1
|
Guan W, Stark LE, Zhang N, Bains A, Martinez A, Dupureur CM, Colvin ME, LiWang PJ. Rational Design of High Affinity Interaction Between CC Chemokine Binding Protein vCCI and CCL17/TARC. Biochemistry 2024; 63:2235-2239. [PMID: 39194151 PMCID: PMC11411725 DOI: 10.1021/acs.biochem.4c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/04/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
The poxvirus-derived protein vCCI (viral CC chemokine inhibitor) binds almost all members of the CC chemokine family with nanomolar affinity, inhibiting their pro-inflammatory actions. Understanding the affinity and specificity of vCCI could lead to new anti-inflammatory therapeutics. CCL17, also known as TARC, is unusual among CC chemokines by having only micromolar binding to vCCI. We have used sequence analysis and molecular simulations to determine the cause of this weak binding, which identified several locations in CCL17 where mutations seemed likely to improve binding to vCCI. Based on the aforementioned analysis, we expressed and tested multiple mutants of CCL17. We found two single point mutants V44K and Q45R that increased binding affinity to vCCI by 2-3-fold and, in combination, further improved affinity by 7-fold. The CCL17 triple mutant G17R/V44K/Q45R yielded a Kd of 0.25 ± 0.13 μM, a 68-fold improvement in affinity compared to the complex with wild-type CCL17. A quadruple mutant G17R/V44K/Q45R/R57W showed high affinity (0.59 ± 0.09 μM) compared to the wild type but lower affinity than the triple mutant. This work demonstrates that sequence comparisons and molecular simulations can predict chemokine mutations that increase the level of binding to vCCI, an important first step in developing engineered chemokine inhibitors useful for anti-inflammatory therapy.
Collapse
Affiliation(s)
- Wenyan Guan
- School
of Natural Sciences, University of California
Merced, 5200 North Lake Rd., Merced, California 95343, United States
| | - Lauren E. Stark
- School
of Natural Sciences, University of California
Merced, 5200 North Lake Rd., Merced, California 95343, United States
| | - Ning Zhang
- School
of Natural Sciences, University of California
Merced, 5200 North Lake Rd., Merced, California 95343, United States
| | - Arjan Bains
- School
of Natural Sciences, University of California
Merced, 5200 North Lake Rd., Merced, California 95343, United States
| | - Airam Martinez
- School
of Natural Sciences, University of California
Merced, 5200 North Lake Rd., Merced, California 95343, United States
| | - Cynthia M. Dupureur
- Department
of Chemistry and Biochemistry, University
of Missouri-St. Louis, St. Louis, Missouri 63043, United States
| | - Michael E. Colvin
- School
of Natural Sciences, University of California
Merced, 5200 North Lake Rd., Merced, California 95343, United States
| | - Patricia J. LiWang
- School
of Natural Sciences, University of California
Merced, 5200 North Lake Rd., Merced, California 95343, United States
- Health
Sciences Research Institute, University
of California, Merced, Merced, California 95343, United States
| |
Collapse
|
2
|
Guan W, Zhang N, Bains A, Sadqi M, Dupureur CM, LiWang PJ. Efficient production of fluorophore-labeled CC chemokines for biophysical studies using recombinant enterokinase and recombinant sortase. Biopolymers 2024; 115:e23557. [PMID: 37341434 PMCID: PMC10733556 DOI: 10.1002/bip.23557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/05/2023] [Accepted: 06/07/2023] [Indexed: 06/22/2023]
Abstract
Chemokines are important immune system proteins, many of which mediate inflammation due to their function to activate and cause chemotaxis of leukocytes. An important anti-inflammatory strategy is therefore to bind and inhibit chemokines, which leads to the need for biophysical studies of chemokines as they bind various possible partners. Because a successful anti-chemokine drug should bind at low concentrations, techniques such as fluorescence anisotropy that can provide nanomolar signal detection are required. To allow fluorescence experiments to be carried out on chemokines, a method is described for the production of fluorescently labeled chemokines. First, a fusion-tagged chemokine is produced in Escherichia coli, then efficient cleavage of the N-terminal fusion partner is carried out with lab-produced enterokinase, followed by covalent modification with a fluorophore, mediated by the lab-produced sortase enzyme. This overall process reduces the need for expensive commercial enzymatic reagents. Finally, we utilize the product, vMIP-fluor, in binding studies with the chemokine binding protein vCCI, which has great potential as an anti-inflammatory therapeutic, showing a binding constant for vCCI:vMIP-fluor of 0.37 ± 0.006 nM. We also show how a single modified chemokine homolog (vMIP-fluor) can be used in competition assays with other chemokines and we report a Kd for vCCI:CCL17 of 14 μM. This work demonstrates an efficient method of production and fluorescent labeling of chemokines for study across a broad range of concentrations.
Collapse
Affiliation(s)
- Wenyan Guan
- Materials and Biomaterials Science and Engineering, University of California Merced 5200 North Lake Rd. Merced, CA 95343
| | - Ning Zhang
- Current address: Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Arjan Bains
- Chemistry and Biochemistry, University of California Merced 5200 North Lake Rd. Merced, CA 95343
| | - Mourad Sadqi
- Bioengineering, University of California Merced 5200 North Lake Rd. Merced, CA 95343
| | - Cynthia M. Dupureur
- Department of Chemistry and Biochemistry, University of Missouri St. Louis, St. Louis, MO 63043
| | - Patricia J. LiWang
- Molecular Cell Biology, Health Sciences Research Institute, University of California Merced 5200 North Lake Rd. Merced, CA 95343
| |
Collapse
|
3
|
Lucena-Neto FD, Falcão LFM, Vieira-Junior AS, Moraes ECS, David JPF, Silva CC, Sousa JR, Duarte MIS, Vasconcelos PFC, Quaresma JAS. Monkeypox Virus Immune Evasion and Eye Manifestation: Beyond Eyelid Implications. Viruses 2023; 15:2301. [PMID: 38140542 PMCID: PMC10747317 DOI: 10.3390/v15122301] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Monkeypox virus (MPXV), belonging to the Poxviridae family and Orthopoxvirus genus, is closely related to the smallpox virus. Initial prodromal symptoms typically include headache, fever, and lymphadenopathy. This review aims to detail various ocular manifestations and immune evasion associated with the monkeypox viral infection and its complications, making it appropriate as a narrative review. Common external ocular manifestations of MPXV typically involve a generalized pustular rash, keratitis, discharges, and dried secretions related to conjunctival pustules, photophobia, and lacrimation. Orthopoxviruses can evade host immune responses by secreting proteins that antagonize the functions of host IFNγ, CC and CXC chemokines, IL-1β, and the complement system. One of the most important transcription factors downstream of pattern recognition receptors binding is IRF3, which controls the expression of the crucial antiviral molecules IFNα and IFNβ. We strongly recommend that ophthalmologists include MPXV as part of their differential diagnosis when they encounter similar cases presenting with ophthalmic manifestations such as conjunctivitis, blepharitis, or corneal lesions. Furthermore, because non-vaccinated individuals are more likely to exhibit these symptoms, it is recommended that healthcare administrators prioritize smallpox vaccination for at-risk groups, including very young children, pregnant women, older adults, and immunocompromised individuals, especially those in close contact with MPXV cases.
Collapse
Affiliation(s)
- Francisco D. Lucena-Neto
- Department of Infectious Disease, School of Medicine, State University of Pará, Belém 66087-670, PA, Brazil; (F.D.L.-N.); (L.F.M.F.); (A.S.V.-J.); (C.C.S.); (J.R.S.); (P.F.C.V.)
| | - Luiz F. M. Falcão
- Department of Infectious Disease, School of Medicine, State University of Pará, Belém 66087-670, PA, Brazil; (F.D.L.-N.); (L.F.M.F.); (A.S.V.-J.); (C.C.S.); (J.R.S.); (P.F.C.V.)
| | - Adolfo S. Vieira-Junior
- Department of Infectious Disease, School of Medicine, State University of Pará, Belém 66087-670, PA, Brazil; (F.D.L.-N.); (L.F.M.F.); (A.S.V.-J.); (C.C.S.); (J.R.S.); (P.F.C.V.)
| | - Evelly C. S. Moraes
- Department of Infectious Disease, School of Medicine, Federal University of Pará, Belém 66075-110, PA, Brazil; (E.C.S.M.); (J.P.F.D.)
| | - Joacy P. F. David
- Department of Infectious Disease, School of Medicine, Federal University of Pará, Belém 66075-110, PA, Brazil; (E.C.S.M.); (J.P.F.D.)
| | - Camilla C. Silva
- Department of Infectious Disease, School of Medicine, State University of Pará, Belém 66087-670, PA, Brazil; (F.D.L.-N.); (L.F.M.F.); (A.S.V.-J.); (C.C.S.); (J.R.S.); (P.F.C.V.)
| | - Jorge R. Sousa
- Department of Infectious Disease, School of Medicine, State University of Pará, Belém 66087-670, PA, Brazil; (F.D.L.-N.); (L.F.M.F.); (A.S.V.-J.); (C.C.S.); (J.R.S.); (P.F.C.V.)
| | - Maria I. S. Duarte
- Department of Infectious Disease, School of Medicine, São Paulo University, São Paulo 01246-904, SP, Brazil;
| | - Pedro F. C. Vasconcelos
- Department of Infectious Disease, School of Medicine, State University of Pará, Belém 66087-670, PA, Brazil; (F.D.L.-N.); (L.F.M.F.); (A.S.V.-J.); (C.C.S.); (J.R.S.); (P.F.C.V.)
| | - Juarez A. S. Quaresma
- Department of Infectious Disease, School of Medicine, State University of Pará, Belém 66087-670, PA, Brazil; (F.D.L.-N.); (L.F.M.F.); (A.S.V.-J.); (C.C.S.); (J.R.S.); (P.F.C.V.)
- Department of Infectious Disease, School of Medicine, Federal University of Pará, Belém 66075-110, PA, Brazil; (E.C.S.M.); (J.P.F.D.)
- Department of Infectious Disease, School of Medicine, São Paulo University, São Paulo 01246-904, SP, Brazil;
- Virology Section, Evandro Chagas Institute, Ananindeua 67030-000, PA, Brazil
| |
Collapse
|
4
|
Saghazadeh A, Rezaei N. Poxviruses and the immune system: Implications for monkeypox virus. Int Immunopharmacol 2022; 113:109364. [PMID: 36283221 PMCID: PMC9598838 DOI: 10.1016/j.intimp.2022.109364] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/09/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
Abstract
Poxviruses (PXVs) are mostly known for the variola virus, being the cause of smallpox; however, re-emerging PXVs have also shown a great capacity to develop outbreaks of pox-like infections in humans. The situation is alarming; PXV outbreaks have been involving both endemic and non-endemic areas in recent decades. Stopped smallpox vaccination is a reason offered mainly for this changing epidemiology that implies the protective role of immunity in the pathology of PXV infections. The immune system recognizes PXVs and elicits responses, but PXVs can antagonize these responses. Here, we briefly review the immunology of PXV infections, with emphasis on the role of pattern-recognition receptors, macrophages, and natural killer cells in the early response to PXV infections and PXVs’ strategies influencing these responses, as well as taking a glance at other immune cells, which discussion over them mainly occurs in association with PXV immunization rather than PXV infection. Throughout the review, numerous evasion mechanisms are highlighted, which might have implications for designing specific immunotherapies for PXV in the future.
Collapse
Affiliation(s)
- Amene Saghazadeh
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
5
|
Structure-guided engineering of tick evasins for targeting chemokines in inflammatory diseases. Proc Natl Acad Sci U S A 2022; 119:2122105119. [PMID: 35217625 PMCID: PMC8892493 DOI: 10.1073/pnas.2122105119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 12/13/2022] Open
Abstract
Inflammatory diseases collectively account for numerous deaths and morbidity worldwide. New treatment approaches are needed. A central feature of inflammatory diseases is the recruitment of leukocytes to the affected tissues, which is stimulated by secreted proteins called chemokines. Effective suppression of leukocyte recruitment could be achieved by simultaneously targeting multiple chemokines, a natural molecular strategy used by tick salivary proteins called evasins. Here, we describe the structural and molecular features of a tick evasin that control its ability to bind and block a limited set of chemokines. By modifying these features, we demonstrate that evasins can be engineered to alter the array of chemokines that they target. Thus, this study establishes a structure-based paradigm for the development of antiinflammatory therapeutics. As natural chemokine inhibitors, evasin proteins produced in tick saliva are potential therapeutic agents for numerous inflammatory diseases. Engineering evasins to block the desired chemokines and avoid off-target side effects requires structural understanding of their target selectivity. Structures of the class A evasin EVA-P974 bound to human CC chemokine ligands 7 and 17 (CCL7 and CCL17) and to a CCL8-CCL7 chimera reveal that the specificity of class A evasins for chemokines of the CC subfamily is defined by conserved, rigid backbone–backbone interactions, whereas the preference for a subset of CC chemokines is controlled by side-chain interactions at four hotspots in flexible structural elements. Hotspot mutations alter target preference, enabling inhibition of selected chemokines. The structure of an engineered EVA-P974 bound to CCL2 reveals an underlying molecular mechanism of EVA-P974 target preference. These results provide a structure-based framework for engineering evasins as targeted antiinflammatory therapeutics.
Collapse
|
6
|
Stark LE, Guan W, Colvin ME, LiWang PJ. The binding and specificity of chemokine binding proteins, through the lens of experiment and computation. Biomed J 2021; 45:439-453. [PMID: 34311129 PMCID: PMC9421921 DOI: 10.1016/j.bj.2021.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/26/2022] Open
Abstract
Chemokines are small proteins that are critical for immune function, being primarily responsible for the activation and chemotaxis of leukocytes. As such, many viruses, as well as parasitic arthropods, have evolved systems to counteract chemokine function in order to maintain virulence, such as binding chemokines, mimicking chemokines, or producing analogs of transmembrane chemokine receptors that strongly bind their targets. The focus of this review is the large group of chemokine binding proteins (CBP) with an emphasis on those produced by mammalian viruses. Because many chemokines mediate inflammation, these CBP could possibly be used pharmaceutically as anti-inflammatory agents. In this review, we summarize the structural properties of a diverse set of CBP and describe in detail the chemokine binding properties of the poxvirus-encoded CBP called vCCI (viral CC Chemokine Inhibitor). Finally, we describe the current and emerging capabilities of combining computational simulation, structural analysis, and biochemical/biophysical experimentation to understand, and possibly re-engineer, protein–protein interactions.
Collapse
Affiliation(s)
- Lauren E Stark
- Quantitative and Systems Biology Graduate Group, University of California, 5200 N. Lake Rd., Merced, CA 95343
| | - Wenyan Guan
- Materials and Biomaterials Science and Engineering, University of California, 5200 N. Lake Rd., Merced, CA 95343
| | - Michael E Colvin
- Quantitative and Systems Biology Graduate Group, University of California, 5200 N. Lake Rd., Merced, CA 95343; Department of Chemistry and Biochemistry, University of California, 5200 N. Lake Rd., Merced, CA 95343
| | - Patricia J LiWang
- Quantitative and Systems Biology Graduate Group, University of California, 5200 N. Lake Rd., Merced, CA 95343; Materials and Biomaterials Science and Engineering, University of California, 5200 N. Lake Rd., Merced, CA 95343; Department of Molecular and Cell Biology, University of California, 5200 N. Lake Rd., Merced, CA 95343.
| |
Collapse
|
7
|
Nguyen AF, Kuo NW, Showalter LJ, Ramos R, Dupureur CM, Colvin ME, LiWang PJ. Biophysical and Computational Studies of the vCCI:vMIP-II Complex. Int J Mol Sci 2017; 18:ijms18081778. [PMID: 28813018 PMCID: PMC5578167 DOI: 10.3390/ijms18081778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 11/16/2022] Open
Abstract
Certain viruses have the ability to subvert the mammalian immune response, including interference in the chemokine system. Poxviruses produce the chemokine binding protein vCCI (viral CC chemokine inhibitor; also called 35K), which tightly binds to CC chemokines. To facilitate the study of vCCI, we first provide a protocol to produce folded vCCI from Escherichia coli (E. coli.) It is shown here that vCCI binds with unusually high affinity to viral Macrophage Inflammatory Protein-II (vMIP-II), a chemokine analog produced by the virus, human herpesvirus 8 (HHV-8). Fluorescence anisotropy was used to investigate the vCCI:vMIP-II complex and shows that vCCI binds to vMIP-II with a higher affinity than most other chemokines, having a Kd of 0.06 ± 0.006 nM. Nuclear magnetic resonance (NMR) chemical shift perturbation experiments indicate that key amino acids used for binding in the complex are similar to those found in previous work. Molecular dynamics were then used to compare the vCCI:vMIP-II complex with the known vCCI:Macrophage Inflammatory Protein-1β/CC-Chemokine Ligand 4 (MIP-1β/CCL4) complex. The simulations show key interactions, such as those between E143 and D75 in vCCI/35K and R18 in vMIP-II. Further, in a comparison of 1 μs molecular dynamics (MD) trajectories, vMIP-II shows more overall surface binding to vCCI than does the chemokine MIP-1β. vMIP-II maintains unique contacts at its N-terminus to vCCI that are not made by MIP-1β, and vMIP-II also makes more contacts with the vCCI flexible acidic loop (located between the second and third beta strands) than does MIP-1β. These studies provide evidence for the basis of the tight vCCI:vMIP-II interaction while elucidating the vCCI:MIP-1β interaction, and allow insight into the structure of proteins that are capable of broadly subverting the mammalian immune system.
Collapse
Affiliation(s)
- Anna F Nguyen
- Departments of Molecular Cell Biology and Chemistry and Chemical Biology, and the Health Sciences Research Institute, University of California Merced 5200 North Lake Rd, Merced, CA 953402, USA.
| | - Nai-Wei Kuo
- Departments of Molecular Cell Biology and Chemistry and Chemical Biology, and the Health Sciences Research Institute, University of California Merced 5200 North Lake Rd, Merced, CA 953402, USA.
| | - Laura J Showalter
- Departments of Molecular Cell Biology and Chemistry and Chemical Biology, and the Health Sciences Research Institute, University of California Merced 5200 North Lake Rd, Merced, CA 953402, USA.
| | - Ricardo Ramos
- Departments of Molecular Cell Biology and Chemistry and Chemical Biology, and the Health Sciences Research Institute, University of California Merced 5200 North Lake Rd, Merced, CA 953402, USA.
| | - Cynthia M Dupureur
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St. Louis, MO 63121, USA.
| | - Michael E Colvin
- Departments of Molecular Cell Biology and Chemistry and Chemical Biology, and the Health Sciences Research Institute, University of California Merced 5200 North Lake Rd, Merced, CA 953402, USA.
| | - Patricia J LiWang
- Departments of Molecular Cell Biology and Chemistry and Chemical Biology, and the Health Sciences Research Institute, University of California Merced 5200 North Lake Rd, Merced, CA 953402, USA.
| |
Collapse
|
8
|
González-Motos V, Kropp KA, Viejo-Borbolla A. Chemokine binding proteins: An immunomodulatory strategy going viral. Cytokine Growth Factor Rev 2016; 30:71-80. [DOI: 10.1016/j.cytogfr.2016.02.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 02/27/2016] [Indexed: 01/13/2023]
|
9
|
Gela A, Kasetty G, Mörgelin M, Bergqvist A, Erjefält JS, Pease JE, Egesten A. Osteopontin binds and modulates functions of eosinophil-recruiting chemokines. Allergy 2016; 71:58-67. [PMID: 26411293 DOI: 10.1111/all.12771] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2015] [Indexed: 01/11/2023]
Abstract
BACKGROUND Allergic asthma is characterized by eosinophilic inflammation and airway obstruction. There is also an increased risk of pulmonary infection caused by Streptococcus pneumoniae, in particular during severe asthma where high levels of the glycoprotein, osteopontin (OPN), are present in the airways. Eosinophils can be recruited by chemokines activating the receptor CCR3 including eotaxin-1/CCL11, eotaxin-2/CCL24, eotaxin-3/CCL26, RANTES/CCL5, and MEC/CCL28. In addition to inducing chemotaxis, several of these molecules have defensin-like antibacterial properties. This study set out to elucidate the functional consequences of OPN binding to eosinophil-recruiting chemokines. METHODS Antibacterial activities of the chemokines were investigated using viable count assays and electron microscopy. Binding studies were performed by means of surface plasmon resonance. The potential interference of OPN with antibacterial, receptor-activating, and lipopolysaccharide-neutralizing abilities of these chemokines was investigated. RESULTS We found that OPN bound all eosinophil-recruiting chemokines with high affinity except for CCL5. The eosinophil-recruiting chemokines all displayed bactericidal activity against S. pneumoniae, but only CCL26 and CCL28 retained high antibacterial activity in the presence of sodium chloride at physiologic concentrations. Preincubation of the chemokines with OPN strongly inhibited their antibacterial activity against S. pneumoniae but did not affect their ability to activate CCR3. All chemokines investigated showed LPS-neutralizing activity that was impaired by OPN only in the case of CCL24. CONCLUSIONS The data suggest that OPN may impair host defense activities of the chemokines without affecting their eosinophil-recruiting properties. This could be one mechanism explaining the increased vulnerability to acquire pneumococcal infection in parallel with sustained allergic inflammation in asthma.
Collapse
Affiliation(s)
- A. Gela
- Division of Respiratory Medicine & Allergology; Department of Clinical Sciences; Skåne University Hospital; Lund University; Lund Sweden
| | - G. Kasetty
- Division of Respiratory Medicine & Allergology; Department of Clinical Sciences; Skåne University Hospital; Lund University; Lund Sweden
| | - M. Mörgelin
- Division of Infection Medicine; Department of Clinical Sciences; Skåne University Hospital; Lund University; Lund Sweden
| | - A. Bergqvist
- Division of Respiratory Medicine & Allergology; Department of Clinical Sciences; Skåne University Hospital; Lund University; Lund Sweden
| | - J. S. Erjefält
- Division of Respiratory Medicine & Allergology; Department of Clinical Sciences; Skåne University Hospital; Lund University; Lund Sweden
| | - J. E. Pease
- Leukocyte Biology Section; NHLI; Faculty of Medicine; Imperial College of Science, Technology and Medicine; London UK
| | - A. Egesten
- Division of Respiratory Medicine & Allergology; Department of Clinical Sciences; Skåne University Hospital; Lund University; Lund Sweden
| |
Collapse
|
10
|
Structural basis of receptor sulfotyrosine recognition by a CC chemokine: the N-terminal region of CCR3 bound to CCL11/eotaxin-1. Structure 2015; 22:1571-81. [PMID: 25450766 DOI: 10.1016/j.str.2014.08.023] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/31/2014] [Accepted: 08/21/2014] [Indexed: 02/06/2023]
Abstract
Trafficking of leukocytes in immune surveillance and inflammatory responses is activated by chemokines engaging their receptors. Sulfation of tyrosine residues in peptides derived from the eosinophil chemokine receptor CCR3 dramatically enhances binding to cognate chemokines. We report the structural basis of this recognition and affinity enhancement. We describe the structure of a CC chemokine (CCL11/eotaxin-1) bound to a fragment of a chemokine receptor: residues 8–23 of CCR3, including two sulfotyrosine residues. We also show that intact CCR3 is sulfated and sulfation enhances receptor activity. The CCR3 sulfotyrosine residues form hydrophobic, salt bridge and cation-p interactions with residues that are highly conserved in CC chemokines. However, the orientation of the chemokine relative to the receptor N terminus differs substantially from those observed for two CXC chemokines, suggesting that initial binding of the receptor sulfotyrosine residues guides subsequent steps in receptor activation, thereby influencing the receptor conformational changes and signaling.
Collapse
|
11
|
Heidarieh H, Hernáez B, Alcamí A. Immune modulation by virus-encoded secreted chemokine binding proteins. Virus Res 2015; 209:67-75. [PMID: 25791735 DOI: 10.1016/j.virusres.2015.02.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/23/2015] [Indexed: 10/23/2022]
Abstract
Chemokines are chemoattractant cytokines that mediate the migration of immune cells to sites of infection which play an important role in innate and adaptive immunity. As an immune evasion strategy, large DNA viruses (herpesviruses and poxviruses) encode soluble chemokine binding proteins that bind chemokines with high affinity, even though they do not show sequence similarity to cellular chemokine receptors. This review summarizes the different secreted viral chemokine binding proteins described to date, with special emphasis on the diverse mechanisms of action they exhibit to interfere with chemokine function and their specific contribution to virus pathogenesis.
Collapse
Affiliation(s)
- Haleh Heidarieh
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid), Cantoblanco, Madrid, Spain
| | - Bruno Hernáez
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid), Cantoblanco, Madrid, Spain
| | - Antonio Alcamí
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid), Cantoblanco, Madrid, Spain.
| |
Collapse
|
12
|
Proudfoot AEI, Bonvin P, Power CA. Targeting chemokines: Pathogens can, why can't we? Cytokine 2015; 74:259-67. [PMID: 25753743 DOI: 10.1016/j.cyto.2015.02.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 12/19/2022]
Abstract
Chemoattractant cytokines, or chemokines, are the largest sub-family of cytokines. About 50 distinct chemokines have been identified in humans. Their principal role is to stimulate the directional migration of leukocytes, which they achieve through activation of their receptors, following immobilization on cell surface glycosaminoglycans (GAGs). Chemokine receptors belong to the G protein-coupled 7-transmembrane receptor family, and hence their identification brought great promise to the pharmaceutical industry, since this receptor class is the target for a large percentage of marketed drugs. Unfortunately, the development of potent and efficacious inhibitors of chemokine receptors has not lived up to the early expectations. Several approaches to targeting this system will be described here, which have been instrumental in establishing paradigms in chemokine biology. Whilst drug discovery programs have not yet elucidated how to make successful drugs targeting the chemokine system, it is now known that certain parasites have evolved anti-chemokine strategies in order to remain undetected by their hosts. What can we learn from them?
Collapse
Affiliation(s)
- Amanda E I Proudfoot
- Geneva Research Centre, Merck Serono S.A., 9 chemin des Mines, 1202 Genève and NovImmune S.A., 14 chemin des Aulx, 1228 Plan-les-Ouates, Geneva, Switzerland.
| | - Pauline Bonvin
- Geneva Research Centre, Merck Serono S.A., 9 chemin des Mines, 1202 Genève and NovImmune S.A., 14 chemin des Aulx, 1228 Plan-les-Ouates, Geneva, Switzerland.
| | - Christine A Power
- Geneva Research Centre, Merck Serono S.A., 9 chemin des Mines, 1202 Genève, Switzerland.
| |
Collapse
|
13
|
Bonvin P, Dunn SM, Rousseau F, Dyer DP, Shaw J, Power CA, Handel TM, Proudfoot AEI. Identification of the pharmacophore of the CC chemokine-binding proteins Evasin-1 and -4 using phage display. J Biol Chem 2014; 289:31846-31855. [PMID: 25266725 DOI: 10.1074/jbc.m114.599233] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To elucidate the ligand-binding surface of the CC chemokine-binding proteins Evasin-1 and Evasin-4, produced by the tick Rhipicephalus sanguineus, we sought to identify the key determinants responsible for their different chemokine selectivities by expressing Evasin mutants using phage display. We first designed alanine mutants based on the Evasin-1·CCL3 complex structure and an in silico model of Evasin-4 bound to CCL3. The mutants were displayed on M13 phage particles, and binding to chemokine was assessed by ELISA. Selected variants were then produced as purified proteins and characterized by surface plasmon resonance analysis and inhibition of chemotaxis. The method was validated by confirming the importance of Phe-14 and Trp-89 to the inhibitory properties of Evasin-1 and led to the identification of a third crucial residue, Asn-88. Two amino acids, Glu-16 and Tyr-19, were identified as key residues for binding and inhibition of Evasin-4. In a parallel approach, we identified one clone (Y28Q/N60D) that showed a clear reduction in binding to CCL3, CCL5, and CCL8. It therefore appears that Evasin-1 and -4 use different pharmacophores to bind CC chemokines, with the principal binding occurring through the C terminus of Evasin-1, but through the N-terminal region of Evasin-4. However, both proteins appear to target chemokine N termini, presumably because these domains are key to receptor signaling. The results also suggest that phage display may offer a useful approach for rapid investigation of the pharmacophores of small inhibitory binding proteins.
Collapse
Affiliation(s)
- Pauline Bonvin
- Merck Serono Geneva Research Centre, 9 chemin des Mines, 1202 Geneva, Switzerland,; NovImmune SA, 14 chemin des Aulx, 1228 Plan-les-Ouates, Geneva, Switzerland, and
| | - Steven M Dunn
- Merck Serono Geneva Research Centre, 9 chemin des Mines, 1202 Geneva, Switzerland
| | - François Rousseau
- NovImmune SA, 14 chemin des Aulx, 1228 Plan-les-Ouates, Geneva, Switzerland, and
| | - Douglas P Dyer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093-0684
| | - Jeffrey Shaw
- Merck Serono Geneva Research Centre, 9 chemin des Mines, 1202 Geneva, Switzerland
| | - Christine A Power
- Merck Serono Geneva Research Centre, 9 chemin des Mines, 1202 Geneva, Switzerland
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093-0684
| | - Amanda E I Proudfoot
- Merck Serono Geneva Research Centre, 9 chemin des Mines, 1202 Geneva, Switzerland,; NovImmune SA, 14 chemin des Aulx, 1228 Plan-les-Ouates, Geneva, Switzerland, and.
| |
Collapse
|