicine, Zhejiang University College of Animal SciencesHangzhouChina
| | - Qi Lu
- Hainan Institute of Zhejiang UniversitySanyaChina
| | - Zhijie Jiang
- Department of Veterinary Medicine, Zhejiang University College of Animal SciencesHangzhouChina
| | - Chao Jiang
- Life Sciences Institute, Zhejiang University, HangzhouZhejiangChina
| | - Chun Zhou
- School of Public Health, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Na Li
- Department of Veterinary Medicine, Zhejiang University College of Animal SciencesHangzhouChina
| | - Caiqiao Zhang
- Department of Veterinary Medicine, Zhejiang University College of Animal SciencesHangzhouChina
| | - Guoping Zhao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of SciencesHangzhouChina
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghaiChina
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan UniversityShanghaiChina
| | - Min Yue
- Department of Veterinary Medicine, Zhejiang University College of Animal SciencesHangzhouChina
- Hainan Institute of Zhejiang UniversitySanyaChina
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of SciencesHangzhouChina
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhouChina
| | - Yan Li
- Department of Veterinary Medicine, Zhejiang University College of Animal SciencesHangzhouChina
- Hainan Institute of Zhejiang UniversitySanyaChina
| |
Collapse
|
3
|
Matsubara K, Ueda S, Yamamoto J, Iwai S, Shioi NA, Takedachi A, Kuraoka I. Structure-specific DNA endonuclease T7 endonuclease I cleaves DNA containing UV-induced DNA lesions. J Biochem 2024; 176:35-42. [PMID: 38426948 DOI: 10.1093/jb/mvae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/02/2024] Open
Abstract
The T7 gene 3 product, T7 endonuclease I, acts on various substrates with DNA structures, including Holliday junctions, heteroduplex DNAs and single-mismatch DNAs. Genetic analyses have suggested the occurrence of DNA recombination, replication and repair in Escherichia coli. In this study, T7 endonuclease I digested UV-irradiated covalently closed circular plasmid DNA into linear and nicked plasmid DNA, suggesting that the enzyme generates single- and double-strand breaks (SSB and DSB). To further investigate the biochemical functions of T7 endonuclease I, we have analysed endonuclease activity in UV-induced DNA substrates containing a single lesion, cyclobutane pyrimidine dimers (CPD) and 6-4 photoproducts (6-4PP). Interestingly, the leading cleavage site for CPD by T7 endonuclease I is at the second and fifth phosphodiester bonds that are 5' to the lesion of CPD on the lesion strand. However, in the case of 6-4PP, the cleavage pattern on the lesion strand resembled that of CPD, and T7 endonuclease I could also cleave the second phosphodiester bond that is 5' to the adenine-adenine residues opposite the lesion, indicating that the enzyme produces DSB in DNA containing 6-4PP. These findings suggest that T7endonuclease I accomplished successful UV damage repair by SSB in CPD and DSB in 6-4PP.
Collapse
Affiliation(s)
- Kazuki Matsubara
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Shouta Ueda
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Junpei Yamamoto
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Shigenori Iwai
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Narumi Aoki Shioi
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Arato Takedachi
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Isao Kuraoka
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
4
|
Seniya SP, Jain V. Decoding phage resistance by mpr and its role in survivability of Mycobacterium smegmatis. Nucleic Acids Res 2022; 50:6938-6952. [PMID: 35713559 PMCID: PMC9262609 DOI: 10.1093/nar/gkac505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/09/2022] [Accepted: 06/14/2022] [Indexed: 12/24/2022] Open
Abstract
Bacteria and bacteriophages co-evolve in a constant arms race, wherein one tries and finds newer ways to overcome the other. Phage resistance poses a great threat to the development of phage therapy. Hence, it is both essential and important to understand the mechanism of phage resistance in bacteria. First identified in Mycobacterium smegmatis, the gene mpr, upon overexpression, confers resistance against D29 mycobacteriophage. Presently, the mechanism behind phage resistance by mpr is poorly understood. Here we show that Mpr is a membrane-bound DNA exonuclease, which digests DNA in a non-specific manner independent of the sequence, and shares no sequence or structural similarity with any known nuclease. Exonuclease activity of mpr provides resistance against phage infection, but the role of mpr may very well go beyond just phage resistance. Our experiments show that mpr plays a crucial role in the appearance of mutant colonies (phage resistant strains). However, the molecular mechanism behind the emergence of these mutant/resistant colonies is yet to be understood. Nevertheless, it appears that mpr is involved in the survival and evolution of M. smegmatis against phage. A similar mechanism may be present in other organisms, which requires further exploration.
Collapse
Affiliation(s)
- Surya Pratap Seniya
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462066, India
| | - Vikas Jain
- To whom correspondence should be addressed. Tel: +91 755 2691425; Fax: +91 755 2692392;
| |
Collapse
|
5
|
Sheppard EC, Rogers S, Harmer NJ, Chahwan R. A universal fluorescence-based toolkit for real-time quantification of DNA and RNA nuclease activity. Sci Rep 2019; 9:8853. [PMID: 31222049 PMCID: PMC6586798 DOI: 10.1038/s41598-019-45356-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/31/2019] [Indexed: 12/12/2022] Open
Abstract
DNA and RNA nucleases play a critical role in a growing number of cellular processes ranging from DNA repair to immune surveillance. Nevertheless, many nucleases have unknown or poorly characterized activities. Elucidating nuclease substrate specificities and co-factors can support a more definitive understanding of cellular mechanisms in physiology and disease. Using fluorescence-based methods, we present a quick, safe, cost-effective, and real-time versatile nuclease assay, which uniquely studies nuclease enzyme kinetics. In conjunction with a substrate library we can now analyse nuclease catalytic rates, directionality, and substrate preferences. The assay is sensitive enough to detect kinetics of repair enzymes when confronted with DNA mismatches or DNA methylation sites. We have also extended our analysis to study the kinetics of human single-strand DNA nuclease TREX2, DNA polymerases, RNA, and RNA:DNA nucleases. These nucleases are involved in DNA repair, immune regulation, and have been associated with various diseases, including cancer and immune disorders.
Collapse
Affiliation(s)
- Emily C Sheppard
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Sally Rogers
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Nicholas J Harmer
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Richard Chahwan
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK. .,Institute of Experimental Immunology, University of Zurich, 8057, Zurich, Switzerland.
| |
Collapse
|
6
|
Zhang Y, Deng Y, Wang C, Li L, Xu L, Yu Y, Su X. Probing and regulating the activity of cellular enzymes by using DNA tetrahedron nanostructures. Chem Sci 2019; 10:5959-5966. [PMID: 31360402 PMCID: PMC6566069 DOI: 10.1039/c9sc01912j] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 05/03/2019] [Indexed: 01/14/2023] Open
Abstract
Given the essential role of apurinic/apyrimidinic endonuclease (APE1) in gene repair and cancer progression, we report a novel approach for probing and regulating cellular APE1 activity by using DNA tetrahedrons.
Given the essential role of apurinic/apyrimidinic endonuclease (APE1) in gene repair and cancer progression, we report a novel approach for probing and regulating cellular APE1 activity by using DNA tetrahedrons. The tetrahedron with an AP site-containing antenna exhibits high sensitivity and specificity to APE1. It is suitable for APE1 in vitro detection (detection limit 5 pM) and cellular fluorescence imaging without any auxiliary transfection reagents, which discriminates the APE1 expression level of cancer cells and normal cells. In contrast, the tetrahedron with an AP site on its scaffold exhibits high binding affinity to APE1 but limits enzymatic catalysis making this nanostructure an APE1 inhibitor with an IC50 of 14.8 nM. It suppresses the APE1 activity in living cells and sensitizes cancer cells to anticancer drugs. We also demonstrate that the APE1 probe and inhibitor can be switched allosterically via stand displacement, which holds potential for reversible inhibition of APE1. Our approach provides a new way for fabricating enzyme probes and regulators and new insights into enzyme–substrate interactions, and it can be expanded to regulate other nucleic acid related enzymes.
Collapse
Affiliation(s)
- Yi Zhang
- College of Life Science and Technology , Beijing University of Chemical Technology , Beijing 100029 , China .
| | - Yingnan Deng
- College of Life Science and Technology , Beijing University of Chemical Technology , Beijing 100029 , China .
| | - Congshan Wang
- College of Life Science and Technology , Beijing University of Chemical Technology , Beijing 100029 , China .
| | - Lidan Li
- College of Life Science and Technology , Beijing University of Chemical Technology , Beijing 100029 , China .
| | - Lida Xu
- College of Life Science and Technology , Beijing University of Chemical Technology , Beijing 100029 , China .
| | - Yingjie Yu
- Department of Biomedical Engineering , Tufts University , Medford , MA 02155 , USA .
| | - Xin Su
- College of Life Science and Technology , Beijing University of Chemical Technology , Beijing 100029 , China .
| |
Collapse
|
7
|
Trasviña-Arenas CH, Baruch-Torres N, Cordoba-Andrade FJ, Ayala-García VM, García-Medel PL, Díaz-Quezada C, Peralta-Castro A, Ordaz-Ortiz JJ, Brieba LG. Identification of a unique insertion in plant organellar DNA polymerases responsible for 5'-dRP lyase and strand-displacement activities: Implications for Base Excision Repair. DNA Repair (Amst) 2018. [PMID: 29522990 DOI: 10.1016/j.dnarep.2018.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Plant mitochondrial and chloroplast genomes encode essential proteins for oxidative phosphorylation and photosynthesis. For proper cellular function, plant organelles must ensure genome integrity. Although plant organelles repair damaged DNA using the multi-enzyme Base Excision Repair (BER) pathway, the details of this pathway in plant organelles are largely unknown. The initial enzymatic steps in BER produce a 5'-deoxyribose phosphate (5'-dRP) moiety that must be removed to allow DNA ligation and in plant organelles, the enzymes responsible for the removal of a 5'-dRP group are unknown. In metazoans, DNA polymerases (DNAPs) remove the 5'-dRP moiety using their intrinsic lyase and/or strand-displacement activities during short or long-patch BER sub-pathways, respectively. The plant model Arabidopsis thaliana encodes two family-A DNAPs paralogs, AtPolIA and AtPolIB, which are the sole DNAPs in plant organelles identified to date. Herein we demonstrate that both AtPolIs present 5'-dRP lyase activities. AtPolIB performs efficient strand-displacement on a BER-associated 1-nt gap DNA substrate, whereas AtPolIA exhibits only moderate strand-displacement activity. Both lyase and strand-displacement activities are dependent on an amino acid insertion that is exclusively present in plant organellar DNAPs. Within this insertion, we identified that residue AtPollB-Lys593 acts as nucleophile for lyase activity. Our results demonstrate that AtPolIs are functionally equipped to play a role in short-patch BER and suggest a major role of AtPolIB in a predicted long-patch BER sub-pathway. We propose that the acquisition of insertion 1 in the polymerization domain of AtPolIs was a key component in their evolution as BER associated and replicative DNAPs.
Collapse
Affiliation(s)
- Carlos H Trasviña-Arenas
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - Noe Baruch-Torres
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - Francisco J Cordoba-Andrade
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - Víctor M Ayala-García
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - Paola L García-Medel
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - Corina Díaz-Quezada
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - Antolín Peralta-Castro
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - José Juan Ordaz-Ortiz
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - Luis G Brieba
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, 36821 Irapuato, Guanajuato, Mexico.
| |
Collapse
|
8
|
Phosphate steering by Flap Endonuclease 1 promotes 5'-flap specificity and incision to prevent genome instability. Nat Commun 2017; 8:15855. [PMID: 28653660 PMCID: PMC5490271 DOI: 10.1038/ncomms15855] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/05/2017] [Indexed: 12/13/2022] Open
Abstract
DNA replication and repair enzyme Flap Endonuclease 1 (FEN1) is vital for genome integrity, and FEN1 mutations arise in multiple cancers. FEN1 precisely cleaves single-stranded (ss) 5′-flaps one nucleotide into duplex (ds) DNA. Yet, how FEN1 selects for but does not incise the ss 5′-flap was enigmatic. Here we combine crystallographic, biochemical and genetic analyses to show that two dsDNA binding sites set the 5′polarity and to reveal unexpected control of the DNA phosphodiester backbone by electrostatic interactions. Via ‘phosphate steering’, basic residues energetically steer an inverted ss 5′-flap through a gateway over FEN1’s active site and shift dsDNA for catalysis. Mutations of these residues cause an 18,000-fold reduction in catalytic rate in vitro and large-scale trinucleotide (GAA)n repeat expansions in vivo, implying failed phosphate-steering promotes an unanticipated lagging-strand template-switch mechanism during replication. Thus, phosphate steering is an unappreciated FEN1 function that enforces 5′-flap specificity and catalysis, preventing genomic instability. Flap Endonuclease 1 is a DNA replication and repair enzyme indispensable for maintaining genomic stability. Here the authors provide mechanistic details on how FEN1 selects for 5′-flaps and promotes catalysis to avoid large-scale repeat expansion by a process termed ‘phosphate steering’.
Collapse
|
9
|
|
10
|
Abstract
I spent my childhood and adolescence in North and South Carolina, attended Duke University, and then entered Duke Medical School. One year in the laboratory of George Schwert in the biochemistry department kindled my interest in biochemistry. After one year of residency on the medical service of Duke Hospital, chaired by Eugene Stead, I joined the group of Arthur Kornberg at Stanford Medical School as a postdoctoral fellow. Two years later I accepted a faculty position at Harvard Medical School, where I remain today. During these 50 years, together with an outstanding group of students, postdoctoral fellows, and collaborators, I have pursued studies on DNA replication. I have experienced the excitement of discovering a number of important enzymes in DNA replication that, in turn, triggered an interest in the dynamics of a replisome. My associations with industry have been stimulating and fostered new friendships. I could not have chosen a better career.
Collapse
Affiliation(s)
- Charles C Richardson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115;
| |
Collapse
|
11
|
Mitsunobu H, Zhu B, Lee SJ, Tabor S, Richardson CC. Flap endonuclease of bacteriophage T7: Possible roles in RNA primer removal, recombination and host DNA breakdown. BACTERIOPHAGE 2014; 4:e28507. [PMID: 25105057 PMCID: PMC4124056 DOI: 10.4161/bact.28507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/10/2014] [Accepted: 03/11/2014] [Indexed: 11/19/2022]
Abstract
Gene 6 protein of bacteriophage T7 has 5′-3′-exonuclease activity specific for duplex DNA. We have found that gene 6 protein also has flap endonuclease activity. The flap endonuclease activity is considerably weaker than the exonuclease activity. Unlike the human homolog of gene 6 protein, the flap endonuclease activity of gene 6 protein is dependent on the length of the 5′-flap. This dependency of activity on the length of the 5′-flap may result from the structured helical gateway region of gene 6 protein which differs from that of human flap endonuclease 1. The flap endonuclease activity provides a mechanism by which RNA-terminated Okazaki fragments, displaced by the lagging strand DNA polymerase, are processed. 3′-extensions generated during degradation of duplex DNA by the exonuclease activity of gene 6 protein are inhibitory to further degradation of the 5′-terminus by the exonuclease activity of gene 6 protein. The single-stranded DNA binding protein of T7 overcomes this inhibition.
Collapse
Affiliation(s)
- Hitoshi Mitsunobu
- The Department of Biological Chemistry and Molecular Pharmacology; Harvard Medical School; Boston, MA USA
| | - Bin Zhu
- The Department of Biological Chemistry and Molecular Pharmacology; Harvard Medical School; Boston, MA USA
| | - Seung-Joo Lee
- The Department of Biological Chemistry and Molecular Pharmacology; Harvard Medical School; Boston, MA USA
| | - Stanley Tabor
- The Department of Biological Chemistry and Molecular Pharmacology; Harvard Medical School; Boston, MA USA
| | - Charles C Richardson
- The Department of Biological Chemistry and Molecular Pharmacology; Harvard Medical School; Boston, MA USA
| |
Collapse
|