1
|
Tokarz VL, Delgado-Olguín P, Klip A. Deprogram and reprogram to solve the riddle of insulin resistance. J Clin Invest 2021; 131:154699. [PMID: 34720091 DOI: 10.1172/jci154699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Skeletal muscle preeminently determines whole-body glycemia. However, the molecular basis and inheritable influence that drive the progression of insulin resistance to type 2 diabetes remain debated. In this issue of the JCI, Haider and Lebastchi report on their use of induced pluripotent stem cell-derived (iPSC-derived) myoblasts (iMyos) to uncover multiple phosphoproteomic changes that carried over from the human to the cell-culture system. In this system devoid of in vivo influences, the researchers annotated changes between the sexes and between the most and least insulin-sensitive quintiles of a healthy population (defined by steady-state blood glucose levels). Many phosphoproteomic differences were detected in the absence of insulin, revealing that changes in the basal landscape of cells determine the efficiency of insulin action. Basal and insulin-dependent deficiencies of iPSCs and iMyos likely involve genetic and epigenetic determinants that modulate insulin sensitivity.
Collapse
Affiliation(s)
- Victoria L Tokarz
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| | - Paul Delgado-Olguín
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Heart & Stroke Richard Lewar Center of Excellence, Toronto, Canada
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada.,Department of Biochemistry and.,Department of Paediatrics, University of Toronto, Toronto, Canada
| |
Collapse
|
2
|
Wiencke JK, Zhang Z, Koestler DC, Salas LA, Molinaro AM, Christensen BC, Kelsey KT. Identification of a foetal epigenetic compartment in adult human kidney. Epigenetics 2021; 17:335-355. [PMID: 33783321 DOI: 10.1080/15592294.2021.1900027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The mammalian kidney has extensive repair capacity; however, identifying adult renal stem cells has proven elusive. We applied an epigenetic marker of foetal cell origin (FCO) in diverse human tissues as a probe for developmental cell persistence, finding a 5.4-fold greater FCO proportion in kidney. Normal kidney FCO proportions averaged 49% with extensive interindividual variation. FCO proportions were significantly negatively correlated with immune-related gene expression and positively correlated with genes expressed in the renal medulla, including those involved in renal organogenesis (e.g., FGF2, PAX8, and HOXB7). FCO associated genes also mapped to medullary nephron segments in mouse and rat, suggesting evolutionary conservation of this cellular compartment. Renal cancer patients whose tumours contained non-zero FCO scores survived longer. The kidney appears unique in possessing substantial foetal epigenetic features. Further study of FCO-related gene methylation may elucidate regenerative regulatory programmes in tissues without apparent discrete stem cell compartments.
Collapse
Affiliation(s)
- John K Wiencke
- Department of Neurological Surgery, Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Ze Zhang
- Department of Epidemiology, Department of Pathology and Laboratory Medicine, Brown University School of Public Health, Providence, RI, USA
| | - Devin C Koestler
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Lucas A Salas
- Department of Epidemiology, Department of Molecular and Systems Biology, Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Annette M Molinaro
- Department of Neurological Surgery, Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Brock C Christensen
- Department of Epidemiology, Department of Molecular and Systems Biology, Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Karl T Kelsey
- Department of Epidemiology, Department of Pathology and Laboratory Medicine, Brown University School of Public Health, Providence, RI, USA
| |
Collapse
|
3
|
The roles of MicroRNAs in neural regenerative medicine. Exp Neurol 2020; 332:113394. [DOI: 10.1016/j.expneurol.2020.113394] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/15/2020] [Accepted: 06/25/2020] [Indexed: 12/22/2022]
|
4
|
Barilani M, Cherubini A, Peli V, Polveraccio F, Bollati V, Guffanti F, Del Gobbo A, Lavazza C, Giovanelli S, Elvassore N, Lazzari L. A circular RNA map for human induced pluripotent stem cells of foetal origin. EBioMedicine 2020; 57:102848. [PMID: 32574961 PMCID: PMC7322262 DOI: 10.1016/j.ebiom.2020.102848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/28/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Adult skin fibroblasts represent the most common starting cell type used to generate human induced pluripotent stem cells (F-hiPSC) for clinical studies. Yet, a foetal source would offer unique advantages, primarily the absence of accumulated somatic mutations. Herein, we generated hiPSC from cord blood multipotent mesenchymal stromal cells (MSC-hiPSC) and compared them with F-hiPSC. Assessment of the full activation of the pluripotency gene regulatory network (PGRN) focused on circular RNA (circRNA), recently proposed to participate in the control of pluripotency. METHODS Reprogramming was achieved by a footprint-free strategy. Self-renewal and pluripotency of cord blood MSC-hiPSC were investigated in vitro and in vivo, compared to parental MSC, to embryonic stem cells and to F-hiPSC. High-throughput array-based approaches and bioinformatics analyses were applied to address the PGRN. FINDINGS Cord blood MSC-hiPSC successfully acquired a complete pluripotent identity. Functional comparison with F-hiPSC showed no differences in terms of i) generation of mesenchymal-like derivatives, ii) their subsequent adipogenic, osteogenic and chondrogenic commitment, and iii) their hematopoietic support ability. At the transcriptional level, specific subsets of mRNA, miRNA and circRNA (n = 4,429) were evidenced, casting a further layer of complexity on the PGRN regulatory crosstalk. INTERPRETATION A circRNA map of transcripts associated to naïve and primed pluripotency is provided for hiPSC of clinical-grade foetal origin, offering insights on still unreported regulatory circuits of the PGRN to consider for the optimization and development of efficient differentiation protocols for clinical translation. FUNDING This research was funded by Ricerca Corrente 2012-2018 by the Italian Ministry of Health.
Collapse
Affiliation(s)
- Mario Barilani
- Laboratory of Regenerative Medicine - Cell Factory, Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milano, Italy; EPIGET Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy; Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Alessandro Cherubini
- Laboratory of Regenerative Medicine - Cell Factory, Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milano, Italy
| | - Valeria Peli
- Laboratory of Regenerative Medicine - Cell Factory, Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milano, Italy
| | - Francesca Polveraccio
- Laboratory of Regenerative Medicine - Cell Factory, Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milano, Italy; Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Valentina Bollati
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | | | - Alessandro Del Gobbo
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Cristiana Lavazza
- Laboratory of Regenerative Medicine - Cell Factory, Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milano, Italy
| | - Silvia Giovanelli
- Milano Cord Blood Bank, Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Nicola Elvassore
- Department of Industrial Engineering, University of Padova, Padova, Italy; Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China; Venetian Institute of Molecular Medicine, Padova, Italy; Stem Cells & Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Lorenza Lazzari
- Laboratory of Regenerative Medicine - Cell Factory, Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milano, Italy.
| |
Collapse
|
5
|
Abstract
Accumulating evidence demonstrates that pre-vascularization of tissue-engineered constructs can significantly enhance their survival and engraftment upon transplantation. Endothelial cells (ECs), the basic component of vasculatures, are indispensable to the entire process of pre-vascularization. However, the source of ECs still poses an issue. Recent studies confirmed that diverse approaches are available in the derivation of ECs for tissue engineering, such as direct isolation of autologous ECs, reprogramming of somatic cells, and induced differentiation of stem cells in typology. Herein, we discussed a variety of human stem cells (i.e., totipotent, pluripotent, multipotent, oligopotent, and unipotent stem cells), which can be induced to differentiate into ECs and reviewed the multifarious approaches for EC generation, such as 3D EB formation for embryonic stem cells (ESCs), stem cell-somatic cell co-culture, and directed endothelial differentiation with growth factors in conventional 2D culture.
Collapse
Affiliation(s)
- Min Xu
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatological Hospital and College, Anhui Medical University, 69 Meishan Road, Hefei, 230032 Anhui Province China
| | - Jiacai He
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatological Hospital and College, Anhui Medical University, 69 Meishan Road, Hefei, 230032 Anhui Province China
| | - Chengfei Zhang
- Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong China
| | - Jianguang Xu
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatological Hospital and College, Anhui Medical University, 69 Meishan Road, Hefei, 230032 Anhui Province China
- Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong China
| | - Yuanyin Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatological Hospital and College, Anhui Medical University, 69 Meishan Road, Hefei, 230032 Anhui Province China
| |
Collapse
|
6
|
Engle SJ, Blaha L, Kleiman RJ. Best Practices for Translational Disease Modeling Using Human iPSC-Derived Neurons. Neuron 2018; 100:783-797. [DOI: 10.1016/j.neuron.2018.10.033] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/07/2018] [Accepted: 10/19/2018] [Indexed: 01/26/2023]
|
7
|
Li J, Yin X, Luan Q. Comparative study of periodontal differentiation propensity of induced pluripotent stem cells from different tissue origins. J Periodontol 2018; 89:1230-1240. [PMID: 30039603 DOI: 10.1002/jper.18-0033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 04/23/2018] [Accepted: 04/27/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Despite being almost identical to embryonic stem cells, induced pluripotent stem cells (iPSCs) have been shown to possess a residual somatic memory that favors their differentiation propensity into donor tissue. To further confirm this assumption, we compare for the first time the periodontal differentiation tendency of human gingival fibroblast-derived iPSCs (G-iPSCs) and human neonatal skin fibroblast-derived iPSCs (S-iPSCs) to assess whether G-iPSCs could be more efficiently induced toward periodontal cells. METHODS We induced G- and S-iPSCs under the treatment of growth/differentiation factor-5 and connective tissue growth factor, respectively, for 14 days. Immunofluorescence staining and real-time polymerase chain reaction were used to compare their expression levels of related markers. Furthermore, a hydrogel carrier was developed to seed these periodontal progenitors for subcutaneous implantation in non-obese diabetic-severe combined immunodeficiency disease mice. Their differentiated periodontal phenotype maintenance was further assayed by HE observation, immunohistochemical staining and immunofluorescence co-localization with pre-labeled PKH67. RESULTS As expected, both iPSCs were inclined to differentiate back into their original lineage by expressing higher markers at both gene and protein levels in vitro. HE observation of G-iPSCs-seeded hydrogel constructs present more mineralized structure formation than S-iPSCs-seeded ones. Immunohistochemical staining and immunofluorescence analysis also showed stronger positive staining for periodontal related markers in G-iPSCs-seeded hydrogel constructs. CONCLUSIONS Our results preliminarily confirmed that both G- and S-iPSCs were inclined to differentiate back into their original tissue in vitro. Animal study further confirmed the phenotype maintenance of periodontal differentiated G-iPSCs, which highlighted their significant implications for therapeutic use in periodontal regeneration.
Collapse
Affiliation(s)
- Jingwen Li
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
| | - Xiaohui Yin
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
| | - Qingxian Luan
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
| |
Collapse
|
8
|
Schulze M, Sommer A, Plötz S, Farrell M, Winner B, Grosch J, Winkler J, Riemenschneider MJ. Sporadic Parkinson's disease derived neuronal cells show disease-specific mRNA and small RNA signatures with abundant deregulation of piRNAs. Acta Neuropathol Commun 2018; 6:58. [PMID: 29986767 PMCID: PMC6038190 DOI: 10.1186/s40478-018-0561-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 06/27/2018] [Indexed: 01/04/2023] Open
Abstract
Differentiated neurons established via iPSCs from patients that suffer from familial Parkinson's disease (PD) have allowed insights into the mechanisms of neurodegeneration. In the larger cohort of patients with sporadic PD, iPSC based information on disease specific cellular phenotypes is rare. We asked whether differences may be present on genomic and epigenomic levels and performed a comprehensive transcriptomic and epigenomic analysis of fibroblasts, iPSCs and differentiated neuronal cells of sporadic PD-patients and controls. We found that on mRNA level, although fibroblasts and iPSCs are largely indistinguishable, differentiated neuronal cells of sporadic PD patients show significant alterations enriched in pathways known to be involved in disease aetiology, like the CREB-pathway and the pathway regulating PGC1α. Moreover, miRNAs and piRNAs/piRNA-like molecules are largely differentially regulated in cells and post-mortem tissue samples between control- and PD-patients. The most striking differences can be found in piRNAs/piRNA-like molecules, with SINE- and LINE-derived piRNAs highly downregulated in a disease specific manner. We conclude that neuronal cells derived from sporadic PD-patients help to elucidate novel disease mechanisms and provide relevant insight into the epigenetic landscape of sporadic Parkinson's disease as particularly regulated by small RNAs.
Collapse
Affiliation(s)
- Markus Schulze
- Department of Neuropathology, Regensburg University Hospital, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
- Present address: Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Annika Sommer
- Department of Stem Cell Biology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Sonja Plötz
- Department of Stem Cell Biology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Michaela Farrell
- Department of Stem Cell Biology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Janina Grosch
- Department of Molecular Neurology, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Markus J Riemenschneider
- Department of Neuropathology, Regensburg University Hospital, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
| |
Collapse
|
9
|
Pulecio J, Verma N, Mejía-Ramírez E, Huangfu D, Raya A. CRISPR/Cas9-Based Engineering of the Epigenome. Cell Stem Cell 2018; 21:431-447. [PMID: 28985525 DOI: 10.1016/j.stem.2017.09.006] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Determining causal relationships between distinct chromatin features and gene expression, and ultimately cell behavior, remains a major challenge. Recent developments in targetable epigenome-editing tools enable us to assign direct transcriptional and functional consequences to locus-specific chromatin modifications. This Protocol Review discusses the unprecedented opportunity that CRISPR/Cas9 technology offers for investigating and manipulating the epigenome to facilitate further understanding of stem cell biology and engineering of stem cells for therapeutic applications. We also provide technical considerations for standardization and further improvement of the CRISPR/Cas9-based tools to engineer the epigenome.
Collapse
Affiliation(s)
- Julian Pulecio
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, 3rd floor, Avenue Gran Via 199-203, Hospitalet de Llobregat, 08908 Barcelona, Spain; Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Nipun Verma
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA; Weill Graduate School of Medical Sciences at Cornell University/The Rockefeller University/Sloan Kettering Institute Tri-Institutional M.D.-Ph.D. Program, 1300 York Avenue, New York, NY 10065, USA
| | - Eva Mejía-Ramírez
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, 3rd floor, Avenue Gran Via 199-203, Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Danwei Huangfu
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA.
| | - Angel Raya
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, 3rd floor, Avenue Gran Via 199-203, Hospitalet de Llobregat, 08908 Barcelona, Spain; Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain.
| |
Collapse
|
10
|
Ferreira AF, Calin GA, Picanço-Castro V, Kashima S, Covas DT, de Castro FA. Hematopoietic stem cells from induced pluripotent stem cells - considering the role of microRNA as a cell differentiation regulator. J Cell Sci 2018; 131:131/4/jcs203018. [PMID: 29467236 DOI: 10.1242/jcs.203018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although hematopoietic stem cell (HSC) therapy for hematological diseases can lead to a good outcome from the clinical point of view, the limited number of ideal donors, the comorbidity of patients and the increasing number of elderly patients may limit the application of this therapy. HSCs can be generated from induced pluripotent stem cells (iPSCs), which requires the understanding of the bone marrow and liver niches components and function in vivo iPSCs have been extensively applied in several studies involving disease models, drug screening and cellular replacement therapies. However, the somatic reprogramming by transcription factors is a low-efficiency process. Moreover, the reprogramming process is also regulated by microRNAs (miRNAs), which modulate the expression of the transcription factors OCT-4 (also known as POU5F1), SOX-2, KLF-4 and MYC, leading somatic cells to a pluripotent state. In this Review, we present an overview of the challenges of cell reprogramming protocols with regard to HSC generation from iPSCs, and highlight the potential role of miRNAs in cell reprogramming and in the differentiation of induced pluripotent stem cells.
Collapse
Affiliation(s)
- Aline F Ferreira
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, São Paulo 14040-903, Brazil
| | - George A Calin
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Virgínia Picanço-Castro
- Center of Cell Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto, São Paulo 14051-140, Brazil
| | - Simone Kashima
- Center of Cell Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto, São Paulo 14051-140, Brazil
| | - Dimas T Covas
- Center of Cell Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto, São Paulo 14051-140, Brazil.,Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Fabiola A de Castro
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, São Paulo 14040-903, Brazil
| |
Collapse
|
11
|
Different Chondrogenic Potential among Human Induced Pluripotent Stem Cells from Diverse Origin Primary Cells. Stem Cells Int 2018. [PMID: 29535785 PMCID: PMC5828428 DOI: 10.1155/2018/9432616] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Scientists have tried to reprogram various origins of primary cells into human induced pluripotent stem cells (hiPSCs). Every somatic cell can theoretically become a hiPSC and give rise to targeted cells of the human body. However, there have been debates on the controversy about the differentiation propensity according to the origin of primary cells. We reprogrammed hiPSCs from four different types of primary cells such as dermal fibroblasts (DF, n = 3), peripheral blood mononuclear cells (PBMC, n = 3), cord blood mononuclear cells (CBMC, n = 3), and osteoarthritis fibroblast-like synoviocytes (OAFLS, n = 3). Established hiPSCs were differentiated into chondrogenic pellets. All told, cartilage-specific markers tended to express more by the order of CBMC > DF > PBMC > FLS. Origin of primary cells may influence the reprogramming and differentiation thereafter. In the context of chondrogenic propensity, CBMC-derived hiPSCs can be a fairly good candidate cell source for cartilage regeneration. The differentiation of hiPSCs into chondrocytes may help develop “cartilage in a dish” in the future. Also, the ideal cell source of hiPSC for chondrogenesis may contribute to future application as well.
Collapse
|
12
|
Giacomazzi G, Holvoet B, Trenson S, Caluwé E, Kravic B, Grosemans H, Cortés-Calabuig Á, Deroose CM, Huylebroeck D, Hashemolhosseini S, Janssens S, McNally E, Quattrocelli M, Sampaolesi M. MicroRNAs promote skeletal muscle differentiation of mesodermal iPSC-derived progenitors. Nat Commun 2017; 8:1249. [PMID: 29093487 PMCID: PMC5665910 DOI: 10.1038/s41467-017-01359-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 09/12/2017] [Indexed: 02/06/2023] Open
Abstract
Muscular dystrophies (MDs) are often characterized by impairment of both skeletal and cardiac muscle. Regenerative strategies for both compartments therefore constitute a therapeutic avenue. Mesodermal iPSC-derived progenitors (MiPs) can regenerate both striated muscle types simultaneously in mice. Importantly, MiP myogenic propensity is influenced by somatic lineage retention. However, it is still unknown whether human MiPs have in vivo potential. Furthermore, methods to enhance the intrinsic myogenic properties of MiPs are likely needed, given the scope and need to correct large amounts of muscle in the MDs. Here, we document that human MiPs can successfully engraft into the skeletal muscle and hearts of dystrophic mice. Utilizing non-invasive live imaging and selectively induced apoptosis, we report evidence of striated muscle regeneration in vivo in mice by human MiPs. Finally, combining RNA-seq and miRNA-seq data, we define miRNA cocktails that promote the myogenic potential of human MiPs.
Collapse
Affiliation(s)
- Giorgia Giacomazzi
- Translational Cardiomyology, Department of Development and Regeneration, KU Leuven, 3000, Leuven, Belgium
| | - Bryan Holvoet
- Department of Imaging and Pathology, Nuclear Medicine and Molecular Imaging, KU Leuven, 3000, Leuven, Belgium
| | - Sander Trenson
- Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Ellen Caluwé
- Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Bojana Kravic
- Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Hanne Grosemans
- Translational Cardiomyology, Department of Development and Regeneration, KU Leuven, 3000, Leuven, Belgium
| | | | - Christophe M Deroose
- Department of Imaging and Pathology, Nuclear Medicine and Molecular Imaging, KU Leuven, 3000, Leuven, Belgium
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus MC, 3015 CN, Rotterdam, The Netherlands.,Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, 3000, Leuven, Belgium
| | - Said Hashemolhosseini
- Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Stefan Janssens
- Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Elizabeth McNally
- Center for Genetic Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Mattia Quattrocelli
- Translational Cardiomyology, Department of Development and Regeneration, KU Leuven, 3000, Leuven, Belgium.,Center for Genetic Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Maurilio Sampaolesi
- Translational Cardiomyology, Department of Development and Regeneration, KU Leuven, 3000, Leuven, Belgium. .,Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, 27100, Italy.
| |
Collapse
|
13
|
Roost MS, Slieker RC, Bialecka M, van Iperen L, Gomes Fernandes MM, He N, Suchiman HED, Szuhai K, Carlotti F, de Koning EJP, Mummery CL, Heijmans BT, Chuva de Sousa Lopes SM. DNA methylation and transcriptional trajectories during human development and reprogramming of isogenic pluripotent stem cells. Nat Commun 2017; 8:908. [PMID: 29030611 PMCID: PMC5640655 DOI: 10.1038/s41467-017-01077-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 08/16/2017] [Indexed: 01/05/2023] Open
Abstract
Determining cell identity and maturation status of differentiated pluripotent stem cells (PSCs) requires knowledge of the transcriptional and epigenetic trajectory of organs during development. Here, we generate a transcriptional and DNA methylation atlas covering 21 organs during human fetal development. Analysis of multiple isogenic organ sets shows that organ-specific DNA methylation patterns are highly dynamic between week 9 (W9) and W22 of gestation. We investigate the impact of reprogramming on organ-specific DNA methylation by generating human induced pluripotent stem cell (hiPSC) lines from six isogenic organs. All isogenic hiPSCs acquire DNA methylation patterns comparable to existing hPSCs. However, hiPSCs derived from fetal brain retain brain-specific DNA methylation marks that seem sufficient to confer higher propensity to differentiate to neural derivatives. This systematic analysis of human fetal organs during development and associated isogenic hiPSC lines provides insights in the role of DNA methylation in lineage commitment and epigenetic reprogramming in humans.While DNA methylation and gene expression data are widely available for animal models, comprehensive data from human development is rarer. Here, the authors generated transcriptional and DNA methylation data from 21 organs during human development and 6 isogenic induced pluripotent stem cell lines.
Collapse
Affiliation(s)
- Matthias S Roost
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Roderick C Slieker
- Molecular Epidemiology Section, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Monika Bialecka
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Liesbeth van Iperen
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Maria M Gomes Fernandes
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Nannan He
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - H Eka D Suchiman
- Molecular Epidemiology Section, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Karoly Szuhai
- Department of Molecular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Françoise Carlotti
- Department of Nephrology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Eelco J P de Koning
- Department of Nephrology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.,Hubrecht Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Bastiaan T Heijmans
- Molecular Epidemiology Section, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Susana M Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands. .,Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium.
| |
Collapse
|
14
|
Skeletal Muscle Cell Induction from Pluripotent Stem Cells. Stem Cells Int 2017; 2017:1376151. [PMID: 28529527 PMCID: PMC5424488 DOI: 10.1155/2017/1376151] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 03/28/2017] [Indexed: 12/19/2022] Open
Abstract
Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have the potential to differentiate into various types of cells including skeletal muscle cells. The approach of converting ESCs/iPSCs into skeletal muscle cells offers hope for patients afflicted with the skeletal muscle diseases such as the Duchenne muscular dystrophy (DMD). Patient-derived iPSCs are an especially ideal cell source to obtain an unlimited number of myogenic cells that escape immune rejection after engraftment. Currently, there are several approaches to induce differentiation of ESCs and iPSCs to skeletal muscle. A key to the generation of skeletal muscle cells from ESCs/iPSCs is the mimicking of embryonic mesodermal induction followed by myogenic induction. Thus, current approaches of skeletal muscle cell induction of ESCs/iPSCs utilize techniques including overexpression of myogenic transcription factors such as MyoD or Pax3, using small molecules to induce mesodermal cells followed by myogenic progenitor cells, and utilizing epigenetic myogenic memory existing in muscle cell-derived iPSCs. This review summarizes the current methods used in myogenic differentiation and highlights areas of recent improvement.
Collapse
|
15
|
Integrated analysis of hematopoietic differentiation outcomes and molecular characterization reveals unbiased differentiation capacity and minor transcriptional memory in HPC/HSC-iPSCs. Stem Cell Res Ther 2017; 8:13. [PMID: 28114969 PMCID: PMC5259886 DOI: 10.1186/s13287-016-0466-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 12/17/2016] [Accepted: 12/21/2016] [Indexed: 11/12/2022] Open
Abstract
Background Transcription factor-mediated reprogramming can reset the epigenetics of somatic cells into a pluripotency compatible state. Recent studies show that induced pluripotent stem cells (iPSCs) always inherit starting cell-specific characteristics, called epigenetic memory, which may be advantageous, as directed differentiation into specific cell types is still challenging; however, it also may be unpredictable when uncontrollable differentiation occurs. In consideration of biosafety in disease modeling and personalized medicine, the availability of high-quality iPSCs which lack a biased differentiation capacity and somatic memory could be indispensable. Methods Herein, we evaluate the hematopoietic differentiation capacity and somatic memory state of hematopoietic progenitor and stem cell (HPC/HSC)-derived-iPSCs (HPC/HSC-iPSCs) using a previously established sequential reprogramming system. Results We found that HPC/HSCs are amenable to being reprogrammed into iPSCs with unbiased differentiation capacity to hematopoietic progenitors and mature hematopoietic cells. Genome-wide analyses revealed that no global epigenetic memory was detectable in HPC/HSC-iPSCs, but only a minor transcriptional memory of HPC/HSCs existed in a specific tetraploid complementation (4 N)-incompetent HPC/HSC-iPSC line. However, the observed minor transcriptional memory had no influence on the hematopoietic differentiation capacity, indicating the reprogramming of the HPC/HSCs was nearly complete. Further analysis revealed the correlation of minor transcriptional memory with the aberrant distribution of H3K27me3. Conclusions This work provides a comprehensive framework for obtaining high-quality iPSCs from HPC/HSCs with unbiased hematopoietic differentiation capacity and minor transcriptional memory. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0466-1) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
Grzybek M, Golonko A, Walczak M, Lisowski P. Epigenetics of cell fate reprogramming and its implications for neurological disorders modelling. Neurobiol Dis 2016; 99:84-120. [PMID: 27890672 DOI: 10.1016/j.nbd.2016.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 11/03/2016] [Accepted: 11/21/2016] [Indexed: 02/06/2023] Open
Abstract
The reprogramming of human induced pluripotent stem cells (hiPSCs) proceeds in a stepwise manner with reprogramming factors binding and epigenetic composition changes during transition to maintain the epigenetic landscape, important for pluripotency. There arises a question as to whether the aberrant epigenetic state after reprogramming leads to epigenetic defects in induced stem cells causing unpredictable long term effects in differentiated cells. In this review, we present a comprehensive view of epigenetic alterations accompanying reprogramming, cell maintenance and differentiation as factors that influence applications of hiPSCs in stem cell based technologies. We conclude that sample heterogeneity masks DNA methylation signatures in subpopulations of cells and thus believe that beside a genetic evaluation, extensive epigenomic screening should become a standard procedure to ensure hiPSCs state before they are used for genome editing and differentiation into neurons of interest. In particular, we suggest that exploitation of the single-cell composition of the epigenome will provide important insights into heterogeneity within hiPSCs subpopulations to fast forward development of reliable hiPSC-based analytical platforms in neurological disorders modelling and before completed hiPSC technology will be implemented in clinical approaches.
Collapse
Affiliation(s)
- Maciej Grzybek
- Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Postępu 36A, 05-552 Magdalenka, Poland.
| | - Aleksandra Golonko
- Department of Biotechnology, Faculty of Civil and Environmental Engineering, Bialystok University of Technology, Wiejska 45E, 15-351 Bialystok, Poland.
| | - Marta Walczak
- Department of Animal Behavior, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Postępu 36A, 05-552 Magdalenka, Poland.
| | - Pawel Lisowski
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Postępu 36A, 05-552 Magdalenka, Poland; iPS Cell-Based Disease Modelling Group, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Robert-Rössle-Str. 10, 13092 Berlin, Germany.
| |
Collapse
|
17
|
Zhu L, Gomez-Duran A, Saretzki G, Jin S, Tilgner K, Melguizo-Sanchis D, Anyfantis G, Al-Aama J, Vallier L, Chinnery P, Lako M, Armstrong L. The mitochondrial protein CHCHD2 primes the differentiation potential of human induced pluripotent stem cells to neuroectodermal lineages. J Cell Biol 2016; 215:187-202. [PMID: 27810911 PMCID: PMC5084643 DOI: 10.1083/jcb.201601061] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 09/19/2016] [Indexed: 01/09/2023] Open
Abstract
Human induced pluripotent stem cell (hiPSC) utility is limited by variations in the ability of these cells to undergo lineage-specific differentiation. We have undertaken a transcriptional comparison of human embryonic stem cell (hESC) lines and hiPSC lines and have shown that hiPSCs are inferior in their ability to undergo neuroectodermal differentiation. Among the differentially expressed candidates between hESCs and hiPSCs, we identified a mitochondrial protein, CHCHD2, whose expression seems to correlate with neuroectodermal differentiation potential of pluripotent stem cells. We provide evidence that hiPSC variability with respect to CHCHD2 expression and differentiation potential is caused by clonal variation during the reprogramming process and that CHCHD2 primes neuroectodermal differentiation of hESCs and hiPSCs by binding and sequestering SMAD4 to the mitochondria, resulting in suppression of the activity of the TGFβ signaling pathway. Using CHCHD2 as a marker for assessing and comparing the hiPSC clonal and/or line differentiation potential provides a tool for large scale differentiation and hiPSC banking studies.
Collapse
Affiliation(s)
- Lili Zhu
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, England, UK
| | - Aurora Gomez-Duran
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, England, UK.,Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, England, UK
| | - Gabriele Saretzki
- Institute for Ageing and Health, Newcastle University, Newcastle NE1 3BZ, England, UK
| | - Shibo Jin
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, England, UK
| | - Katarzyna Tilgner
- Wellcome Trust-Medical Research Council Stem Cell Institute, Hinxton, Cambridge CB10 1SA, England, UK.,Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, England, UK
| | | | - Georgios Anyfantis
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, England, UK
| | - Jumana Al-Aama
- Princess Al Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ludovic Vallier
- Wellcome Trust-Medical Research Council Stem Cell Institute, Hinxton, Cambridge CB10 1SA, England, UK
| | - Patrick Chinnery
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, England, UK
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, England, UK
| | - Lyle Armstrong
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, England, UK
| |
Collapse
|
18
|
Petrova A, Capalbo A, Jacquet L, Hazelwood-Smith S, Dafou D, Hobbs C, Arno M, Farcomeni A, Devito L, Badraiq H, Simpson M, McGrath JA, Di WL, Cheng JB, Mauro TM, Ilic D. Induced Pluripotent Stem Cell Differentiation and Three-Dimensional Tissue Formation Attenuate Clonal Epigenetic Differences in Trichohyalin. Stem Cells Dev 2016; 25:1366-75. [PMID: 27460132 PMCID: PMC5035378 DOI: 10.1089/scd.2016.0156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/26/2016] [Indexed: 11/13/2022] Open
Abstract
The epigenetic background of pluripotent stem cells can influence transcriptional and functional behavior. Most of these data have been obtained in standard monolayer cell culture systems. In this study, we used exome sequencing, array comparative genomic hybridization (CGH), miRNA array, DNA methylation array, three-dimensional (3D) tissue engineering, and immunostaining to conduct a comparative analysis of two induced pluripotent stem cell (iPSC) lines used in engineering of 3D human epidermal equivalent (HEE), which more closely approximates epidermis. Exome sequencing and array CGH suggested that their genome was stable following 3 months of feeder-free culture. While the miRNAome was also not affected, ≈7% of CpG sites were differently methylated between the two lines. Analysis of the epidermal differentiation complex, a region on chromosome 1 that contains multiple genes involved in skin barrier maturation (including trichohyalin, TCHH), found that in one of the iPSC clones (iKCL004), TCHH retained a DNA methylation signature characteristic of the original somatic cells, whereas in other iPSC line (iKCL011), the TCHH methylation signature matched that of the human embryonic stem cell line KCL034. The difference between the two iPSC clones in TCHH methylation did not have an obvious effect on its expression in 3D HEE, suggesting that differentiation and tissue formation may mitigate variations in the iPSC methylome.
Collapse
Affiliation(s)
- Anastasia Petrova
- Assisted Conception Unit, Stem Cell Laboratory, Division of Women's Health, Women's Health Academic Centre, King's College London, London, United Kingdom
- St John's Institute of Dermatology, King's College London, London, United Kingdom
- Immunobiology Unit, Institute of Child Health, University College London, London, United Kingdom
| | | | - Laureen Jacquet
- Assisted Conception Unit, Stem Cell Laboratory, Division of Women's Health, Women's Health Academic Centre, King's College London, London, United Kingdom
| | - Simon Hazelwood-Smith
- Division of Genetics and Molecular Medicine, King's College London, London, United Kingdom
| | - Dimitra Dafou
- Division of Genetics and Molecular Medicine, King's College London, London, United Kingdom
| | - Carl Hobbs
- Histology Laboratory, Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Matthew Arno
- Genomics Centre, King's College London, London, United Kingdom
| | - Alessio Farcomeni
- Statistics Section, Department of Public Health and Infectious Diseases, Sapienza–University of Rome, Rome, Italy
| | - Liani Devito
- Assisted Conception Unit, Stem Cell Laboratory, Division of Women's Health, Women's Health Academic Centre, King's College London, London, United Kingdom
| | - Heba Badraiq
- Assisted Conception Unit, Stem Cell Laboratory, Division of Women's Health, Women's Health Academic Centre, King's College London, London, United Kingdom
| | - Michael Simpson
- Division of Genetics and Molecular Medicine, King's College London, London, United Kingdom
| | - John A McGrath
- St John's Institute of Dermatology, King's College London, London, United Kingdom
| | - Wei-Li Di
- Immunobiology Unit, Institute of Child Health, University College London, London, United Kingdom
| | - Jeffrey B Cheng
- Department of Dermatology, Veteran Affairs Medical Center, University of California San Francisco, San Francisco, California
| | - Theodora M Mauro
- Department of Dermatology, Veteran Affairs Medical Center, University of California San Francisco, San Francisco, California
| | - Dusko Ilic
- Assisted Conception Unit, Stem Cell Laboratory, Division of Women's Health, Women's Health Academic Centre, King's College London, London, United Kingdom
| |
Collapse
|
19
|
Phetfong J, Supokawej A, Wattanapanitch M, Kheolamai P, U-Pratya Y, Issaragrisil S. Cell type of origin influences iPSC generation and differentiation to cells of the hematoendothelial lineage. Cell Tissue Res 2016; 365:101-12. [PMID: 26893154 DOI: 10.1007/s00441-016-2369-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 01/27/2016] [Indexed: 12/14/2022]
Abstract
The use of induced pluripotent stem cells (iPSCs) as a source of cells for cell-based therapy in regenerative medicine is hampered by the limited efficiency and safety of the reprogramming procedure and the low efficiency of iPSC differentiation to specialized cell types. Evidence suggests that iPSCs retain an epigenetic memory of their parental cells with a possible influence on their differentiation capacity in vitro. We reprogramme three cell types, namely human umbilical cord vein endothelial cells (HUVECs), endothelial progenitor cells (EPCs) and human dermal fibroblasts (HDFs), to iPSCs and compare their hematoendothelial differentiation capacity. HUVECs and EPCs were at least two-fold more efficient in iPSC reprogramming than HDFs. Both HUVEC- and EPC-derived iPSCs exhibited high potentiality toward endothelial cell differentiation compared with HDF-derived iPSCs. However, only HUVEC-derived iPSCs showed efficient differentiation to hematopoietic stem/progenitor cells. Examination of DNA methylation at promoters of hematopoietic and endothelial genes revealed evidence for the existence of epigenetic memory at the endothelial genes but not the hematopoietic genes in iPSCs derived from HUVECs and EPCs indicating that epigenetic memory involves an endothelial differentiation bias. Our findings suggest that endothelial cells and EPCs are better sources for iPSC derivation regarding their reprogramming efficiency and that the somatic cell type used for iPSC generation toward specific cell lineage differentiation is of importance.
Collapse
Affiliation(s)
- Jitrada Phetfong
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Aungkura Supokawej
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand.
| | - Methichit Wattanapanitch
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pakpoom Kheolamai
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Division of Cell Biology, Department of Pre-clinical Sciences, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand.,Center of Excellence in Stem Cell Research, Thammasat University, Pathum Thani, Thailand
| | - Yaowalak U-Pratya
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wang Lang Road, Bangkok-noi, Bangkok, 10700, Thailand
| | - Surapol Issaragrisil
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand. .,Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wang Lang Road, Bangkok-noi, Bangkok, 10700, Thailand.
| |
Collapse
|
20
|
Function and significance of MicroRNAs in benign and malignant human stem cells. Semin Cancer Biol 2015; 35:200-11. [DOI: 10.1016/j.semcancer.2015.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/09/2015] [Accepted: 07/13/2015] [Indexed: 12/16/2022]
|
21
|
Update on the Pathogenic Implications and Clinical Potential of microRNAs in Cardiac Disease. BIOMED RESEARCH INTERNATIONAL 2015. [PMID: 26221581 PMCID: PMC4499420 DOI: 10.1155/2015/105620] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
miRNAs, a unique class of endogenous noncoding RNAs, are highly conserved across species, repress gene translation upon binding to mRNA, and thereby influence many biological processes. As such, they have been recently recognized as regulators of virtually all aspects of cardiac biology, from the development and cell lineage specification of different cell populations within the heart to the survival of cardiomyocytes under stress conditions. Various miRNAs have been recently established as powerful mediators of distinctive aspects in many cardiac disorders. For instance, acute myocardial infarction induces cardiac tissue necrosis and apoptosis but also initiates a pathological remodelling response of the left ventricle that includes hypertrophic growth of cardiomyocytes and fibrotic deposition of extracellular matrix components. In this regard, recent findings place various miRNAs as unquestionable contributing factors in the pathogenesis of cardiac disorders, thus begging the question of whether miRNA modulation could become a novel strategy for clinical intervention. In the present review, we aim to expose the latest mechanistic concepts regarding miRNA function within the context of CVD and analyse the reported roles of specific miRNAs in the different stages of left ventricular remodelling as well as their potential use as a new class of disease-modifying clinical options.
Collapse
|
22
|
Concise Review: Methods and Cell Types Used to Generate Down Syndrome Induced Pluripotent Stem Cells. J Clin Med 2015; 4:696-714. [PMID: 26239351 PMCID: PMC4470162 DOI: 10.3390/jcm4040696] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/23/2015] [Accepted: 03/31/2015] [Indexed: 01/29/2023] Open
Abstract
Down syndrome (DS, trisomy 21), is the most common viable chromosomal disorder, with an incidence of 1 in 800 live births. Its phenotypic characteristics include intellectual impairment and several other developmental abnormalities, for the majority of which the pathogenetic mechanisms remain unknown. Several models have been used to investigate the mechanisms by which the extra copy of chromosome 21 leads to the DS phenotype. In the last five years, several laboratories have been successful in reprogramming patient cells carrying the trisomy 21 anomaly into induced pluripotent stem cells, i.e., T21-iPSCs. In this review, we summarize the different T21-iPSCs that have been generated with a particular interest in the technical procedures and the somatic cell types used for the reprogramming.
Collapse
|
23
|
Placenta-based therapies for the treatment of epidermolysis bullosa. Cytotherapy 2015; 17:786-795. [PMID: 25795271 DOI: 10.1016/j.jcyt.2015.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/03/2015] [Indexed: 12/30/2022]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a severe blistering skin disease caused by mutations in the COL7A1 gene. These mutations lead to decreased or absent levels of collagen VII at the dermal-epidermal junction. Over the past decade, significant progress has been made in the treatment of RDEB, including the use of hematopoietic cell transplantation, but a cure has been elusive. Patients still experience life-limiting and life-threatening complications as a result of painful and debilitating wounds. The continued suffering of these patients drives the need to improve existing therapies and develop new ones. In this Review, we will discuss how recent advances in placenta-based, umbilical cord blood-based and amniotic membrane-based therapies may play a role in the both the current and future treatment of RDEB.
Collapse
|
24
|
Firas J, Liu X, Lim SM, Polo JM. Transcription factor-mediated reprogramming: epigenetics and therapeutic potential. Immunol Cell Biol 2015; 93:284-9. [PMID: 25643615 DOI: 10.1038/icb.2015.5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/06/2014] [Indexed: 01/10/2023]
Abstract
Cellular reprogramming refers to the conversion of one cell type into another by altering its epigenetic marks. This can be achieved by three different methods: somatic cell nuclear transfer, cell fusion and transcription factor (TF)-mediated reprogramming. TF-mediated reprogramming can occur through several means, either reverting backwards to a pluripotent state before redifferentiating to a new cell type (otherwise known as induced pluripotency), by transdifferentiating directly into a new cell type (bypassing the intermediate pluripotent stage), or, by using the induced pluripotency pathway without reaching the pluripotent state. The possibility of reprogramming any cell type of interest not only sheds new insights on cellular plasticity, but also provides a novel use of this technology across several platforms, most notably in cellular replacement therapies, disease modelling and drug screening. This review will focus on the different ways of implementing TF-mediated reprogramming, their associated epigenetic changes and its therapeutic potential.
Collapse
Affiliation(s)
- Jaber Firas
- 1] Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia [2] Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Xiaodong Liu
- 1] Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia [2] Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Sue Mei Lim
- 1] Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia [2] Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Jose M Polo
- 1] Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia [2] Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
25
|
Brandl C, Grassmann F, Riolfi J, Weber BHF. Tapping Stem Cells to Target AMD: Challenges and Prospects. J Clin Med 2015; 4:282-303. [PMID: 26239128 PMCID: PMC4470125 DOI: 10.3390/jcm4020282] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 01/13/2015] [Indexed: 02/08/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) are increasingly gaining attention in biomedicine as valuable resources to establish patient-derived cell culture models of the cell type known to express the primary pathology. The idea of "a patient in a dish" aims at basic, but also clinical, applications with the promise to mimic individual genetic and metabolic complexities barely reflected in current invertebrate or vertebrate animal model systems. This may particularly be true for the inherited and complex diseases of the retina, as this tissue has anatomical and physiological aspects unique to the human eye. For example, the complex age-related macular degeneration (AMD), the leading cause of blindness in Western societies, can be attributed to a large number of genetic and individual factors with so far unclear modes of mutual interaction. Here, we review the current status and future prospects of utilizing hPSCs, specifically induced pluripotent stem cells (iPSCs), in basic and clinical AMD research, but also in assessing potential treatment options. We provide an outline of concepts for disease modelling and summarize ongoing and projected clinical trials for stem cell-based therapy in late-stage AMD.
Collapse
Affiliation(s)
- Caroline Brandl
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
- Department of Ophthalmology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg, Germany.
| | - Felix Grassmann
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | - Julia Riolfi
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | - Bernhard H F Weber
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| |
Collapse
|
26
|
Generation of Human β-Thalassemia Induced Pluripotent Cell Lines by Reprogramming of Bone Marrow–Derived Mesenchymal Stromal Cells Using Modified mRNA. Cell Reprogram 2014; 16:447-55. [DOI: 10.1089/cell.2014.0050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
27
|
Cambuli F, Murray A, Dean W, Dudzinska D, Krueger F, Andrews S, Senner CE, Cook SJ, Hemberger M. Epigenetic memory of the first cell fate decision prevents complete ES cell reprogramming into trophoblast. Nat Commun 2014; 5:5538. [PMID: 25423963 PMCID: PMC4263130 DOI: 10.1038/ncomms6538] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 10/10/2014] [Indexed: 12/17/2022] Open
Abstract
Embryonic (ES) and trophoblast (TS) stem cells reflect the first, irrevocable cell fate decision in development that is reinforced by distinct epigenetic lineage barriers. Nonetheless, ES cells can seemingly acquire TS-like characteristics upon manipulation of lineage-determining transcription factors or activation of the extracellular signal-regulated kinase 1/2 (Erk1/2) pathway. Here we have interrogated the progression of reprogramming in ES cell models with regulatable Oct4 and Cdx2 transgenes or conditional Erk1/2 activation. Although trans-differentiation into TS-like cells is initiated, lineage conversion remains incomplete in all models, underpinned by the failure to demethylate a small group of TS cell genes. Forced expression of these non-reprogrammed genes improves trans-differentiation efficiency, but still fails to confer a stable TS cell phenotype. Thus, even ES cells in ground-state pluripotency cannot fully overcome the boundaries that separate the first cell lineages but retain an epigenetic memory of their ES cell origin.
Collapse
Affiliation(s)
- Francesco Cambuli
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK
- Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Alexander Murray
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK
- Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Wendy Dean
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Dominika Dudzinska
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK
- Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Felix Krueger
- Bioinformatics Group, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Simon Andrews
- Bioinformatics Group, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Claire E. Senner
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK
- Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Simon J. Cook
- Signalling Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Myriam Hemberger
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK
- Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
- Wellcome Trust—Medical Research Council Cambridge Stem Cell Institute, Tennis Court Road, Cambridge CB2 1QR, UK
| |
Collapse
|
28
|
Kim C, Lee HC, Sung JJ. Amyotrophic lateral sclerosis - cell based therapy and novel therapeutic development. Exp Neurobiol 2014; 23:207-14. [PMID: 25258567 PMCID: PMC4174611 DOI: 10.5607/en.2014.23.3.207] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 08/27/2014] [Accepted: 08/27/2014] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease, characterized by the predominant loss of motor neurons (MNs) in primary motor cortex, the brainstem, and the spinal cord, causing premature death in most cases. Minimal delay of pathological development by available medicine has prompted the search for novel therapeutic treatments to cure ALS. Cell-based therapy has been proposed as an ultimate source for regeneration of MNs. Recent completion of non-autologous fetal spinal stem cell transplant to ALS patients brought renewed hope for further human trials to cure the disease. Autologous somatic stem cell-based human trials are now in track to reveal the outcome of the ongoing trials. Furthermore, induced pluripotent stem cell (iPSC)-based ALS disease drug screen and autologous cell transplant options will broaden therapeutic options. In this review paper, we discuss recent accomplishments in cell transplant treatment for ALS and future options with iPSC technology.
Collapse
Affiliation(s)
- Changsung Kim
- Department of Bioscience and Biotechnology, Sejong University, Seoul 143-747, Korea
| | - Hee Chul Lee
- Department of Bioscience and Biotechnology, Sejong University, Seoul 143-747, Korea
| | - Jung-Joon Sung
- Department of Neurology, Seoul National University Hospital, Seoul 110-774, Korea
| |
Collapse
|
29
|
Firas J, Liu X, Polo JM. Epigenetic memory in somatic cell nuclear transfer and induced pluripotency: Evidence and implications. Differentiation 2014; 88:29-32. [DOI: 10.1016/j.diff.2014.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/18/2014] [Accepted: 09/06/2014] [Indexed: 12/31/2022]
|
30
|
Kim C. Disease modeling and cell based therapy with iPSC: future therapeutic option with fast and safe application. Blood Res 2014; 49:7-14. [PMID: 24724061 PMCID: PMC3974965 DOI: 10.5045/br.2014.49.1.7] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 03/18/2014] [Accepted: 03/19/2014] [Indexed: 12/20/2022] Open
Abstract
Induced pluripotent stem cell (iPSC) technology has shown us great hope to treat various human diseases which have been known as untreatable and further endows personalized medicine for future therapy without ethical issues and immunological rejection which embryonic stem cell (hES) treatment has faced. It has been agreed that iPSCs knowledge can be harnessed from disease modeling which mimics human pathological development rather than trials utilizing conventional rodent and cell lines. Now, we can routinely generate iPSC from patient specific cell sources, such as skin fibroblast, hair follicle cells, patient blood samples and even urine containing small amount of epithelial cells. iPSC has both similarity and dissimilarity to hES. iPSC is similar enough to regenerate tissue and even full organism as ES does, however what we want for therapeutic advantage is limited to regenerated tissue and lineage specific differentiation. Depending on the lineage and type of cells, both tissue memory containing (DNA rearrangement/epigenetics) and non-containing iPSC can be generated. This makes iPSC even better choice to perform disease modeling as well as cell based therapy. Tissue memory containing iPSC from mature leukocytes would be beneficial for curing cancer and infectious disease. In this review, the benefit of iPSC for translational approaches will be presented.
Collapse
Affiliation(s)
- Changsung Kim
- Department of Bioscience and Biotechnology, Sejong University, Seoul, Korea
| |
Collapse
|