1
|
Yu SS, Du JL. Current views on selenoprotein S in the pathophysiological processes of diabetes-induced atherosclerosis: potential therapeutics and underlying biomarkers. Diabetol Metab Syndr 2024; 16:5. [PMID: 38172976 PMCID: PMC10763436 DOI: 10.1186/s13098-023-01247-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/24/2023] [Indexed: 01/05/2024] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) consistently ranks as the primary mortality factor among diabetic people. A thorough comprehension of the pathophysiological routes and processes activated by atherosclerosis (AS) caused by diabetes mellitus (DM), together with the recognition of new contributing factors, could lead to the discovery of crucial biomarkers and the development of innovative drugs against atherosclerosis. Selenoprotein S (SELENOS) has been implicated in the pathology and progression of numerous conditions, including diabetes, dyslipidemia, obesity, and insulin resistance (IR)-all recognized contributors to endothelial dysfunction (ED), a precursor event to diabetes-induced AS. Hepatic-specific deletion of SELENOS accelerated the onset and progression of obesity, impaired glucose tolerance and insulin sensitivity, and increased hepatic triglycerides (TG) and diacylglycerol (DAG) accumulation; SELENOS expression in subcutaneous and omental adipose tissue was elevated in obese human subjects, and act as a positive regulator for adipogenesis in 3T3-L1 preadipocytes; knockdown of SELENOS in Min6 β-cells induced β-cell apoptosis and reduced cell proliferation. SELENOS also participates in the early stages of AS, notably by enhancing endothelial function, curbing the expression of adhesion molecules, and lessening leukocyte recruitment-actions that collectively reduce the formation of foam cells. Furthermore, SELENOS forestalls the apoptosis of vascular smooth muscle cells (VSMCs) and macrophages, mitigates vascular calcification, and alleviates inflammation in macrophages and CD4+ T cells. These actions help stifle the creation of unstable plaque characterized by thinner fibrous caps, larger necrotic cores, heightened inflammation, and more extensive vascular calcification-features seen in advanced atherosclerotic lesion development. Additionally, serum SELENOS could function as a potential biomarker, and SELENOS single nucleotide polymorphisms (SNPs) rs4965814, rs28628459, and rs9806366, might be effective gene markers for atherosclerosis-related diseases in diabetes. This review accentuates the pathophysiological processes of atherosclerosis in diabetes and amasses current evidence on SELENOS's potential therapeutic benefits or as predictive biomarkers in the various stages of diabetes-induced atherosclerosis.
Collapse
Affiliation(s)
- Shan-Shan Yu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
- Dalian Key Laboratory of Prevention and Treatment of Metabolic Diseases and the Vascular Complications, Dalian, 116011, Liaoning, China
| | - Jian-Ling Du
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China.
- Dalian Key Laboratory of Prevention and Treatment of Metabolic Diseases and the Vascular Complications, Dalian, 116011, Liaoning, China.
| |
Collapse
|
2
|
Cremer T, Voortman LM, Bos E, Jongsma MLM, ter Haar LR, Akkermans JJLL, Talavera Ormeño CMP, Wijdeven RHM, de Vries J, Kim RQ, Janssen GMC, van Veelen PA, Koning RI, Neefjes J, Berlin I. RNF26 binds perinuclear vimentin filaments to integrate ER and endolysosomal responses to proteotoxic stress. EMBO J 2023; 42:e111252. [PMID: 37519262 PMCID: PMC10505911 DOI: 10.15252/embj.2022111252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Proteotoxic stress causes profound endoplasmic reticulum (ER) membrane remodeling into a perinuclear quality control compartment (ERQC) for the degradation of misfolded proteins. Subsequent return to homeostasis involves clearance of the ERQC by endolysosomes. However, the factors that control perinuclear ER integrity and dynamics remain unclear. Here, we identify vimentin intermediate filaments as perinuclear anchors for the ER and endolysosomes. We show that perinuclear vimentin filaments engage the ER-embedded RING finger protein 26 (RNF26) at the C-terminus of its RING domain. This restricts RNF26 to perinuclear ER subdomains and enables the corresponding spatial retention of endolysosomes through RNF26-mediated membrane contact sites (MCS). We find that both RNF26 and vimentin are required for the perinuclear coalescence of the ERQC and its juxtaposition with proteolytic compartments, which facilitates efficient recovery from ER stress via the Sec62-mediated ER-phagy pathway. Collectively, our findings reveal a scaffolding mechanism that underpins the spatiotemporal integration of organelles during cellular proteostasis.
Collapse
Affiliation(s)
- Tom Cremer
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
- Oncode Institute, Leiden University Medical CenterLeidenThe Netherlands
| | - Lenard M Voortman
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Erik Bos
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Marlieke LM Jongsma
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
- Oncode Institute, Leiden University Medical CenterLeidenThe Netherlands
| | - Laurens R ter Haar
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Jimmy JLL Akkermans
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
- Oncode Institute, Leiden University Medical CenterLeidenThe Netherlands
| | - Cami MP Talavera Ormeño
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Ruud HM Wijdeven
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
- Oncode Institute, Leiden University Medical CenterLeidenThe Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam NeuroscienceAmsterdam University Medical CenterAmsterdamThe Netherlands
| | - Jelle de Vries
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Robbert Q Kim
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - George MC Janssen
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Peter A van Veelen
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Roman I Koning
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
- Oncode Institute, Leiden University Medical CenterLeidenThe Netherlands
| | - Ilana Berlin
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
- Oncode Institute, Leiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
3
|
Ghelichkhani F, Gonzalez FA, Kapitonova MA, Schaefer-Ramadan S, Liu J, Cheng R, Rozovsky S. Selenoprotein S: A versatile disordered protein. Arch Biochem Biophys 2022; 731:109427. [PMID: 36241082 PMCID: PMC10026367 DOI: 10.1016/j.abb.2022.109427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022]
Abstract
Selenoprotein S (selenos) is a small, intrinsically disordered membrane protein that is associated with various cellular functions, such as inflammatory processes, cellular stress response, protein quality control, and signaling pathways. It is primarily known for its contribution to the ER-associated degradation (ERAD) pathway, which governs the extraction of misfolded proteins or misassembled protein complexes from the ER to the cytosol for degradation by the proteasome. However, selenos's other cellular roles in signaling are equally vital, including the control of transcription factors and cytokine levels. Consequently, genetic polymorphisms of selenos are associated with increased risk for diabetes, dyslipidemia, and cardiovascular diseases, while high expression levels correlate with poor prognosis in several cancers. Its inhibitory role in cytokine secretion is also exploited by viruses. Since selenos binds multiple protein complexes, however, its specific contributions to various cellular pathways and diseases have been difficult to establish. Thus, the precise cellular functions of selenos and their interconnectivity have only recently begun to emerge. This review aims to summarize recent insights into the structure, interactome, and cellular roles of selenos.
Collapse
Affiliation(s)
- Farid Ghelichkhani
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Fabio A Gonzalez
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Mariia A Kapitonova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | | | - Jun Liu
- Enlaza Therapeutics, 11099 N. Torrey Pines Rd, suite 290, La Jolla, CA, 92037, USA
| | - Rujin Cheng
- NGM Biopharmaceuticals, Inc., 333 Oyster Point Blvd, South San Francisco, CA, 94080, USA
| | - Sharon Rozovsky
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
4
|
Jehan C, Cartier D, Bucharles C, Anouar Y, Lihrmann I. Emerging roles of ER-resident selenoproteins in brain physiology and physiopathology. Redox Biol 2022; 55:102412. [PMID: 35917681 PMCID: PMC9344019 DOI: 10.1016/j.redox.2022.102412] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 12/23/2022] Open
Abstract
The brain has a very high oxygen consumption rate and is particularly sensitive to oxidative stress. It is also the last organ to suffer from a loss of selenium (Se) in case of deficiency. Se is a crucial trace element present in the form of selenocysteine, the 21st proteinogenic amino acid present in selenoproteins, an essential protein family in the brain that participates in redox signaling. Among the most abundant selenoproteins in the brain are glutathione peroxidase 4 (GPX4), which reduces lipid peroxides and prevents ferroptosis, and selenoproteins W, I, F, K, M, O and T. Remarkably, more than half of them are proteins present in the ER and recent studies have shown their involvement in the maintenance of ER homeostasis, glycoprotein folding and quality control, redox balance, ER stress response signaling pathways and Ca2+ homeostasis. However, their molecular functions remain mostly undetermined. The ER is a highly specialized organelle in neurons that maintains the physical continuity of axons over long distances through its continuous distribution from the cell body to the nerve terminals. Alteration of this continuity can lead to degeneration of distal axons and subsequent neuronal death. Elucidation of the function of ER-resident selenoproteins in neuronal pathophysiology may therefore become a new perspective for understanding the pathophysiology of neurological diseases. Here we summarize what is currently known about each of their molecular functions and their impact on the nervous system during development and stress.
Collapse
Affiliation(s)
- Cédric Jehan
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuroendocrine, Endocrine and Germinal Differenciation and Communication Laboratory, Mont-Saint-Aignan Cedex, France; Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Dorthe Cartier
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuroendocrine, Endocrine and Germinal Differenciation and Communication Laboratory, Mont-Saint-Aignan Cedex, France; Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Christine Bucharles
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuroendocrine, Endocrine and Germinal Differenciation and Communication Laboratory, Mont-Saint-Aignan Cedex, France; Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Youssef Anouar
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuroendocrine, Endocrine and Germinal Differenciation and Communication Laboratory, Mont-Saint-Aignan Cedex, France; Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Isabelle Lihrmann
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuroendocrine, Endocrine and Germinal Differenciation and Communication Laboratory, Mont-Saint-Aignan Cedex, France; Institute for Research and Innovation in Biomedicine, Rouen, France.
| |
Collapse
|
5
|
Grespi F, Vianello C, Cagnin S, Giacomello M, De Mario A. The Interplay of Microtubules with Mitochondria–ER Contact Sites (MERCs) in Glioblastoma. Biomolecules 2022; 12:biom12040567. [PMID: 35454156 PMCID: PMC9030160 DOI: 10.3390/biom12040567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Gliomas are heterogeneous neoplasms, classified into grade I to IV according to their malignancy and the presence of specific histological/molecular hallmarks. The higher grade of glioma is known as glioblastoma (GB). Although progress has been made in surgical and radiation treatments, its clinical outcome is still unfavorable. The invasive properties of GB cells and glioma aggressiveness are linked to the reshaping of the cytoskeleton. Recent works suggest that the different susceptibility of GB cells to antitumor immune response is also associated with the extent and function of mitochondria–ER contact sites (MERCs). The presence of MERCs alterations could also explain the mitochondrial defects observed in GB models, including abnormalities of energy metabolism and disruption of apoptotic and calcium signaling. Based on this evidence, the question arises as to whether a MERCs–cytoskeleton crosstalk exists, and whether GB progression is linked to an altered cytoskeleton–MERCs interaction. To address this possibility, in this review we performed a meta-analysis to compare grade I and grade IV GB patients. From this preliminary analysis, we found that GB samples (grade IV) are characterized by altered expression of cytoskeletal and MERCs related genes. Among them, the cytoskeleton-associated protein 4 (CKAP4 or CLIMP-63) appears particularly interesting as it encodes a MERCs protein controlling the ER anchoring to microtubules (MTs). Although further in-depth analyses remain necessary, this perspective review may provide new hints to better understand GB molecular etiopathogenesis, by suggesting that cytoskeletal and MERCs alterations cooperate to exacerbate the cellular phenotype of high-grade GB and that MERCs players can be exploited as novel biomarkers/targets to enhance the current therapy for GB.
Collapse
Affiliation(s)
- Francesca Grespi
- Department of Biology, University of Padua, Via Ugo Bassi 58b, 35100 Padua, Italy; (F.G.); (C.V.); (S.C.)
| | - Caterina Vianello
- Department of Biology, University of Padua, Via Ugo Bassi 58b, 35100 Padua, Italy; (F.G.); (C.V.); (S.C.)
| | - Stefano Cagnin
- Department of Biology, University of Padua, Via Ugo Bassi 58b, 35100 Padua, Italy; (F.G.); (C.V.); (S.C.)
- CRIBI Biotechnology Center, University of Padua, Via Ugo Bassi 58b, 35100 Padua, Italy
- CIR-Myo Myology Center, University of Padua, Via Ugo Bassi 58b, 35100 Padua, Italy
| | - Marta Giacomello
- Department of Biology, University of Padua, Via Ugo Bassi 58b, 35100 Padua, Italy; (F.G.); (C.V.); (S.C.)
- Department of Biomedical Sciences, University of Padua, Via Ugo Bassi 58b, 35100 Padua, Italy
- Correspondence: (M.G.); (A.D.M.)
| | - Agnese De Mario
- Department of Biomedical Sciences, University of Padua, Via Ugo Bassi 58b, 35100 Padua, Italy
- Correspondence: (M.G.); (A.D.M.)
| |
Collapse
|
6
|
DKK1 activates noncanonical NF-κB signaling via IL-6-induced CKAP4 receptor in multiple myeloma. Blood Adv 2021; 5:3656-3667. [PMID: 34470047 DOI: 10.1182/bloodadvances.2021004315] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/12/2021] [Indexed: 01/16/2023] Open
Abstract
Proteasome inhibitors, such as bortezomib (BTZ), represent the key elements in chemotherapy regimens for multiple myeloma (MM), whereas acquired chemoresistance and ultimately relapse remain a major obstacle. In the current study, we screened differently expressed cytokines in bortezomib-resistant MM cells and found that Dickkopf-1 (DKK1) level was remarkably augmented, whereas CD138 level was significantly suppressed. DKK1 in vitro specifically enhanced the resistance of myeloma cells to bortezomib treatment, and excessive DKK1 drove CD138 downregulation via inhibition of canonical Wnt signaling. Notably, DKK1 mainly induced drug resistance in MM cells via the receptor of CKAP4. Mechanistically, CKAP4 transduced DKK1 signal and evoked NF-κB pathway through recruiting and preventing cullin associated and neddylation dissociated 1 from hampering the assembly of E3 ligase-mediated ubiquitination of IκBα. In addition, we found that interleukin-6 (IL-6) stimulated CKAP4 expression to generate drug resistance, and disturbance of DKK1-CKAP4 axis improved sensitivity to BTZ treatment of MM and attenuated bone destruction in a mouse model. Collectively, our study revealed the previously unidentified role of DKK1 in myeloma drug resistance via Wnt signaling dependent and independent manners, and clarified the importance of antagonism of DKK1-IL-6 loop in bone marrow microenvironment.
Collapse
|
7
|
Quistgaard EM. BAP31: Physiological functions and roles in disease. Biochimie 2021; 186:105-129. [PMID: 33930507 DOI: 10.1016/j.biochi.2021.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/22/2022]
Abstract
B-cell receptor-associated protein 31 (BAP31 or BCAP31) is a ubiquitously expressed transmembrane protein found mainly in the endoplasmic reticulum (ER), including in mitochondria-associated membranes (MAMs). It acts as a broad-specificity membrane protein chaperone and quality control factor, which can promote different fates for its clients, including ER retention, ER export, ER-associated degradation (ERAD), or evasion of degradation, and it also acts as a MAM tetherer and regulatory protein. It is involved in several cellular processes - it supports ER and mitochondrial homeostasis, promotes proliferation and migration, plays several roles in metabolism and the immune system, and regulates autophagy and apoptosis. Full-length BAP31 can be anti-apoptotic, but can also mediate activation of caspase-8, and itself be cleaved by caspase-8 into p20-BAP31, which promotes apoptosis by mobilizing ER calcium stores at MAMs. BAP31 loss-of-function mutations is the cause of 'deafness, dystonia, and central hypomyelination' (DDCH) syndrome, characterized by severe neurological symptoms and early death. BAP31 is furthermore implicated in a growing number of cancers and other diseases, and several viruses have been found to target it to promote their survival or life cycle progression. The purpose of this review is to provide an overview and examination of the basic properties, functions, mechanisms, and roles in disease of BAP31.
Collapse
Affiliation(s)
- Esben M Quistgaard
- Department of Molecular Biology and Genetics - DANDRITE, Aarhus University, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
8
|
Selenoprotein S attenuates endothelial dysfunction in a diabetic vascular chip. Exp Gerontol 2020; 137:110963. [DOI: 10.1016/j.exger.2020.110963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 12/18/2022]
|
9
|
Okumura F, Fujiki Y, Oki N, Osaki K, Nishikimi A, Fukui Y, Nakatsukasa K, Kamura T. Cul5-type Ubiquitin Ligase KLHDC1 Contributes to the Elimination of Truncated SELENOS Produced by Failed UGA/Sec Decoding. iScience 2020; 23:100970. [PMID: 32200094 PMCID: PMC7090344 DOI: 10.1016/j.isci.2020.100970] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/10/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023] Open
Abstract
The UGA codon signals protein translation termination, but it can also be translated into selenocysteine (Sec, U) to produce selenocysteine-containing proteins (selenoproteins) by dedicated machinery. As Sec incorporation can fail, Sec-containing longer and Sec-lacking shorter proteins co-exist. Cul2-type ubiquitin ligases were recently shown to destabilize such truncated proteins; however, which ubiquitin ligase targets truncated proteins for degradation remained unclear. We report that the Cul5-type ubiquitin ligase KLHDC1 targets truncated SELENOS, a selenoprotein, for proteasomal degradation. SELENOS is involved in endoplasmic reticulum (ER)-associated degradation, which is linked to reactive oxygen species (ROS) production, and the knockdown of KLHDC1 in U2OS cells decreased ER stress-induced cell death. Knockdown of SELENOS increased the cell population with lower ROS levels. Our findings reveal that, in addition to Cul2-type ubiquitin ligases, KLHDC1 is involved in the elimination of truncated oxidoreductase-inactive SELENOS, which would be crucial for maintaining ROS levels and preventing cancer development. KLHDC1 is a Cul5-type ubiquitin ligase KLHDC1 targets immature SELENOS for proteasomal degradation KLHDC1 knockdown in U2OS cells decreases ER stress-induced cell death
Collapse
Affiliation(s)
- Fumihiko Okumura
- Department of Food and Health Sciences, International College of Arts and Sciences, Fukuoka Women's University, Fukuoka 813-8582, Japan.
| | - Yuha Fujiki
- Department of Food and Health Sciences, International College of Arts and Sciences, Fukuoka Women's University, Fukuoka 813-8582, Japan
| | - Nodoka Oki
- Department of Food and Health Sciences, International College of Arts and Sciences, Fukuoka Women's University, Fukuoka 813-8582, Japan
| | - Kana Osaki
- Department of Food and Health Sciences, International College of Arts and Sciences, Fukuoka Women's University, Fukuoka 813-8582, Japan
| | - Akihiko Nishikimi
- Laboratory of Biosafety Research, National Center for Geriatrics and Gerontology, Aichi 474-8511, Japan
| | - Yoshinori Fukui
- Division of Immunogenetics, Department of Immunobiology and Neuroscience and Research Center for Advanced Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Kunio Nakatsukasa
- Graduate School of Natural Sciences, Nagoya City University, Aichi 467-8501, Japan
| | - Takumi Kamura
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan.
| |
Collapse
|
10
|
Hou X, Wei H, Rajagopalan C, Jiang H, Wu Q, Zaman K, Xie Y, Sun F. Dissection of the Role of VIMP in Endoplasmic Reticulum-Associated Degradation of CFTRΔF508. Sci Rep 2018; 8:4764. [PMID: 29555962 PMCID: PMC5859151 DOI: 10.1038/s41598-018-23284-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/06/2018] [Indexed: 12/05/2022] Open
Abstract
Endoplasmic reticulum (ER)-associated protein degradation (ERAD) is an important quality control mechanism that eliminates misfolded proteins from the ER. The Derlin-1/VCP/VIMP protein complex plays an essential role in ERAD. Although the roles of Derlin-1 and VCP are relatively clear, the functional activity of VIMP in ERAD remains to be understood. Here we investigate the role of VIMP in the degradation of CFTRΔF508, a cystic fibrosis transmembrane conductance regulator (CFTR) mutant known to be a substrate of ERAD. Overexpression of VIMP markedly enhances the degradation of CFTRΔF508, whereas knockdown of VIMP increases its half-life. We demonstrate that VIMP is associated with CFTRΔF508 and the RNF5 E3 ubiquitin ligase (also known as RMA1). Thus, VIMP not only forms a complex with Derlin-1 and VCP, but may also participate in recruiting substrates and E3 ubiquitin ligases. We further show that blocking CFTRΔF508 degradation by knockdown of VIMP substantially augments the effect of VX809, a drug that allows a fraction of CFTRΔF508 to fold properly and mobilize from ER to cell surface for normal functioning. This study provides insight into the role of VIMP in ERAD and presents a potential target for the treatment of cystic fibrosis patients carrying the CFTRΔF508 mutation.
Collapse
Affiliation(s)
- Xia Hou
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Department of Biochemistry and Molecular Biology, Jiamusi University School of Basic Medicine, Jiamusi, Heilongjiang, 154007, China
| | - Hongguang Wei
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Carthic Rajagopalan
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Hong Jiang
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Qingtian Wu
- Department of Biochemistry and Molecular Biology, Jiamusi University School of Basic Medicine, Jiamusi, Heilongjiang, 154007, China
| | - Khalequz Zaman
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Youming Xie
- Karmanos Cancer Institute and Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| | - Fei Sun
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
11
|
Wang T, Wang B, Huang H, Zhang C, Zhu Y, Pei B, Cheng C, Sun L, Wang J, Jin Q, Zhao Z. Enterovirus 71 protease 2Apro and 3Cpro differentially inhibit the cellular endoplasmic reticulum-associated degradation (ERAD) pathway via distinct mechanisms, and enterovirus 71 hijacks ERAD component p97 to promote its replication. PLoS Pathog 2017; 13:e1006674. [PMID: 28985237 PMCID: PMC5650186 DOI: 10.1371/journal.ppat.1006674] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 10/20/2017] [Accepted: 09/28/2017] [Indexed: 11/19/2022] Open
Abstract
Endoplasmic reticulum-associated degradation (ERAD) is an important function for cellular homeostasis. The mechanism of how picornavirus infection interferes with ERAD remains unclear. In this study, we demonstrated that enterovirus 71 (EV71) infection significantly inhibits cellular ERAD by targeting multiple key ERAD molecules with its proteases 2Apro and 3Cpro using different mechanisms. Ubc6e was identified as the key E2 ubiquitin-conjugating enzyme in EV71 disturbed ERAD. EV71 3Cpro cleaves Ubc6e at Q219G, Q260S, and Q273G. EV71 2Apro mainly inhibits the de novo synthesis of key ERAD molecules Herp and VIMP at the protein translational level. Herp differentially participates in the degradation of different glycosylated ERAD substrates α-1 antitrypsin Null Hong Kong (NHK) and the C-terminus of sonic hedgehog (SHH-C) via unknown mechanisms. p97 was identified as a host factor in EV71 replication; it redistributed and co-exists with the viral protein and other known replication-related molecules in EV71-induced replication organelles. Electron microscopy and multiple-color confocal assays also showed that EV71-induced membranous vesicles were closely associated with the endoplasmic reticulum (ER), and the ER membrane molecule RTN3 was redistributed to the viral replication complex during EV71 infection. Therefore, we propose that EV71 rearranges ER membranes and hijacks p97 from cellular ERAD to benefit its replication. These findings add to our understanding of how viruses disturb ERAD and provide potential anti-viral targets for EV71 infection.
Collapse
Affiliation(s)
- Tao Wang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Bei Wang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - He Huang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Chongyang Zhang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Yuanmei Zhu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Bin Pei
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Chaofei Cheng
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Lei Sun
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, PR China
| | - Jianwei Wang
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
- * E-mail: (JWW); (QJ); (ZDZ)
| | - Qi Jin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
- * E-mail: (JWW); (QJ); (ZDZ)
| | - Zhendong Zhao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
- Center of Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
- CAMS-Oxford University International Center for Translational Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
- * E-mail: (JWW); (QJ); (ZDZ)
| |
Collapse
|
12
|
Yu SS, Du JL. Selenoprotein S: a therapeutic target for diabetes and macroangiopathy? Cardiovasc Diabetol 2017; 16:101. [PMID: 28797256 PMCID: PMC5553675 DOI: 10.1186/s12933-017-0585-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/01/2017] [Indexed: 12/14/2022] Open
Abstract
Inflammatory response, oxidative stress, and endoplasmic reticulum (ER) stress are important pathophysiological bases of the occurrence and development of diabetes mellitus (DM) and macroangiopathy complications. Selenoprotein S (SELENOS) is involved in the regulation of these mechanisms; therefore, its association with DM and macroangiopathy has gradually received attention from scholars worldwide. SELENOS has different biological functions in different tissues and organs: it exerts antioxidant protection and has anti-ER stress effects in the pancreas and blood vessels, while it promotes the occurrence and development of insulin resistance in the liver, adipose tissue, and skeletal muscle. In addition, studies have confirmed that some SELENOS gene polymorphisms can influence the inflammatory response and are closely associated with the risk for developing DM and macroangiopathy. Therefore, comprehensive understanding of the association between SELENOS and inflammation, oxidative stress, and ER stress may better elucidate and supplement the pathogenic mechanisms of DM and macroangiopathy complications. Furthermore, in-depth investigation of the association of SELENOS function in different tissues and organs with DM and macroangiopathy may facilitate the development of new strategies for the prevention and treatment of DM and macrovascular complications. Here, we summarize the consensus and controversy regarding functions of SELENOS on currently available evidence.
Collapse
Affiliation(s)
- Shan-Shan Yu
- Department of Endocrinology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Jian-Ling Du
- Department of Endocrinology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China.
| |
Collapse
|
13
|
Vekaria PH, Home T, Weir S, Schoenen FJ, Rao R. Targeting p97 to Disrupt Protein Homeostasis in Cancer. Front Oncol 2016; 6:181. [PMID: 27536557 PMCID: PMC4971439 DOI: 10.3389/fonc.2016.00181] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/22/2016] [Indexed: 12/11/2022] Open
Abstract
Cancer cells are addicted to numerous non-oncogenic traits that enable them to thrive. Proteotoxic stress is one such non-oncogenic trait that is experienced by all tumor cells owing to increased genomic abnormalities and the resulting synthesis and accumulation of non-stoichiometric amounts of cellular proteins. This imbalance in the amounts of proteins ultimately culminates in proteotoxic stress. p97, or valosin-containing protein (VCP), is an ATPase whose function is essential to restore protein homeostasis in the cells. Working in concert with the ubiquitin proteasome system, p97 promotes the retrotranslocation from cellular organelles and/or degradation of misfolded proteins. Consequently, p97 inhibition has emerged as a novel therapeutic target in cancer cells, especially those that have a highly secretory phenotype. This review summarizes our current understanding of the function of p97 in maintaining protein homeostasis and its inhibition with small molecule inhibitors as an emerging strategy to target cancer cells.
Collapse
Affiliation(s)
| | - Trisha Home
- Division of Hematologic Malignancies and Cellular Therapeutics, Kansas University Medical Center , Kansas City, KS , USA
| | - Scott Weir
- The University of Kansas Cancer Center, University of Kansas , Kansas City, KS , USA
| | - Frank J Schoenen
- Specialized Chemistry Center, University of Kansas , Lawrence, KS , USA
| | - Rekha Rao
- Division of Hematologic Malignancies and Cellular Therapeutics, Kansas University Medical Center , Kansas City, KS , USA
| |
Collapse
|
14
|
Abstract
In 1995, in the Biochemical Society Transactions, Mundy published the first review on CLIMP-63 (cytoskeleton-linking membrane protein 63) or CKPA4 (cytoskeleton-associated protein 4), initially just p63 [1]. Here we review the following 20 years of research on this still mysterious protein. CLIMP-63 is a type II transmembrane protein, the cytosolic domain of which has the capacity to bind microtubules whereas the luminal domain can form homo-oligomeric complexes, not only with neighbouring molecules but also, in trans, with CLIMP-63 molecules on the other side of the endoplasmic reticulum (ER) lumen, thus promoting the formation of ER sheets. CLIMP-63 however also appears to have a life at the cell surface where it acts as a ligand-activated receptor. The still rudimentary information of how CLIMP-63 fulfills these different roles, what these are exactly and how post-translational modifications control them, will be discussed.
Collapse
|
15
|
Lee JH, Park KJ, Jang JK, Jeon YH, Ko KY, Kwon JH, Lee SR, Kim IY. Selenoprotein S-dependent Selenoprotein K Binding to p97(VCP) Protein Is Essential for Endoplasmic Reticulum-associated Degradation. J Biol Chem 2015; 290:29941-52. [PMID: 26504085 DOI: 10.1074/jbc.m115.680215] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Indexed: 01/24/2023] Open
Abstract
Cytosolic valosin-containing protein (p97(VCP)) is translocated to the ER membrane by binding to selenoprotein S (SelS), which is an ER membrane protein, during endoplasmic reticulum-associated degradation (ERAD). Selenoprotein K (SelK) is another known p97(VCP)-binding selenoprotein, and the expression of both SelS and SelK is increased under ER stress. To understand the regulatory mechanisms of SelS, SelK, and p97(VCP) during ERAD, the interaction of the selenoproteins with p97(VCP) was investigated using N2a cells and HEK293 cells. Both SelS and SelK co-precipitated with p97(VCP). However, the association between SelS and SelK did not occur in the absence of p97(VCP). SelS had the ability to recruit p97(VCP) to the ER membrane but SelK did not. The interaction between SelK and p97(VCP) did not occur in SelS knockdown cells, whereas SelS interacted with p97(VCP) in the presence or absence of SelK. These results suggest that p97(VCP) is first translocated to the ER membrane via its interaction with SelS, and then SelK associates with the complex on the ER membrane. Therefore, the interaction between SelK and p97(VCP) is SelS-dependent, and the resulting ERAD complex (SelS-p97(VCP)-SelK) plays an important role in ERAD and ER stress.
Collapse
Affiliation(s)
- Jea Hwang Lee
- From the Laboratory of Cellular and Molecular Biochemistry, Division of Life Sciences, Korea University, 1, 5-Ka, Anam-Dong, Sungbuk-Ku, Seoul 136-713, Republic of Korea and
| | - Ki Jun Park
- From the Laboratory of Cellular and Molecular Biochemistry, Division of Life Sciences, Korea University, 1, 5-Ka, Anam-Dong, Sungbuk-Ku, Seoul 136-713, Republic of Korea and
| | - Jun Ki Jang
- From the Laboratory of Cellular and Molecular Biochemistry, Division of Life Sciences, Korea University, 1, 5-Ka, Anam-Dong, Sungbuk-Ku, Seoul 136-713, Republic of Korea and
| | - Yeong Ha Jeon
- From the Laboratory of Cellular and Molecular Biochemistry, Division of Life Sciences, Korea University, 1, 5-Ka, Anam-Dong, Sungbuk-Ku, Seoul 136-713, Republic of Korea and
| | - Kwan Young Ko
- From the Laboratory of Cellular and Molecular Biochemistry, Division of Life Sciences, Korea University, 1, 5-Ka, Anam-Dong, Sungbuk-Ku, Seoul 136-713, Republic of Korea and
| | - Joon Hyun Kwon
- From the Laboratory of Cellular and Molecular Biochemistry, Division of Life Sciences, Korea University, 1, 5-Ka, Anam-Dong, Sungbuk-Ku, Seoul 136-713, Republic of Korea and
| | - Seung-Rock Lee
- the Departments of Biochemistry and Biomedical Science, Research Center for Aging and Geriatrics, Research Institute of Medical Science, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Ick Young Kim
- From the Laboratory of Cellular and Molecular Biochemistry, Division of Life Sciences, Korea University, 1, 5-Ka, Anam-Dong, Sungbuk-Ku, Seoul 136-713, Republic of Korea and
| |
Collapse
|
16
|
Wakana Y, Kotake R, Oyama N, Murate M, Kobayashi T, Arasaki K, Inoue H, Tagaya M. CARTS biogenesis requires VAP-lipid transfer protein complexes functioning at the endoplasmic reticulum-Golgi interface. Mol Biol Cell 2015; 26:4686-99. [PMID: 26490117 PMCID: PMC4678024 DOI: 10.1091/mbc.e15-08-0599] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/14/2015] [Indexed: 11/24/2022] Open
Abstract
Biogenesis of the TGN-derived transport carriers CARTS requires the ER protein VAP and Golgi lipid transfer proteins, ceramide transfer protein and OSBP. Sac1 lipid phosphatase is recruited to a VAP–OSBP complex formed at an ER subdomain closely apposed to the trans-Golgi/TGN. Association–dissociation dynamics of ER–Golgi contacts are important for CARTS formation. Vesicle-associated membrane protein–associated protein (VAP) is an endoplasmic reticulum (ER)-resident integral membrane protein that controls a nonvesicular mode of ceramide and cholesterol transfer from the ER to the Golgi complex by interacting with ceramide transfer protein and oxysterol-binding protein (OSBP), respectively. We report that VAP and its interacting proteins are required for the processing and secretion of pancreatic adenocarcinoma up-regulated factor, whose transport from the trans-Golgi network (TGN) to the cell surface is mediated by transport carriers called “carriers of the trans-Golgi network to the cell surface” (CARTS). In VAP-depleted cells, diacylglycerol level at the TGN was decreased and CARTS formation was impaired. We found that VAP forms a complex with not only OSBP but also Sac1 phosphoinositide phosphatase at specialized ER subdomains that are closely apposed to the trans-Golgi/TGN, most likely reflecting membrane contact sites. Immobilization of ER–Golgi contacts dramatically reduced CARTS production, indicating that association–dissociation dynamics of the two membranes are important. On the basis of these findings, we propose that the ER–Golgi contacts play a pivotal role in lipid metabolism to control the biogenesis of transport carriers from the TGN.
Collapse
Affiliation(s)
- Yuichi Wakana
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Richika Kotake
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Nanako Oyama
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Motohide Murate
- Lipid Biology Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | | | - Kohei Arasaki
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Hiroki Inoue
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Mitsuo Tagaya
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
17
|
Abstract
SIGNIFICANCE Selenoproteins employ selenium to supplement the chemistry available through the common 20 amino acids. These powerful enzymes are affiliated with redox biology, often in connection with the detection, management, and signaling of oxidative stress. Among them, membrane-bound selenoproteins play prominent roles in signaling pathways, Ca(2+) regulation, membrane complexes integrity, and biosynthesis of lipophilic molecules. RECENT ADVANCES The number of selenoproteins whose physiological roles, protein partners, expression, evolution, and biosynthesis are characterized is steadily increasing, thus offering a more nuanced view of this specialized family. This review focuses on human membrane selenoproteins, particularly the five least characterized ones: selenoproteins I, K, N, S, and T. CRITICAL ISSUES Membrane-bound selenoproteins are the least understood, as it is challenging to provide the membrane-like environment required for their biochemical and biophysical characterization. Hence, their studies rely mostly on biological rather than structural and biochemical assays. Another aspect that has not received much attention is the particular role that their membrane association plays in their physiological function. FUTURE DIRECTIONS Findings cited in this review show that it is possible to infer the structure and the membrane-binding mode of these lesser-studied selenoproteins and design experiments to examine the role of the rare amino acid selenocysteine.
Collapse
Affiliation(s)
- Jun Liu
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware
| | - Sharon Rozovsky
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware
| |
Collapse
|