1
|
Patel KJ, Yourik P, Jackman JE. Fidelity of base-pair recognition by a 3'-5' polymerase: mechanism of the Saccharomyces cerevisiae tRNA His guanylyltransferase. RNA (NEW YORK, N.Y.) 2021; 27:683-693. [PMID: 33790044 PMCID: PMC8127993 DOI: 10.1261/rna.078686.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
The tRNAHis guanylyltransferase (Thg1) was originally discovered in Saccharomyces cerevisiae where it catalyzes 3'-5' addition of a single nontemplated guanosine (G-1) to the 5' end of tRNAHis In addition to this activity, S. cerevisiae Thg1 (SceThg1) also catalyzes 3'-5' polymerization of Watson-Crick (WC) base pairs, utilizing nucleotides in the 3'-end of a tRNA as the template for addition. Subsequent investigation revealed an entire class of enzymes related to Thg1, called Thg1-like proteins (TLPs). TLPs are found in all three domains of life and preferentially catalyze 3'-5' polymerase activity, utilizing this unusual activity to repair tRNA, among other functions. Although both Thg1 and TLPs utilize the same chemical mechanism, the molecular basis for differences between WC-dependent (catalyzed by Thg1 and TLPs) and non-WC-dependent (catalyzed exclusively by Thg1) reactions has not been fully elucidated. Here we investigate the mechanism of base-pair recognition by 3'-5' polymerases using transient kinetic assays, and identify Thg1-specific residues that play a role in base-pair discrimination. We reveal that, regardless of the identity of the opposing nucleotide in the RNA "template," addition of a non-WC G-1 residue is driven by a unique kinetic preference for GTP. However, a secondary preference for forming WC base pairs is evident for all possible templating residues. Similar to canonical 5'-3' polymerases, nucleotide addition by SceThg1 is driven by the maximal rate rather than by NTP substrate affinity. Together, these data provide new insights into the mechanism of base-pair recognition by 3'-5' polymerases.
Collapse
Affiliation(s)
- Krishna J Patel
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Paul Yourik
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Jane E Jackman
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
2
|
Erber L, Betat H, Mörl M. CCA-Addition Gone Wild: Unusual Occurrence and Phylogeny of Four Different tRNA Nucleotidyltransferases in Acanthamoeba castellanii. Mol Biol Evol 2021; 38:1006-1017. [PMID: 33095240 PMCID: PMC7947759 DOI: 10.1093/molbev/msaa270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
tRNAs are important players in the protein synthesis machinery, where they act as adapter molecules for translating the mRNA codons into the corresponding amino acid sequence. In a series of highly conserved maturation steps, the primary transcripts are converted into mature tRNAs. In the amoebozoan Acanthamoeba castellanii, a highly unusual evolution of some of these processing steps was identified that are based on unconventional RNA polymerase activities. In this context, we investigated the synthesis of the 3'-terminal CCA-end that is added posttranscriptionally by a specialized polymerase, the tRNA nucleotidyltransferase (CCA-adding enzyme). The majority of eukaryotic organisms carry only a single gene for a CCA-adding enzyme that acts on both the cytosolic and the mitochondrial tRNA pool. In a bioinformatic analysis of the genome of this organism, we identified a surprising multitude of genes for enzymes that contain the active site signature of eukaryotic/eubacterial tRNA nucleotidyltransferases. In vitro activity analyses of these enzymes revealed that two proteins represent bona fide CCA-adding enzymes, one of them carrying an N-terminal sequence corresponding to a putative mitochondrial target signal. The other enzymes have restricted activities and represent CC- and A-adding enzymes, respectively. The A-adding enzyme is of particular interest, as its sequence is closely related to corresponding enzymes from Proteobacteria, indicating a horizontal gene transfer. Interestingly, this unusual diversity of nucleotidyltransferase genes is not restricted to Acanthamoeba castellanii but is also present in other members of the Acanthamoeba genus, indicating an ancient evolutionary trait.
Collapse
Affiliation(s)
- Lieselotte Erber
- Institute for Biochemistry, Leipzig University, Leipzig, Germany
| | - Heike Betat
- Institute for Biochemistry, Leipzig University, Leipzig, Germany
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Leipzig, Germany
| |
Collapse
|
3
|
Dodbele S, Moreland B, Gardner SM, Bundschuh R, Jackman JE. 5'-End sequencing in Saccharomyces cerevisiae offers new insights into 5'-ends of tRNA H is and snoRNAs. FEBS Lett 2019; 593:971-981. [PMID: 30908619 DOI: 10.1002/1873-3468.13364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/07/2019] [Accepted: 03/12/2019] [Indexed: 01/19/2023]
Abstract
tRNAH is guanylyltransferase (Thg1) specifies eukaryotic tRNAH is identity by catalysing a 3'-5' non-Watson-Crick (WC) addition of guanosine to the 5'-end of tRNAH is . Thg1 family enzymes in Archaea and Bacteria, called Thg1-like proteins (TLPs), catalyse a similar but distinct 3'-5' addition in an exclusively WC-dependent manner. Here, a genetic system in Saccharomyces cerevisiae was employed to further assess the biochemical differences between Thg1 and TLPs. Utilizing a novel 5'-end sequencing pipeline, we find that a Bacillus thuringiensis TLP sustains the growth of a thg1Δ strain by maintaining a WC-dependent addition of U-1 across from A73 . Additionally, we observe 5'-end heterogeneity in S. cerevisiae small nucleolar RNAs (snoRNAs), an observation that may inform methods of annotation and mechanisms of snoRNA processing.
Collapse
Affiliation(s)
- Samantha Dodbele
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Blythe Moreland
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA.,Department of Physics, The Ohio State University, Columbus, OH, USA
| | - Spencer M Gardner
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Ralf Bundschuh
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH, USA.,Department of Physics, The Ohio State University, Columbus, OH, USA.,Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Jane E Jackman
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
4
|
The Role of 3' to 5' Reverse RNA Polymerization in tRNA Fidelity and Repair. Genes (Basel) 2019; 10:genes10030250. [PMID: 30917604 PMCID: PMC6471195 DOI: 10.3390/genes10030250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/16/2022] Open
Abstract
The tRNAHis guanylyltransferase (Thg1) superfamily includes enzymes that are found in all three domains of life that all share the common ability to catalyze the 3′ to 5′ synthesis of nucleic acids. This catalytic activity, which is the reverse of all other known DNA and RNA polymerases, makes this enzyme family a subject of biological and mechanistic interest. Previous biochemical, structural, and genetic investigations of multiple members of this family have revealed that Thg1 enzymes use the 3′ to 5′ chemistry for multiple reactions in biology. Here, we describe the current state of knowledge regarding the catalytic features and biological functions that have been so far associated with Thg1 and its homologs. Progress toward the exciting possibility of utilizing this unusual protein activity for applications in biotechnology is also discussed.
Collapse
|
5
|
Bondarenko NI, Nassonova ES, Mijanovic O, Glotova AA, Kamyshatskaya OG, Kudryavtsev AA, Masharsky AE, Polev DE, Smirnov AV. Mitochondrial Genome of Vannella croatica (Amoebozoa, Discosea, Vannellida). J Eukaryot Microbiol 2018; 65:820-827. [PMID: 29655313 DOI: 10.1111/jeu.12523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/02/2018] [Accepted: 04/02/2018] [Indexed: 11/30/2022]
Abstract
Mitochondrial genome sequence of Vannella croatica (Amoebozoa, Discosea, Vannellida) was obtained using pulse-field gel electrophoretic isolation of the circular mitochondrial DNA, followed by the next-generation sequencing. The mitochondrial DNA of this species has the length of 28,933 bp and contains 12 protein-coding genes, two ribosomal RNAs, and 16 transfer RNAs. Vannella croatica mitochondrial genome is relatively short compared to other known amoebozoan mitochondrial genomes but is rather gene-rich and contains significant number of open reading frames.
Collapse
Affiliation(s)
- Natalya I Bondarenko
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034, Russia
| | - Elena S Nassonova
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034, Russia.,Laboratory of Cytology of Unicellular Organisms, Institute of Cytology RAS, Tikhoretsky ave. 4, St. Petersburg, 194064, Russia
| | - Olja Mijanovic
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034, Russia
| | - Anna A Glotova
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034, Russia
| | - Oksana G Kamyshatskaya
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034, Russia
| | - Alexander A Kudryavtsev
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034, Russia.,Laboratory of Parasitic Worms and Protistology, Zoological Institute RAS, Universitetskaya nab. 1, St. Petersburg, 199034, Russia
| | - Alexey E Masharsky
- Core Facility Center "Development of Molecular and Cell Technologies", St. Petersburg State University, Botanicheskaya str. 17, Stary Peterhof, St. Petersburg, 198504, Russia
| | - Dmitrii E Polev
- Core Facility Center "Development of Molecular and Cell Technologies", St. Petersburg State University, Botanicheskaya str. 17, Stary Peterhof, St. Petersburg, 198504, Russia
| | - Alexey V Smirnov
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034, Russia
| |
Collapse
|
6
|
Desai R, Kim K, Büchsenschütz HC, Chen AW, Bi Y, Mann MR, Turk MA, Chung CZ, Heinemann IU. Minimal requirements for reverse polymerization and tRNA repair by tRNA His guanylyltransferase. RNA Biol 2017; 15:614-622. [PMID: 28901837 DOI: 10.1080/15476286.2017.1372076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
tRNAHis guanylyltransferase (Thg1) has unique reverse (3'-5') polymerase activity occurring in all three domains of life. Most eukaryotic Thg1 homologs are essential genes involved in tRNAHis maturation. These enzymes normally catalyze a single 5' guanylation of tRNAHis lacking the essential G-1 identity element required for aminoacylation. Recent studies suggest that archaeal type Thg1, which includes most archaeal and bacterial Thg1 enzymes is phylogenetically distant from eukaryotic Thg1. Thg1 is evolutionarily related to canonical 5'-3' forward polymerases but catalyzes reverse 3'-5'polymerization. Similar to its forward polymerase counterparts, Thg1 encodes the conserved catalytic palm domain and fingers domain. Here we investigate the minimal requirements for reverse polymerization. We show that the naturally occurring minimal Thg1 enzyme from Ignicoccus hospitalis (IhThg1), which lacks parts of the conserved fingers domain, is catalytically active. And adds all four natural nucleotides to RNA substrates, we further show that the entire fingers domain of Methanosarcina acetivorans Thg1 and Pyrobaculum aerophilum Thg1 (PaThg1) is dispensable for enzymatic activity. In addition, we identified residues in yeast Thg1 that play a part in preventing extended polymerization. Mutation of these residues with alanine resulted in extended reverse polymerization. PaThg1 was found to catalyze extended, template dependent tRNA repair, adding up to 13 nucleotides to a truncated tRNAHis substrate. Sequencing results suggest that PaThg1 fully restored the near correct sequence of the D- and acceptor stem, but also produced incompletely and incorrectly repaired tRNA products. This research forms the basis for future engineering efforts towards a high fidelity, template dependent reverse polymerase.
Collapse
Affiliation(s)
- Riddhi Desai
- a Department of Biochemistry , The University of Western Ontario , London , Canada
| | - Kunmo Kim
- a Department of Biochemistry , The University of Western Ontario , London , Canada
| | | | - Allan W Chen
- a Department of Biochemistry , The University of Western Ontario , London , Canada
| | - Yumin Bi
- a Department of Biochemistry , The University of Western Ontario , London , Canada
| | - Mitchell R Mann
- a Department of Biochemistry , The University of Western Ontario , London , Canada
| | - Matthew A Turk
- a Department of Biochemistry , The University of Western Ontario , London , Canada
| | - Christina Z Chung
- a Department of Biochemistry , The University of Western Ontario , London , Canada
| | - Ilka U Heinemann
- a Department of Biochemistry , The University of Western Ontario , London , Canada
| |
Collapse
|
7
|
Abstract
The removal of transcriptional 5' and 3' extensions is an essential step in tRNA biogenesis. In some bacteria, tRNA 5'- and 3'-end maturation require no further steps, because all their genes encode the full tRNA sequence. Often however, the ends are incomplete, and additional maturation, repair or editing steps are needed. In all Eukarya, but also many Archaea and Bacteria, e.g., the universal 3'-terminal CCA is not encoded and has to be added by the CCA-adding enzyme. Apart from such widespread "repair/maturation" processes, tRNA genes in some cases apparently cannot give rise to intact, functional tRNA molecules without further, more specific end repair or editing. Interestingly, the responsible enzymes as far as identified appear to be polymerases usually involved in regular tRNA repair after damage. Alternatively, enzymes are recruited from other non-tRNA pathways; e.g., in animal mitochondria, poly(A) polymerase plays a crucial role in the 3'-end repair/editing of tRNAs. While these repair/editing pathways apparently allowed peculiar tRNA-gene overlaps or mismatching mutations in the acceptor stem to become genetically fixed in some present-day organisms, they may have also driven some global changes in tRNA maturation on a greater evolutionary scale.
Collapse
Affiliation(s)
- Christiane Rammelt
- a Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg , Halle , Germany
| | - Walter Rossmanith
- b Center for Anatomy & Cell Biology, Medical University of Vienna , Vienna , Austria
| |
Collapse
|
8
|
Long Y, Abad MG, Olson ED, Carrillo EY, Jackman JE. Identification of distinct biological functions for four 3'-5' RNA polymerases. Nucleic Acids Res 2016; 44:8395-406. [PMID: 27484477 PMCID: PMC5041481 DOI: 10.1093/nar/gkw681] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/22/2016] [Indexed: 12/19/2022] Open
Abstract
The superfamily of 3'-5' polymerases synthesize RNA in the opposite direction to all other DNA/RNA polymerases, and its members include eukaryotic tRNA(His) guanylyltransferase (Thg1), as well as Thg1-like proteins (TLPs) of unknown function that are broadly distributed, with family members in all three domains of life. Dictyostelium discoideum encodes one Thg1 and three TLPs (DdiTLP2, DdiTLP3 and DdiTLP4). Here, we demonstrate that depletion of each of the genes results in a significant growth defect, and that each protein catalyzes a unique biological reaction, taking advantage of specialized biochemical properties. DdiTLP2 catalyzes a mitochondria-specific tRNA(His) maturation reaction, which is distinct from the tRNA(His) maturation reaction typically catalyzed by Thg1 enzymes on cytosolic tRNA. DdiTLP3 catalyzes tRNA repair during mitochondrial tRNA 5'-editing in vivo and in vitro, establishing template-dependent 3'-5' polymerase activity of TLPs as a bona fide biological activity for the first time since its unexpected discovery more than a decade ago. DdiTLP4 is cytosolic and, surprisingly, catalyzes robust 3'-5' polymerase activity on non-tRNA substrates, strongly implying further roles for TLP 3'-5' polymerases in eukaryotes.
Collapse
Affiliation(s)
- Yicheng Long
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Maria G Abad
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Erik D Olson
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Elisabeth Y Carrillo
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Jane E Jackman
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
9
|
Long Y, Jackman JE. In vitro substrate specificities of 3'-5' polymerases correlate with biological outcomes of tRNA 5'-editing reactions. FEBS Lett 2015; 589:2124-30. [PMID: 26143376 DOI: 10.1016/j.febslet.2015.06.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022]
Abstract
Protozoan mitochondrial tRNAs (mt-tRNAs) are repaired by a process known as 5'-editing. Mt-tRNA sequencing revealed organism-specific patterns of editing G-U base pairs, wherein some species remove G-U base pairs during 5'-editing, while others retain G-U pairs in the edited tRNA. We tested whether 3'-5' polymerases that catalyze the repair step of 5'-editing exhibit organism-specific preferences that explain the treatment of G-U base pairs. Biochemical and kinetic approaches revealed that a 3'-5' polymerase from Acanthamoeba castellanii tolerates G-U wobble pairs in editing substrates much more readily than several other enzymes, consistent with its biological pattern of editing.
Collapse
Affiliation(s)
- Yicheng Long
- Department of Chemistry and Biochemistry, Center for RNA Biology and Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, United States
| | - Jane E Jackman
- Department of Chemistry and Biochemistry, Center for RNA Biology and Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
10
|
Betat H, Long Y, Jackman JE, Mörl M. From end to end: tRNA editing at 5'- and 3'-terminal positions. Int J Mol Sci 2014; 15:23975-98. [PMID: 25535083 PMCID: PMC4284800 DOI: 10.3390/ijms151223975] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 12/10/2014] [Accepted: 12/16/2014] [Indexed: 01/29/2023] Open
Abstract
During maturation, tRNA molecules undergo a series of individual processing steps, ranging from exo- and endonucleolytic trimming reactions at their 5'- and 3'-ends, specific base modifications and intron removal to the addition of the conserved 3'-terminal CCA sequence. Especially in mitochondria, this plethora of processing steps is completed by various editing events, where base identities at internal positions are changed and/or nucleotides at 5'- and 3'-ends are replaced or incorporated. In this review, we will focus predominantly on the latter reactions, where a growing number of cases indicate that these editing events represent a rather frequent and widespread phenomenon. While the mechanistic basis for 5'- and 3'-end editing differs dramatically, both reactions represent an absolute requirement for generating a functional tRNA. Current in vivo and in vitro model systems support a scenario in which these highly specific maturation reactions might have evolved out of ancient promiscuous RNA polymerization or quality control systems.
Collapse
Affiliation(s)
- Heike Betat
- Institute for Biochemistry, University of Leipzig, Brüderstraße 34, 04103 Leipzig, Germany.
| | - Yicheng Long
- Department of Chemistry and Biochemistry, Center for RNA Biology and Ohio State Biochemistry Program, the Ohio State University, Columbus, OH 43210, USA.
| | - Jane E Jackman
- Department of Chemistry and Biochemistry, Center for RNA Biology and Ohio State Biochemistry Program, the Ohio State University, Columbus, OH 43210, USA.
| | - Mario Mörl
- Institute for Biochemistry, University of Leipzig, Brüderstraße 34, 04103 Leipzig, Germany.
| |
Collapse
|